ABAQUS热应力分析实例详解
- 格式:pdf
- 大小:3.81 MB
- 文档页数:37
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2)多种零件排样选择part1、part2、part3,其中,part1的长宽不变为100×70,part2的长宽为200×100,part3的长宽为150×90,板材大小仍然为设800×500,X 间距、Y 间距和零件与板材的边距都设为8,排样对话框设置和在AutoCAD 中的排样结果如图4、图5。
5结论通过排样程序可以看出,ObjectARX 编程环境提供的与MFC 相关的用户界面类AdUi 和AcUi 使开发的应用程序能与AutoCAD 风格界面很好地融合在一起,能在同一个界面对AutoCAD 和MFC 对话框进行操作,同时应用Visual.C ++设计较为复杂的对话框。
虽然用ObjectARX 开发应用程序功能强大,但掌握ObjectARX编程方法并不容易,尤其是运行到AutoCAD 界面出现的错误,因为没有具体的错误提示,很难从程序中找到错误,需要经过不停的调试才能找到原因,这给程序设计带来很大困难。
[参考文献][1]秦洪现,崔惠岚,孙剑,等.Autodesk 系列产品开发培训教程[M ].北京:化学工业出版社,2008.[2]江思敏,曹默,胡春江.AutoCAD2000开发工具———ObjectARX开发工具与应用实例[M ].北京:人民邮电出版社,1999.[3]刘蓉梅,姜秀萍,华徐勇,等.ObjectARX 二次开发及应用实例[J ].机械设计与制造,2002(3):27-29.(编辑昊天)作者简介:谢友宝(1968-),男,教授,硕士研究生导师,主要研究方向为机电一体化设备研制、数控技术、CAD/CAM 技术、计算机软硬件系统开发等。
收稿日期:2009-06-18图3排样结果图2设置对话框图5排样结果图4对话框设置基于ABAQUS 的自由辊温度场及热应力场分析杨桂芳1,罗会信1,林刚2,代宗岭2(1.武汉科技大学机械自动化学院,武汉430081;2.中冶京诚工程技术有限公司,北京100081)自由辊是连铸机中重要的零件,在结晶器、支撑导向段、扇形段中都有使用。
ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。
热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。
在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。
首先,我们需要创建一个ABAQUS模型。
模型包括几何形状、材料属性和边界条件。
在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。
在这个实例中,我们将模拟一个烤箱的加热过程。
模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。
下一步是定义材料属性。
我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。
这些属性通常可以从材料手册或实验中获得。
我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。
在这个实例中,我们将模拟一个恒定的热流输入。
我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。
在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。
我们将选择1000W的热流输入。
然后,我们需要定义分析步骤。
在这个实例中,我们将使用一个稳态热分析步骤。
在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。
我们将选择0.1s的时间步长和10s的总时间。
在模拟之前,我们需要定义网格划分。
网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。
ABAQUS中有多种网格划分方法可供选择。
我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。
当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。
ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。
计算结果将显示在ABAQUS的图形界面中。
在热应力分析完成后,我们可以查看结果并进行后处理。
1.1基于ABAQUS的热应力分析1.1.1 温度场数据处理(1)打开INP_Generator.exe,出现如下软件界面:图1.数据处理软件(2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图所示:图2.路径选择(3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的ABAQUS输入文件ABAQUSinputfile.inp。
图3.生成包含连续温度场INP文件1.1.2 复材工装模板热应力分析(1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”,如下图所示。
检查是否有名为“PID6”的set,若没有则创建一个名为“PID*”的set,set为模板整体。
(“*”为任意数字或字母)图4.创建SET(2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。
在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用ABAQUS/CAE自身功能完成剩余分析工作。
(a)(b)(c)图5.定义材料及铺层(3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。
选择“Tools”菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。
依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。
图6.定义模板局部坐标系(4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。
Step设为“Initial”,Category选择为“Mechanical”,Types for Selected Step 选择为“Displacement/Rotation”,点击“Continue”,如下图所示:图7.选择约束类型(5)将“Select regions for the boundary condition”选为“by angle”,选中模板下表现所有结点(按住Shift键可多选),点击鼠标中键,弹出如下边界条件编辑对话框,给模板施加U3和UR3约束,CSYS选择为模板局部坐标系。
Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
基于ABAQUS的刹车盘热应力分析随着机动车数量的不断增加,刹车系统的安全性和使用寿命成为一个重要的研究方向。
刹车盘作为刹车系统的关键部件之一,其材料选择对于提高机动车的安全性能至关重要。
在刹车过程中,由于制动器片和刹车盘之间的不断摩擦,会产生大量的热量并引起刹车盘的热应力,影响刹车盘的性能与使用寿命。
为深入研究刹车盘的热应力,本文采用ABAQUS软件对刹车盘进行热应力分析。
首先,我们需要进行前期工作。
根据实际情况,选取合适的刹车盘模型和材料模型,并设置刹车盘的几何尺寸和初始温度以及制动器片的作用力。
在模型的加工过程中,需要注意刹车盘各部位的加工精度,以保证模型的准确性。
然后,我们对刹车盘进行热传递分析。
刹车盘在刹车过程中会受到大量的制动器片摩擦产生的热量的影响,因此需要对其热传递进行分析。
在计算过程中,我们需要根据实际数据设置以下参数:热扩散系数、材料密度和比热、传热系数等。
这些参数可以在材料手册中获得。
接下来,我们进行热弹性分析。
在高温和大应力的环境下,刹车盘内部会产生热应力,导致刹车盘的力学性能发生变化。
利用ABAQUS软件对于刹车盘的热应力进行分析,可以了解到刹车盘在制动过程中是否发生变形、开裂等破坏现象,预测刹车盘寿命并进行优化设计。
最后,我们将分析结果进行打印和分析,根据热应力分析结果,对刹车盘的合理性进行评估。
如果出现问题,可以尝试通过改变制动片的材料、设置通风方式等方式来解决问题,提高刹车盘的寿命和安全性能。
总的来说,ABAQUS软件提供了一个重要的工具,用于对于刹车盘的热应力进行分析、寿命预测和性能优化。
通过对于刹车盘的热应力分析,我们可以有效提高机动车的安全性和使用寿命,保障行车安全。
刹车盘的热应力分析需要大量的相关数据,从材料的热物理参数到刹车盘的几何尺寸等方面都需要考虑。
下面列举了一些相关数据,并进行分析。
1. 刹车盘材料的热物理参数:例如,材料的热扩散系数、比热和密度等,这些参数会影响刹车盘在制动过程中的热传递和热应力。