2011研究生图论期末试题
- 格式:doc
- 大小:43.50 KB
- 文档页数:2
目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。
2.只有一个顶点而无边的图称为平凡图。
3.边集为空的图称为空图。
4.既没有环也没有重边的图称为简单图。
5.其他所有的图都称为复合图。
6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。
7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。
10. 图G 的顶点的最大度。
11. k-正则图: 每个点的度均为 k 的简单图。
例如,完全图和完全偶图Kn,n 均是正则图。
12. 推论1 任意图中,奇点的个数为偶数。
13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。
15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。
16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。
东北大学考试试卷(A卷)2010—2011 学年第 2 学期课程名称:图论与代数结构┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄总分一二三四五六七八九学院班级学号姓名……………○……………密……………○……………封……………○…………线………………得分一.(15分) 填空1.设A={2, 4, 6, 8},A上的二元运算*定义为:a*b=max{a, b},则在独异点<A,*>中,单位元是 2 ,零元是8 。
2.设a是12阶群的生成元,则a2是 6 阶元素,a5是12 阶元素。
3.设〈G, *〉是一个群,G中的幂等元是 e 。
若G={a,b,c},a*x=b,则x=a-1*b ;设a是幺元,则b*c= a 。
4.小于5个元素的格都是有补分配(布尔)格。
5.有n个结点的树,其结点度数之和是2(n-1)。
6.一个无向图有生成树的充分必要条件是该图是连通图__。
7.n阶无向完全图Kn 的边数是n(n-1)/2 ,每个结点的度数是n-1 。
若Kn为欧拉图,则n的取值为奇数。
8.具有6 个顶点,12条边的连通简单平面图中,每个面都是由 3 条边围成。
9.无向树T有8片树叶,2个3度分支结点,其余的分支结点都是4度顶点,则 2 个4度分支结点。
得分二. (26分)判断题4.(6分)判断下列集合和运算能否构成半群、独异点和群。
如果不能,简单说明理由。
(1)a是正整数,G={a n|n∈Z,Z为整数集}, 运算是普通乘法。
是半群、独异点和群。
(2分)(2)Q+是正有理数集,运算为普通加法。
(2分)是半群,不是独异点和群。
满足封闭、结合,但没有幺元。
(3)设Z为整数集,∀ x,y∈Z, 运算x*y=x+y-2。
是半群、群和独异点。
(2分)1.(6分)设V1=<Z,+>, V2=<Z, •>,其中Z为整数集合,+和•分别代表普通加法和乘法。
判断下述集合S能否构成V1和V2的子半群和子独异点。
图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
图论及网络总复习题一、选择题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。
A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。
A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。
3、5阶无向完全图的边数为()。
A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。
A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。
A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。
A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。
A.n*n B.n(n+1) C.n/2 D.n*(n-l)12.在一个无向图中,所有顶点的度数之和等于所有边数()倍。
A.1/2 B.2 C.1 D.413.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.所有边都是割边C.无割边集D.每条边都不是割边14.4个顶点的完全图G,其生成树个数是()。
图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。
答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。
答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。
答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。
答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。
答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。
答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。
2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。
四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。
答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。
图论期末考试题库及答案一、单项选择题1. 图论的创始人是()。
A. 欧拉B. 莱布尼茨C. 牛顿D. 高斯答案:A2. 在图论中,一个图的顶点集合为空,但边集合不为空的图称为()。
A. 空图B. 完全图C. 树D. 多重图答案:A3. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
A. 连通图B. 强连通图C. 弱连通图D. 无环图答案:A4. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树答案:C5. 图论中,一个图的边的集合可以划分为若干个不相交的回路,使得图中的每个顶点恰好属于其中一条回路,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树D. 环答案:A二、多项选择题1. 下列哪些是图论中的基本术语()。
A. 顶点B. 边D. 权重答案:ABCD2. 在图论中,以下哪些图是无向图()。
A. 完全图B. 树C. 多重图D. 有向图答案:ABC3. 图论中,以下哪些图是连通图()。
A. 完全图B. 树C. 多重图D. 空图答案:ABC三、填空题1. 图论中,一个图的顶点集合为V,边集合为E,那么图可以表示为G=()。
答案:(V, E)2. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
答案:连通图3. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
答案:树四、简答题1. 请解释什么是图论中的“完全图”?答案:完全图是指图中每一对不同的顶点之间都恰好有一条边相连的图。
在完全图Kn中,n个顶点两两相连,共有n(n-1)/2条边。
2. 请解释什么是图论中的“欧拉路径”和“欧拉回路”?答案:欧拉路径是指图中存在一条路径,该路径恰好经过每条边一次。
欧拉回路是指图中存在一条回路,该回路恰好经过每条边一次。
五、计算题1. 给定一个图G=(V, E),其中V={A, B, C, D, E},E={(A, B), (B, C), (C, D), (D, E), (E, A), (A, C)},请判断该图是否为连通图,并说明理由。
图论考试试题图论考试试题在计算机科学领域中,图论是一门重要的学科。
它研究的是图的性质和图上的算法。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图论可以应用于网络分析、社交网络、路径规划等领域。
图论的考试试题可以帮助学生加深对图论的理解和应用能力。
一、基本概念题1. 什么是图?答:图是由节点和边组成的数据结构。
节点表示对象,边表示对象之间的关系。
2. 图的分类有哪些?答:图可以分为有向图和无向图。
有向图的边有方向,无向图的边没有方向。
另外,图还可以分为加权图和非加权图。
加权图的边具有权重,非加权图的边没有权重。
3. 什么是路径?答:路径是图中连接两个节点的边的序列。
4. 什么是连通图?答:连通图是指图中的任意两个节点之间都存在路径。
二、算法题1. 广度优先搜索算法(BFS)是如何工作的?答:广度优先搜索算法从起始节点开始,逐层遍历图中的节点。
它首先访问起始节点的所有邻居节点,然后依次访问邻居节点的邻居节点,直到遍历完所有可达节点。
2. 深度优先搜索算法(DFS)是如何工作的?答:深度优先搜索算法从起始节点开始,沿着一条路径一直向下访问直到无法继续为止,然后回溯到上一个节点,选择另一条路径继续访问,直到遍历完所有可达节点。
3. 如何判断一个图是否是二分图?答:二分图是指可以将图中的节点分为两个独立的集合,使得同一集合中的节点之间没有边相连。
判断一个图是否是二分图可以使用染色法。
从任意一个节点开始,将其染成红色,然后将其邻居节点染成蓝色,再将邻居节点的邻居节点染成红色,以此类推。
如果在染色过程中发现相邻节点颜色相同,则该图不是二分图。
三、应用题1. 在社交网络中,如何找到两个人之间的最短路径?答:可以使用广度优先搜索算法来找到两个人之间的最短路径。
从一个人开始,逐层遍历其朋友圈中的人,直到找到目标人。
在遍历过程中,可以记录路径,最后得到最短路径。
2. 在电信网络中,如何找到两个城市之间的最短路径?答:可以使用迪杰斯特拉算法来找到两个城市之间的最短路径。
《图论》考试试卷(A卷)班级_________________ 姓名 ____________________ 学号____________________一、填空题(每空2分,共30分)1.____ 条边的图中全部顶点的总次数是100。
2.100个顶点的星的最大顶点次数是 _____ o3.____ 个顶点的图的生成子树中有 ______ 个顶点和100条边。
4.Peterson 图____ (是、否)Euler 图,____ (是、否)Hamilton 图。
5.Kg的每个顶点次数为_______ ,总共有____ 条边,有_____ 种完美匹配,它的平面嵌入的厚度下界为____ 。
6.对一个括号序列进行检测,从左向右数到第99个括号时,记录了右括号_______ 个,因此得出结论为坏括号序列。
7.100个顶点的极大连通平而图中最多有 _____ 条边,_____ 个面。
&有向图G的底图GC是连通的,则G至少为一______ 连通有向图;若存在一个以G的某个顶点%为根的外向树,则G为一______ 连通有向图。
二、画图题(每题5分,共15分)1.画岀所有不同构的5顶点树。
2.画出5次止则完全图,证明它是否为Euler图。
3.画出面数最多的6顶点连通二分平面图的平面嵌入,并指出它有几个面。
三、应用题(10分)1.有〃把钥匙和"把锁混在一起,确定知道每把锁都能有一把钥匙打开,锁匠想把它们一对对的分开,那么有多少种分法是每对中的钥匙都无法打开锁的。
①给出求解上述问题的递归公式,并证明之;②算出n = 6时问题的解。
四、算法题(第1、2、3每题10分,4题15分,共45分)1.写出用Kruskal算法求图1牛成子树的运行过程:①按算法的运行顺序写出每一轮所选的边;②写出对所选的边所进行的操作及其原因(指出算法如何判断所选边是否符合生成树的条件);③给出算法终止的条件。
(设算法按照下标山小到大的顺序遍历所有边,R对每条边时/ ,都有j v Jo)2.若有5字符出现的概率表为字符a b c d e出现概率0.20.160.130.2S0.23写出用HulTman算法求上表中5字符Huffman编码的运行过程:①依“左子概率小于右子”的原则,按算法的运行顺序写出每一轮构造的由有序二元树组成的森林;②给出算法终止的条件;③按照“左0右1”的原则给出这5个字符的Huffman编码。
图论期末复习题1. 写出下图G 中三个结点的度数。
并求出该图的最大度、最小度。
该图是不是简单图?是不是欧拉图?半欧拉图?是不是平面图?画出该图关于完全图的补图。
vv 3vG G答:d(v1)=3,d(v2)=2,d(v3)=4,()4,()2G G δΔ==,图G 是简单图,不是欧拉b,a),(b,e),(b,c)}是否是边割集?该图的点连通度、边连通度分别为多少?{(b,a),(b,e),(b,c)}是边割集。
图G 的点连通度图,是半欧拉图。
是平面图。
其补图如下。
2. 给定图G1,集合{f}, {a,e,c}, {g,k,j}, {b,e,f,k,h},哪些是点割集? 集合{( G1 G2答:{a,e,c}, {g,k,j}, {b,e,f,k,h}都是点割集,{f}不是点割集,()3G κ=,边连通度()3G λ=。
多少条?长度不超过3的通路有多少条?该图是哪类连通? 解:邻接矩阵,,3. 观察上面有向图G2,写出邻接矩阵,由邻接矩阵计算可达矩阵。
并计算:长度为3的通路有,4A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1211222333232101A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦01000011110110002A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦00112101111101003A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦2101121122120011232212332344241111B A A A ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++=++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦010000112101001121011211110111112212100001000011 因此,可达矩阵 1111111111111111P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由矩阵,图G 中长度为3的通路共有3A 4(3),118ij i j a ==∑条。
由矩阵B ,图G 中长度不超过3的通路共有4,136ij i j b ==∑条。
图论复习题图论复习题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。
A.6 B.5 C.8 D.4 2、下面哪几种图不一定是树()。
A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。
3、5阶无向完全图的边数为()。
A.5 B.10 C.15 D.20 4、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 5、设G=为有向图,则有()。
A.E?V x V B.E?V x V C.V x V?E D.V x V=E 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。
A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=为有向图,V={a,b,c,d,e,f},E={,,,,}是()。
A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。
A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条B.C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。
A.n*n B.n(n+1)C.n/2 D.n*(n-l)12.一个有n 个结点的图,最少有()个连通分量。
A.0 B.1 C.n-1 D.n13.一个有n个结点的图,最多有()个连通分量。
A.0 B.1 C.n-1 D.n14.在一个无向图中,所有顶点的度数之和等于所有边数()倍。
A.1/2 B.2 C.1 D.415.在一个有向图中,所有顶点的入度之和等于所有顶点出度之和的()倍。
1 / 2南京邮电大学2010/2011学年 第一学期《图论与代数系统》清欠考试试卷本试卷共4页;考试时间110分钟;专业班级学号姓名为。
2.在代数系统(,,)N +⨯中,N 对运算+的幺元是__________,对运算⨯的幺元是____________。
3.设,A <≤>是一个偏序集, 则称,A <≤>为格。
4.有限布尔代数的元素的个数必定等于。
5.n 个结点的无向完全图n k 的边数为。
6.给定无孤立结点图G ,G 中的欧拉路是指。
7.若一条路中所有的边12,,...n e e e 均不相同,称作。
8.一个代数系统,*S <>,其中S 是非空集合,*是S 上的一个二元运算。
如果:(1),(2),则称代数系统,*S <>为半群。
二、判别题,正确的打√、错误的打⨯。
(20分,每题2分)1. 分配格一定是布尔格。
( ) 2. 自然数集合上的减法运算是封闭的。
( )3. 强连通图一定是单侧连通的。
( )4. 群中一定有零元。
( )5. 代数系统<N,+>每个元素都有逆元。
( )装 订 线 内 不 要 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊2 / 26. 元素个数为4的格一定是布尔格。
( ) 7. 一个图的生成子图必是唯一的。
( ) 8. 存在割点的连通图其连通度必为1。
( )9. 对于两个图,如果结点数目相等,边数相等,度数相等的结点数目也相等,则这 两个图同构。
( )10.在任何有向图中,所有节点的入度之和等于所有节点的出度之和。
( ) 三、解答题(50分,每题10分)1.请画出两个含有5个元素的非分配格。
2.写出下图的邻接矩阵,并求出可达性矩阵。
3.下面各图中,哪些可以一笔画?哪些可以从任一点一笔画?(a ) (b) (c) 4.判断所给的图G 是否为汉密尔顿图,如果是,则给出汗密尔顿回路,否则证明其不是汉密尔顿图。
2011-1-17研究生《图论及其应用》期末考试试题
1. (20分)用Dijkstra 算法求下图中从V1点到其他任意一点的最短路。
2.(20分)用下面附的标号程序求如下网络的最大流,并指出此网络的一个最小割。
(括弧旁第一个数字表示容量,第二个数字表示当前弧中的流量)
3.(20分)从下图中给定的M={x 1y 1,x 3y 5,x 5y 3}开始,用Hungarian 算法求下图中的完美匹配。
V 1
V 2 V 5
V 7
V 6
V 3 V 4 9
13
4
73
910 1 20
15
3
V 1
V 2 V 4
V 6 V 5
V 3
(5,3) (3,1)
(8,5)
(7,6)
(6,3) (4,1)
(6,1)
(7,4)
(8,4)
4.(10分)证明:对任意正整数n ,完全3-部K n,2n,3n 为Hamilton 图;而完全3-部图K n,2n,3n+1为非Hamilton 图。
5.(10分)证明:每棵非平凡树T 至少有两个度为1的顶点。
6.(10分)图G 为偶图⇔G 不包含奇圈。
7.(10分)给出下图的边色数'χ以及色数χ,并分别给出一个正常-'χ边着色和一个正常-χ点着色。
x 1 x 2 x 3 x 4 x 5 y 1
y 2
y 3
y 4
y 5。