现代控制理论第4章 李亚普诺夫稳定性分析
- 格式:ppt
- 大小:1.48 MB
- 文档页数:109
第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。
李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。
在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。
平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。
在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。
接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。
根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。
不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。
这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。
周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。
这个定理对于封闭曲线解以及周期解的情况适用。
当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。
李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。
李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。
通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。
如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。
总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。
不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。
现代控制理论4稳定性4 稳定性分析4.1李氏稳定性分析(1)平衡状态设系统 [],x f x t = x —n 维状态向量。
f —n 维函数向量。
若存在状态向量ex ,对所有的t ,使得 []0ef x t ≡成立,则称ex 为系统的平衡状态。
例如系统1132122x x x x x x =-??=+-?解:有3个平衡点 100e x=,201e x=??-??,301e x=(2)稳定性分析1)李亚普诺夫意义下的稳定对于任选0ε>,都对应存在0(,)0t δε>的实数,当00(,)e x x t δε-≤时其解满足00(,,)x t t εΦ≤ 0t t ≤<∞则称平衡状态ex 为李亚普诺夫意义下的稳定,如果δ与t 无关,则称ex 是一致稳定2)渐近稳定由非0初始状态引起的自由运动是衰减的,当t →∞时, 0(,,)0et x t x Φ-=则ex 平衡点是渐近稳定的。
3)大范围稳定如果ex 稳定,而且对于所有的0x ,00(,,)0et x t x Φ-→,则称平衡状态是大范围渐近稳定的。
4)不稳定由初始状态引起的运动无论0ex x δ-≤,δ多么小,至少有一个状态超出任意指定的空间范围,则称平衡点ex 是不稳定的。
4.2李氏第一方法(1)线性定常系统的稳定判据:x Ax Bu =+ y Cx =系统稳定的充要条件是0SI A -=的特征根全位于S 左半面,输出稳定的充要条件是B A SI C S W 1)()(--=的极点全位于S 左半面,当存在零、极点对消情况时两者是不一致的。
101-=A ,11B ??=, []10C = 0)1()1(=+?-=-S S A SI 11S =-,21S =状态不全稳定,属于状态不稳系统,而输出为[]1)1)(1(111100101)()(1+=-+-=-+=-=-S S S S S S B A SI C S W 是输出稳定系统。