弹性力学第九章 柱形杆的扭转和弯曲
- 格式:ppt
- 大小:2.23 MB
- 文档页数:50
如何在理论力学中分析弯曲和扭转效应?在工程和物理学领域,理解和分析弯曲和扭转效应是至关重要的。
弯曲和扭转是物体在受力作用下常见的变形形式,它们对于结构的稳定性、机械部件的性能以及材料的强度评估都有着深远的影响。
接下来,让我们逐步深入探讨如何在理论力学中对这两种效应进行有效的分析。
首先,我们来了解一下弯曲效应。
当一个杆件或梁受到垂直于其轴线的力时,就会产生弯曲。
为了分析弯曲,我们需要引入一些关键的概念和理论。
弯矩是描述弯曲效应的重要物理量。
它是力乘以力臂的乘积,反映了杆件在某一截面上所承受的弯曲力矩的大小。
通过计算不同截面上的弯矩,我们可以了解杆件在不同位置的弯曲程度。
在弯曲分析中,还需要考虑梁的截面特性。
例如,惯性矩就是一个关键的参数。
惯性矩取决于截面的形状和尺寸,它反映了截面抵抗弯曲变形的能力。
不同形状的截面,如圆形、矩形、工字形等,具有不同的惯性矩计算公式。
对于简单的静定梁,我们可以使用静力平衡方程来求解弯矩和剪力。
例如,简支梁在均布载荷作用下,通过对梁进行受力分析,列出平衡方程,就能够得到弯矩和剪力的表达式。
而对于超静定梁,就需要结合变形协调条件和物理方程来求解。
这可能会涉及到使用力法或位移法等较为复杂的分析方法。
接下来,我们转向扭转效应的分析。
当杆件受到绕其轴线的扭矩作用时,就会产生扭转。
扭矩是描述扭转效应的物理量,类似于弯矩在弯曲分析中的作用。
为了分析扭转,我们同样需要关注杆件的截面特性,其中极惯性矩是一个重要的参数。
对于圆形截面的杆件,其极惯性矩可以通过特定的公式计算得出。
而对于非圆形截面,计算极惯性矩则相对复杂。
在扭转分析中,还有一个重要的概念是剪应力分布。
在圆形截面的扭转中,剪应力沿着半径方向呈线性分布,最大剪应力出现在圆周表面。
对于复杂的扭转问题,如变截面杆件的扭转或多根杆件组成的系统的扭转,可能需要使用能量法或有限元方法等数值分析手段来求解。
在实际应用中,弯曲和扭转效应往往是同时存在的。
机械运作原理的杆件弯曲与扭转分析杆件弯曲与扭转分析是机械运作原理中的重要内容之一。
对于机械结构而言,杆件的弯曲与扭转是不可避免的力学现象,而准确地分析和计算杆件在弯曲与扭转力下的应力和变形是确保机械结构安全可靠运行的重要步骤。
下面将对杆件弯曲与扭转的原理进行详细分析。
首先,我们来讨论杆件的弯曲。
在杆件的弯曲分析中,我们通常采用梁理论(也称为Euler- Bernoulli梁理论)进行分析。
根据这一理论,当杆件受到作用力时,杆件会发生弯曲变形,即杆件上的任意一点都会产生弯曲位移。
杆件的弯曲会引起杆件上的各个截面产生弯矩,而弯矩又会导致杆件上的截面发生应力分布。
根据材料力学的知识,我们可以得到杆件截面上的应力与弯矩的关系:弯曲应力与弯矩成正比。
其次,我们来讨论杆件的扭转。
在杆件扭转分析中,我们通常采用圆柱体的扭转理论进行分析。
根据这一理论,当杆件受到扭矩时,杆件会发生扭转变形。
扭转时,杆件截面上的各个点会绕着杆件中心线产生相对位移。
根据材料力学的知识,我们可以得到杆件截面上的应力与扭矩的关系:扭转应力与扭矩成正比。
综上所述,对于杆件的弯曲与扭转分析,我们首先需要确定杆件所受的力或扭矩,并根据梁理论和扭转理论计算出杆件截面上的弯矩和扭矩。
然后,根据材料的力学性质,将弯矩和扭矩转换成截面上的应力值,并计算出截面上的应力分布情况。
最后,根据杆件所受力的大小和截面上的应力分布情况,判断杆件是否满足运行要求,如果杆件的应力超过了材料的强度极限,就需要进行结构优化或者选择更合适的材料。
需要注意的是,杆件的弯曲和扭转往往是同时存在的,因此在分析时需要将两者综合考虑。
当杆件同时受到弯曲力和扭矩时,会出现综合应力状态,即弯曲应力和扭转应力的叠加效应。
对于综合应力状态的杆件分析,我们可以使用叠加原理进行计算。
杆件弯曲与扭转分析在机械工程中是一项基础而重要的工作,它能够帮助我们理解和分析杆件在工作过程中的变形和应力状态,为设计和优化机械结构提供重要的理论依据。
第9章扭转(6学时)教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:9.1 引言工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图9-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图9-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
图9-1图9-2本章主要讨论圆轴扭转时的应力、变形、强度及刚度计算等问题,同时非圆截面杆进行简单介绍。
弯曲与扭转力学分析弯曲与扭转是材料力学中非常重要的概念和研究方向。
弯曲通常是指材料的一个部分受到外力作用,导致该部分发生形变的过程。
而扭转是指材料整体在一个点处受到外力扭矩作用,导致整体发生旋转的过程。
本文将深入探讨弯曲与扭转的力学分析。
一、弯曲力学分析弯曲是在横截面内发生的,通常发生在杆件之类的结构中。
弯曲过程中,材料上的顶点处的应变是最大的,而中性轴附近的应变较小。
弯曲时,杆件上各点的应力呈现梯度状,越靠近顶点的应力越大,越靠近中性轴的应力越小。
为了分析弯曲问题,常用的方法是欧拉-伯努利理论和斯格米定理。
欧拉-伯努利理论是假设杆件在受到外力时,各截面处的纤维保持笔直,未发生剪切形变。
斯格米定理则是假设截面上所有的纤维在应力状态和平衡方面相同。
在弯曲力学分析中,常涉及到杆件的截面性质,如惯性矩和截面模量。
惯性矩是描述截面抵抗物体弯曲的能力,而截面模量则表示物体抵抗拉伸和压缩的能力。
这些参数对弯曲性能的分析和设计至关重要。
二、扭转力学分析扭转是材料整体或部分在某个轴上产生转动的过程,通常出现在轴类结构和圆形截面杆件中。
扭转产生的力矩和角度之间的关系由杨氏模量决定。
杨氏模量描述了材料在受到扭转作用时变形和应力之间的关系。
扭转力学分析中,将杆件视为薄壁的圆筒,应用薄壁圆筒的形变和应力理论进行分析。
扭转力矩和扭转角之间的关系可以通过圆筒壁的剪切应力和圆筒半径来计算。
在扭转过程中,圆筒壁上的剪切应力是非常重要的参数,也是设计和分析的关键指标。
结论弯曲与扭转力学分析是研究材料力学中的重要方向。
通过对弯曲和扭转过程中的力学特性进行分析和计算,可以为工程设计和材料选择提供有力的依据。
在实际应用中,需要结合材料的力学性能参数和实际的工程需求,进行适当的材料选择和设计。
弯曲和扭转力学分析在许多工程领域具有广泛的应用,如建筑结构、机械设计和航空航天等。
深入理解弯曲和扭转的原理和力学特性,对于工程师和研究人员来说是非常重要的。
第九章柱体的扭转9.1 扭转问题的位移解法学习思路:本节讨论自由扭转问题的位移解法。
首先建立自由扭转的位移假设:一是刚截面假设;二是扭转的翘曲位移与轴线方向坐标无关。
通过上述假设,将柱体的扭转位移用横截面的翘曲表示,因此使得问题的基本未知量简化成为翘曲函数Φ (x,y)。
基本未知量翘曲函数Φ (x,y)。
确定后,通过基本方程,将应力分量、应变分量用翘曲函数表示。
位移表示的平衡微分方程要求翘曲函数满足调和方程。
因此只要选取的翘曲函数是调和函数,自然满足自由扭转问题的基本方程。
自由扭转问题的边界条件,可以分为两个部分:侧面边界条件和端面边界条件。
对于自由扭转,侧面边界不受力。
根据这一条件,可以转化为翘曲函数与横截面边界的关系。
端面采用合力边界条件,就是端面应力的合力为扭矩T。
这一边界条件,采用翘曲函数表达相当复杂。
学习要点:1. 扭转位移假设;2. 扭转翘曲函数满足的基本方程;3. 扭转边界条件;4. 扭转端面边界条件;当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。
如果横截面翘曲变形不受限制,称为自由扭转;如果横截面翘曲变形受到限制,就是约束扭转。
本章讨论的柱体扭转问题为自由扭转。
对于柱体的自由扭转,假设柱体的位移约束为固定左端面任意一点和相应的两个微分线素,使得柱体不产生刚体位移。
柱体右端面作用一力偶T,侧面不受力。
设柱体左端面形心为坐标原点,柱体轴线为z轴建立坐标系。
柱体扭转时发生变形,设坐标为z 的横截面的扭转角为α,则柱体单位长的相对扭转角为。
而横截面的扭转角α = ϕ z。
对于柱体的自由扭转,首先考察柱体的表面变形。
观察可以发现,柱体表面横向线虽然翘曲,但是各个横向线的翘曲是基本相同的,而且横向线的轮廓线形状基本不变。
根据上述观察结论,对柱体部位移作以下的假设:1.刚截面假设。
柱体扭转当横截面翘曲时,它在Oxy平面上的投影形状保持不变,横截面作为整体绕z 轴转动,如图所示。