当前位置:文档之家› 粉煤灰

粉煤灰

粉煤灰
粉煤灰

粉煤灰

一.粉煤灰简介

从煤燃烧后的烟气中收捕下来的细灰称为粉煤灰,粉煤灰是燃煤电厂排出的主要固体废物。粉煤灰的主要来源是以煤粉为燃料的火电厂和城市集中供热锅炉,其中90%以上为湿排灰,活性较干灰低,且费水费电,污染环境,也不利于综合利用。

1.粉煤灰的燃烧过程:

煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰分)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融,同时由于其表面张力的作用,形成大量细小的球形颗粒。在锅炉尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。

2.粉煤灰的外观特性

粉煤灰外观类似水泥,颜色在乳白色到灰黑色之间变化。粉煤灰的颜色是一项重要的质量指标,可以反映含碳量的多少和差异。在一定程度上也可以反映粉煤灰的细度,颜色越深粉煤灰粒度越细,含碳量越高。粉煤灰就有低钙粉煤灰和高钙粉煤灰之分。通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。粉煤灰颗粒呈多孔型蜂窝状组织,比表面积较大,具有较高的吸附活性,颗粒的粒径范围为0.5~300μm。并且珠壁具有多孔结构,孔隙率高达50%—80%,有很强的吸水性。

3.粉煤灰的组成

粉煤灰的化学组成

我国火电厂粉煤灰的主要氧化物组成为:SiO2、Al2O3、FeO、Fe2O3、CaO、TiO2、MgO、K2O、Na2O、SO3、MnO2等,此外还有P2O5等。其中氧化硅、氧化钛来自黏土,岩页;氧化铁主要来自黄铁矿;氧化镁和氧化钙来自与其相应的碳酸盐和硫酸盐。

粉煤灰的元素组成(质量分数)为:O 47.83%,Si 11.48%~31.14%,A1 6.40%~22.91%,Fe 1.90%~18.51%, Ca 0.30%~25.10%,K 0.22%~3.10%,Mg 0.05%~1.92%,Ti 0.40%~1.80%,S 0.03%~4.75%,Na 0.05%~1.40%,P 0.00%~0.90%,C1 0.00%~0.12%,其他0.50%~29.12%

由于煤的灰量变化范围很广,而且这一变化不仅发生在来自世界各地或同一地区不同煤层的煤中,甚至也发生在同一煤矿不同的部分的煤中。因此,构成粉煤灰的具体化学成分含量,也就因煤的产地、煤的燃烧方式和程度等不同而有所不同。GQ-3B粉煤灰分析仪主要检测粉煤灰中二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化铁、二氧化钛等元素。

粉煤灰的活性主要来自活性SiO2(玻璃体SiO2)和活性Al2O3(玻璃体Al2O3)在一定碱性条件下的水化作用。因此,粉煤灰中活性SiO2、活性Al2O3和f-CaO(游离氧化钙)都是活性的有利成分,硫在粉煤灰中一部分以可溶性石膏(CaSO4)的形式存在,它对粉煤灰早期强度的发挥有一定作用,因此粉煤灰中的硫对粉煤灰活性也是有利组成。粉煤灰中的钙含量在3%左右,它对胶凝体的形成是有利的。国外把CaO含量超过10%的粉煤灰称为C类灰,而低与10%的粉煤灰称为F类灰。C类灰其本身具有一定的水硬性,可作水泥混合材,F类灰常作混凝土掺和料,它比C类灰使用时的水化热要低。

粉煤灰中少量的MgO、Na2O、K2O等生成较多玻璃体,在水化反应中会促进碱硅反应。但MgO含量过高时,对安定性带来不利影响。

粉煤灰中的未燃炭粒疏松多孔,是一种惰性物质不仅对粉煤灰的活性有害,而且对粉煤灰的压实也不利。过量的Fe2O3对粉煤灰的活性也不利。

粉煤灰的矿物组成

由于煤粉各颗粒间的化学成分并不完全一致,因此燃烧过程中形成的粉煤灰在排出的冷却过程中,形成了不同的物相。比如:氧化硅及氧化铝含量较高的玻璃珠,另外,粉煤灰中晶体矿物的含量与粉煤灰冷却速度有关。一般来说,冷却速度较快时,玻璃体含量较多:反之,玻璃体容易析晶。可见,从物相上讲,粉煤灰是晶体矿物和非晶体矿物的混合物。其矿物组成的波动范围较大。一般晶体矿物为石英、莫来石、氧化铁、氧化镁、生石灰及无水石膏等,非晶体矿物为玻璃体、无定形碳和次生褐铁矿,其中玻璃体含量占50%以上。

在显微镜下观察,粉煤灰是晶体、玻璃体及少量未燃炭组成的一个复合结构的混合体。混合体中这三者的比例随着煤燃烧所选用的技术及操作手法不同而不同。其中结晶体包括石英、莫来石、磁铁矿等;玻璃体包括光滑的球体形玻璃体粒子、形状不规则孔隙少的小颗粒、疏松多孔且形状不规则的玻璃体球等;未燃炭多呈疏松多孔形式。

4.粉煤灰的性质

粉煤灰的物理性质包括密度、堆积密度、细度、比表面积、需水量等,这些性质是化学成分及矿物组成的宏观反映。由于粉煤灰的组成波动范围很大,这就决定了其物理性质的差异也很大。

粉煤灰的基本物理性质

粉煤灰的物理性质中,细度和粒度是比较重要的项目。它直接影响着粉煤灰的其他性质,粉煤灰越细,细粉占的比重越大,其活性也越大。粉煤灰的细度影响早期水化反应,而化学成分影响后期的反应。

化学性质

粉煤灰是一种人工火山灰质混合材料,它本身略有或没有水硬胶凝性能,但当以粉状及水存在时,能在常温,特别是在水热处理(蒸汽养护)条件下,与氢氧化钙或其他碱土金属氢氧化物发生化学反应,生成具有水硬胶凝性能的化合物,成为一种增加强度和耐久性的材料。

二.粉煤灰的用途

在混凝土中掺加粉煤灰节约了大量的水泥和细骨料;减少了用水量;改善了混凝土拌和物的和易性;增强混凝土的可泵性;减少了混凝土的徐变;减少水化热、热能膨胀性;提高混凝土抗渗能力;增加混凝土的修饰性。

粉煤灰是煤粉经高温燃烧后形成的一种似火山灰质混合材料。它是燃烧煤的发电厂将煤磨成100微米以下的煤粉,用预热空气喷入炉膛成悬浮状态燃烧,产生混杂有大量不燃物的高温烟气,经集尘装置捕集就得到了粉煤灰。粉煤灰的化学组成与粘土质相似,主要用来生产粉煤灰水泥、粉煤灰砖、粉煤灰硅酸盐砌块、粉煤灰加气混凝土及其他建筑材料,还可用作农业肥料和土壤改良剂,回收工业原料和作环境材料。

粉煤灰在水泥工业和混凝土工程中的应用:粉煤灰代替粘土原料生产水泥,水泥工业采用粉煤灰配料可利用其中的未燃尽炭;粉煤灰作水泥混合材;粉煤灰生产低温合成水泥,生产原理是将配合料先蒸汽养护生成水化物,然后经脱水和低温固相反应形成水泥矿物;粉煤灰制作无熟料水泥,包括石灰粉煤灰水泥和纯粉煤灰水泥,石灰粉煤灰水泥是将干燥的粉煤灰掺入10%—30%的生石灰或消石灰和少量石膏混合粉磨,或分别磨细后再混合均匀制成的水硬性胶凝材料;粉煤灰作砂浆或混凝土的掺和料,在混凝土中掺加粉煤灰代替部分水泥或细骨料,不仅能降低成本,而且能提高混凝土的和易性、提高不透水、气性、抗硫酸盐性能和耐化学侵蚀性能、降低水化热、改善混凝土的耐高温性能、减轻颗粒分离和析水现象、减少混凝土的收缩和开裂以及抑制杂散电流对混凝土中钢筋的腐蚀。

粉煤灰在建筑制品中的应用:蒸制粉煤灰砖,以电厂粉煤灰和生石灰或其他碱性激发剂为主要原料,也可掺入适量的石膏,并加入一定量的煤渣或水淬矿渣等骨料,经过加工、搅拌、消化、轮碾、压制成型、常压或高压蒸汽养护后而形成的一种墙体材料;烧结粉煤灰砖,以粉煤灰、粘土及其他工业废料为原料,经原料加工、搅拌、成型、干燥、培烧制成砖;蒸压生产泡沫粉煤灰保温砖,以粉煤灰为主要原料,加入一定量的石灰和泡沫剂,经过配料、搅拌、烧注成型和蒸压而成的一种新型保温砖;粉煤灰硅酸盐砌块,以粉煤灰、石灰、石膏为胶凝材料,煤渣、高炉矿渣等为骨料,加水搅拌、振动成型、蒸汽养护而成的墙体材料;粉煤灰加气混凝土,以粉煤灰为原料,适量加入生石灰、水泥、石膏及铝粉,加水搅拌呈浆,注入模具蒸养而成的一种多孔轻质建筑材料;粉煤灰陶粒,以粉煤灰为主要原料,掺入少量粘结剂和固体燃料,经混合、成球、高温培烧而制的一种人造轻质骨料;粉煤灰轻质耐热保温砖,是用粉煤灰、烧石、软质土及木屑进行配料而成,具有保温效率高,耐火度搞,热导率小,能减轻炉墙厚度、缩短烧成时间、降低燃料消耗、提高热效率、降低成本。

粉煤灰作农业肥料和土壤改良剂:粉煤灰具有良好的物理化学性质,能广泛应用于改造重粘土、生土、酸性土和盐碱土,弥补其酸瘦板粘的缺陷,粉煤灰中含有大量水溶性硅钙镁磷等农作物所必需的营养元素,故可作农业肥料用。

从粉煤灰中回收工业原料:回收煤炭资源,利用浮选法在含煤炭粉煤灰的灰浆水中加入浮选药剂,然后采用气浮技术,使煤粒粘附于气泡上浮与灰渣分离;回收金属物质粉煤灰中

含有Fe2O3、Al2O3、和大量稀有金属;分选空心微珠,空心微珠具有质量小、高强度、耐高温和绝缘性好,可以用于塑料的理想填料,用于轻质耐火材料和高效保温材料,用于石油化学工业,用于军工领域,坦克刹车。

粉煤灰作环保材料:利用粉煤灰可制造分子筛、絮凝剂和吸附材料等环保材料;粉煤灰还可用于处理含氟废水、电镀废水与含重金属例子废水和含油废水,粉煤灰中含有的Al2O3、CaO等活性组分,能与氟生产配合物或生产对氟有絮凝作用的胶体离子,还含有沸石、莫来石、炭粒和硅胶等,具有无机离子交换特性和吸附脱色作用。

粉煤灰可用作生产原料:粉煤灰是无机防火保温板保温板生产原料的一种,绿能无机防火保温板的原料为70%的普通水泥,30%的粉煤灰。

粉煤灰可做造纸原料:在国外,一些研究将粉煤灰作为一种新的造纸原料,并通过电子显微镜分析粉煤灰提高纸张抗拉强度和内部粘结强度的原理。

三.粉煤灰的检测

2.检验前的检查

(1)检查仪器设备的电路连接是否正确,是否出现线路破损、漏电现象。

(2)接通电源,空载运转各仪器设备,确定其是否运转正常。

(3)检查各溶液浓度数量是否符合规范要求。

(4)检查检测用水是否清澈、可透明,是否符合检测要求。

3.实验步骤及数据处理

细度的测定

(1)称取试样50g,精确至0.1g。倒入0.045mm的方孔筛筛网上,将筛子置于筛座上,盖上筛盖。

(2)接通电源,将定时开关开到3min,开始筛析。

(3)开始工作后,观察负压表,负压大于2000Pa时,表示工作正常,若负压小于2000Pa 时,则应停机,清理收尘器中的积灰后再进行筛析。

(4)在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。

(5)3min后筛析结束自动停止,停机后将筛网内的筛余物收集并称量,准确至0.1g。

(6)结果计算

筛余百分数X(%)按下式计算:

X=G*2

G------筛余物重量

需水量比的测定

(1)试验样品:90g粉煤灰,210g硅酸盐水泥和750g标准砂

(2)对比试样:300g硅酸盐水泥,750g标准砂。

(3)按《水泥胶砂流动度试验方法》GB2419分别测定试验样品的流动度达到125~135mm 时的需水量W1(mL)和对比试样达到同一流动度时的需水量W2(mL)。

(4)粉煤灰需水量比(B1)按下式计算:

B1= W1/ W2*100 计算结果保留取整数。

烧失量的测定

(1)方法提要:试样在950~1000℃的马弗炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。由硫化物的氧化引起的烧失量误差必须进行校正、而其他元素存在引起的误差一般可忽略不计。

(2)试验步骤:称取约1g试样(m1),精确至0.001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩埚上,放在马弗炉内从低温开始逐渐升高温度,在950~1000℃灼烧15~20min,取出坩埚置于干燥器中,冷却至室温,称重。反复灼烧,直至恒重。

(3)烧失量的质量百分数XLO1按下式计算:

XLO1=(m1-m2)/m1*100

m1--------试料的质量(g)

m2--------灼烧后试料的质量(g)

XLO1--------烧失量的质量百分数,%

(4)允许差同一个试验室允许差0.15%

三氧化硫含量的测定

(1)称取约0.5g试样(m1) ,精确至0.0001g,置于300mL烧杯中,加入30~40mL水使其分散。加10mL盐酸(1+1),用平头玻璃棒压碎块状物,慢慢地加热溶液,直至水泥分解完全。将溶液加热微沸5min。用中速滤纸过滤,用热水洗涤10~12次。调整滤液体积致200mL,煮沸,在搅拌下滴加10mL热的氯化钡溶液,继续煮沸数分钟,然后移至温热处静置4h或过夜(此时溶液的体积应保持在200mL)。用慢速滤纸过滤,用温水洗涤,直至无氯离子为止。

(2)将沉淀及滤纸一并移入已灼烧恒量的瓷坩埚中,灰化后在800℃的马弗炉内灼烧30min,取出坩埚置于干燥器中冷却至室温,称量。反复灼烧,直至恒量。

(3)三氧化硫的质量百分数XSO3按下式计算:

XSO3=m2 * 0.343 / m1 * 100

m1------试料的质量,g

m2------灼烧后沉淀的质量,g

0.343---硫酸钡对三氧化硫的换算系数

XSO3-----三氧化硫的质量百分数,%

(4)允许差同一试验室的允许差为0.15%;不同试验室的允许差为0.20%。

含水率的测定

(1)由样品中取2份各重10g的粉煤灰,分摊在干燥的浅口容器中,称准至0.001g;将盛装试样的浅口容器置于烘箱内,在105±5℃温度下烘60±5min;将烘毕的试样连同容器置于干燥器内冷却至室温称重。

(2)每个样品的含水率按下式计算:

含水率=(m-d)/d*100%

式中:m-----样品干燥前重量(g);

d------样品干燥后重量(g)。

含水率以两个样品的百分率平均值为结果

4试验后的处理

(1)试验结束后要清理各种溶液溶剂,需保存的溶液溶剂要妥善保存好。

(2)切断电源,各仪器设备回复原位,同时做好场地的清洁工作。

粉煤灰试题 (2)

试验检测试题(矿物掺合料试验) 一、填空题(15题) 1、混凝土的总碱含量包括水泥、矿物掺合料、外加剂及水的碱含量之和。其中,矿物掺合料的碱含量以其所含可溶性碱计算。粉煤灰的可溶性碱量取粉煤灰总碱量的1/6,矿渣粉的可溶性碱量取矿渣总碱量的1/2,硅灰的可溶性碱量取硅灰总碱量的1/2。 2、按TB10424规范中要求,预应力混凝土中粉煤灰的掺量不宜大于30%。 3、拌制混凝土和砂浆用的粉煤灰一般分为F类粉煤灰和C类粉煤灰。 4、胶凝材料是指用于配制混凝土的水泥与粉煤灰、磨细矿渣粉和硅灰等活性矿物掺和料的总称。水胶比则是混凝土配制时的用水量与胶凝材料总量之比。 5、测定试验样品和对比样品的流动度,两者流动度之比评价矿渣粉的流动度比。 6、矿渣粉活性指数试验是分别测定对比胶砂和试验胶砂的7d和28d抗压强度。 7、粉煤灰用于混凝土中有四种功效火山灰效应、形态效应、微集料效应、稳定效应。 8、粉煤灰的需水量比对混凝土影响很大除了强度外,还影响流动性和早期收缩,因此做好需水量比为混凝土试配提供依据。 9、测定试验样品和对比样品的抗压强度,采用两种样品同龄期的抗压强度之比来评价矿渣粉的活性指数。 10、矿渣粉28d活性指数计算,计算结果保留至整数。 11、粉煤灰的矿物组成结晶矿物、玻璃体、炭粒。 12、粉煤灰对混凝土性能的影响工作性、抗渗性、强度、耐久性、水化热、干缩及弹性模量。 13、筛网的校正采用粉煤灰细度标准样品的标准值与实测值的比值来计算。

14、粉煤灰细度筛工作负压范围4000-6000Pa,筛析时间为180秒,若有成球、粘筛情况可延长筛析时间1-3分钟,直到筛分彻底为止。 15、矿渣粉烧失量检测由于硫化物的氧化引起的误差,可通过检测灼烧前后的SO3来进行校正。 二、单选题(15题) 1、在粉煤灰化学成分中, C 约占 45%—60%。 A、Al2O3 B、Fe2O3 C、SiO2 D、CaO 2、A粉煤灰适用于钢筋混凝土和预应力钢筋混凝土。 A、Ⅰ级 B、Ⅱ级 C、Ⅲ级 D、以上说法都不正确 3、提高混凝土抗化学侵蚀性,最好的掺合料是C。 A、粉煤灰; B、磨细矿粉; C、硅灰; D、以上说法都不正确 4、矿渣粉的密度试验结果计算到第三位,且取整数到0.01g/cm3,试验结果取两次测定结果的算数平均值,两次测定结果之差不得超过B。 A、0.01g/cm3; B、0.02g/cm3; C、0.03g/cm3; D、以上说法都不正确 5、依据TB10424中规定,硅灰的检验要求同厂家、同批号、同品种、同出厂日期的产品每A t为一批,不足A t时也按一批计。 A.30,30 B. 60,60 C.120,120 D、以上说法都不正确 6、 B 方孔筛筛余为粉煤灰细度的考核依据。 A.35μm B. 45μm C.50μm D、以上说法都不正确 7、混凝土中粉煤灰掺量大于30%时,混凝土的水胶比不宜大于B。 A.0.35 B. 0.40 C.0.45 D、0.55 8、用于C50混凝土以下的C类Ⅱ级粉煤灰烧失量,不大于 D %。 A.5% B. 6% C.7% D、8%

粉煤灰废水处理

粉煤灰粒度的大小和接触时间对废水的处理的何影 响 据不完全统计,全球范围内热电厂每年废弃的粉煤灰超过5O亿t,且循环利用率很低。随着科技的发展,人们对于粉煤灰的再利用越来越重视,调查表明,1995年粉煤灰的循环利用率在美国为23 、欧洲42 、日本46 。发展到目前,发达国家(欧美等)的粉煤灰利用率已达7O ~8O ,而我国目前的利用率仅为3O 左右,且主要用于筑路基和回填。没有得到循环利用的固体废弃物堆积如山,形成了新的环境问题。如果这种固体废弃物能够得到利用,则既能节约能源,又可为环保工作做出新贡献。 粉煤灰的主要成分及物理性质 粉煤灰属火山灰类物质,其主要成分是SiO。、AlzO 、Fez0 、CaO等,同时还含有少量的其他物质。表1为我国火电厂粉煤灰主要化学成分平均值[引。从表1的数据可以看出,SiO2、Al2O 、Fe2O 、CaO 和MgO五种成分约占我国火电厂粉煤灰化学成分的9O ,其他组分所占比例较小。 吸附作用主要包括物理吸附和化学吸附两种 物理吸附时粉煤灰与吸附质(污染物分子)间通过分子间引力产

生吸附,这一作用受粉煤灰的多孔性及比表面积决定。物理吸附特征主要是吸附时粉煤灰颗粒表面能降低,放热,故在低温下可自发进行;其次是物理吸附无选择性,因而对各种污染物都有一定吸附去除能力。 化学吸附粉煤灰存在大量Al、Si等活性点,能与吸附质通过化学链发生结合。化学吸附特点是其选择性强,通常为不可逆。在通常情况下,上述两种吸附作用同时存在,但在不同条件(pH、温度等)下体现出的优势不同,导致粉煤灰吸附性能变化。 从粉煤灰的化学物理性质来看,粉煤灰去除废水中的有害物质主要是通过吸附,但在一定条件下,也有一定的絮凝沉淀和过滤作用。粉煤灰的絮凝沉淀和过滤作用只能对吸附起补充作用。不能代替吸附的主导地位。从以往对粉煤灰的一些研究来看,吸附平衡时间和粉煤灰的粒度有关。颗粒越细,达到吸附平衡所需要的时间越短,吸附速率越快。 粉煤灰的粒度 将经硫酸活化的粉煤灰研磨后,分别过200、160、120、80、40目筛,得到不同粒度的活化粉煤灰。向6个250 ml具塞三角瓶中各加人COD质量浓度为1 085 mg/l、色度为460倍的造纸废水100ml,再分别加入30 g不同粒度的活化粉煤灰,编号后做吸附振荡试验,记录实验结果,并记录在下表。

粉煤灰试验方法

粉煤灰细度试验方法 试验步骤: 1、将测试用粉煤灰样品置于温度为105℃~110℃烘干箱内烘到恒重,取出放在 干燥器中冷却至室温。 2、称取试样约10g,准确至0.01g,倒入45μm方孔筛筛网上,将筛子置于筛座上, 盖上筛盖。 3、接通电源,将定时开关固定在3min,开始筛析。 4、开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa.若负压小于4000 Pa,刚应停机,清理收尘器中的积灰后再进行筛析。 5、在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。 6、3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛或有细颗 粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛1mim~3mim直至筛分彻底为止。将筛网内的筛余物收集并称量,准确至 0.01g。 结果计算: 45μm方孔筛筛余按式(A.1)计算: F=(G1/G)×100 …………………(A.1) 式中: F——45μm方孔筛筛余,单位为百分数(%) ——筛余物的质量,单位为克(g) G 1 G——称取试样的质量,单位为克(g) 需水量比试验方法 试验步骤: 3、搅拌后的试验胶砂按GB/T2419测定流动度,当流动度在130mm~140mm范围 内,记录此时的加水量;当流动度小于130mm或大于140mm时,重新调整加水量,直至流动度达到130mm~140mm为止。 结果计算: 需水量比按式(B.1)计算: X=(L1/125)×100 …………………(B.1) 式中: X ——需水量比,单位为百分数(%) ——试验胶砂流动度达到130mm~140mm 时的加水量,单位为毫升(mL) L 1 125——对比胶砂的加水量,单位为毫升(mL) 计算至1%。

烘干技术

Φ2.6×20M湿排粉煤灰烘干系统方案 一.产量计算及主机设备选型: 1. 2.设备选型:按粉煤灰入机水分≤25%.出机水分:≤1-2%,要求其烘干机应选 用:快速沸腾式节能烘干机, 规格:ф2.6×20M配套功率:75KW 转速:4.2r.p.m 其中烘干机内部扬料装置采用专利产品—— 新型组合式扬料装置.烘干热效率达到72% 二、速沸腾烘干系统的技术特点: 由于所需烘干的物料为湿排粉煤灰,该种物料具有含水量较大、粒度细、易粘堵等特点,如果不能将其所含水分都去除,将严重影响该种材料生产工艺中的正常使用。因此有必要设计一套性能良好的烘干系统,满足生产的需要。快速沸腾烘干技术是目前国内烘干技术最好的专利产品,该项技术获得国家科技进步三等奖及国家发明专利,现已在国内外推广应用800多台套,使用效果良好,深受用户好评。 1、节煤型高温沸腾炉供热稳定、煤耗低: 该炉型具有强氧燃烧的性能,对煤质要求不高,无论是一般烟煤、无烟煤或低热质煤矸石、劣质煤均能燃烧,燃尽率近95%。热值在3000~7000大卡/公斤均可。节煤型高温沸腾炉其结构设计合理,使用可靠,供热温度高(一般在700~1100℃),比一般型沸腾炉节煤1/3,比手烧炉节煤2/3,并可较长时间焖火。生产中可采用夜班生产,避开用电高峰,从而降低电耗成本。炉体设计采用耐热混凝土框架结构,加强炉体自身强度,使其能在3~4年内不需大修,能够为烘干机提供稳定的高温热源。该沸腾炉采用仪表控制,减轻了工人劳动

强度。 2、快速沸腾式烘干机强化其热交换效果: 为使该烘干系统产量得到大幅提高,应将现有烘干机内部的扬料装置采用获得国家发明专利新型组合式扬料装置,该套装置具有独特新颖的结构,它能够使进入烘干机内的物料在横断面上呈“瀑布”状下落,沿轴向呈“波浪”形向前“蠕动”,物料基本上可呈“沸腾”状态。整套扬料装置具有一定导向、均流、阻料等多种性能,从而大大改善了物料与热风的接触方式与效果,避免了“风洞”的影响,使物料能够充分地扬起并且最大限度地使其与热烟气进行广泛的热交换。烘干机内部扬料的阻尼系数是原扬料板的3倍,物料分散率是原有形式的4倍。采用该种新型组合式扬料装置能够使烘干系统产、质量得到大幅度提高,而且能够避免物料对筒体的磨损,其使用寿命可延长到6~8年。 3、通风除尘及锁风系统: 由于所烘物料的性质较特殊,产品干燥度要求较高,特别是地处市郊,因此该烘干系统对环保要求更高,因此必须按达标排放来处理废气问题。建议采用抗结露袋式收尘器,使用后其废气排放的浓度低于50mg/Nm3。许多水泥企业烘干系统通风量、负压值均满足系统要求,但由于通风管道布置不合理,弯头较多,使其压力损失较大,加之机尾出料端大量漏入冷风,使其产生冷风“短路”,无法抽入热风炉内的高温热烟气造成烘干系统供热不足,使其产量及烘干质量下降,因此工艺设计时通风管道应顺畅紧凑及增加出料双层电动锁风阀,减少系统漏风,提高热风的利用率。 4、烘干系统采用集中控制,仪表显示操作,将现有所有电气控制放置在控制室内,从而减轻工人劳动强度,改善了工作环境。 三、高湿含量废渣烘干处理的难点 此类物料如进行综合治理时多数需要进行烘干处理后,才能输送、储存及合理利用。但由于它们多采用湿排方式出现,一般排出时含量在30%~80% ,这对干法利用时的烘干处理难度非常大,其主要难点如下: 3.1 输送及喂料困难 由于物料水分过大(物料基本呈“泥浆”或“牙膏”状态)不易送入烘干机内,输送过程中无法储存及计量喂料,而落入烘干机后极易出现堆料和粘堵现象,造成流动速度慢,产量无法提高。

谈谈粉煤灰的粉磨加工工艺

谈谈粉煤灰的的粉磨加工工艺和技术 我是内地分配到新疆,从事环保行业的技术人员,今年由于接自治区环保局的课题研究关系,接触到了电厂粉煤灰的综合处理方面的信息和技术,有了一点了解,相信会对我们全疆乃至全国的粉煤灰行业的朋友有所帮助。 大家知道,我们新疆地处边疆,技术都是从内地引进,我们环保界的压力很大,这几年全疆经济飞速发展,虽然整体经济落后于内地省份,但是我们绝不能再步内地的后尘,接到有关课题任务后,我们查阅了大量的资料,对这个行业有了一个全新的认识。 我国是以煤炭为主要能源的国家,煤炭产量列世界首位,大部分电力依靠燃煤产生,每年由于燃煤产生大量的粉煤灰,如不进行有效利用,既浪费资源,又污染环境。我国近几年每年的煤炭产量为22-24亿吨,按平均10-15%粉煤灰含量计,每年至少产生2-3亿多吨粉煤灰,其中大部分为飞灰,因此每年有大量的粉煤灰需要处理。我国目前粉煤灰的利用水平很低,如用于制水泥、路基材料和建筑用砖等,同时利用率也很低,不到总量的10%。同时如果粉煤灰中未燃碳含量大于6%,则不能用于生产水泥。 粉煤灰综合利用过程中,最重要的一环就是粉磨工艺,粉磨工艺和粉磨设备的选择尤为重要,关系到粉磨的效率和直接生产成本。下面,我们就这一问题做一比较和探讨,希望能够对想从事粉煤灰粉磨行业的朋友有所启示。 大家知道,我国的机械工业大多是从建国后才开始陆续发展起来的,在建国初期,我们的机械工业是一片空白,而作为基础的粉磨设备这一块儿,也更是如此,我们为了发展我们的采矿业等,就从苏联和德国引进了一大批各种工装设备,其中,球磨机就是我国四五十年代从前苏联引进的产物,我国球磨机行业中,洛阳矿山机器厂(现在的中信重工)作为行业龙头一直起着举足轻重的作用,在国家建设中功不可没,虽然其有多年的生产和实践经验,但真正应用在粉煤灰中还是近几年的事情,那么,球磨机应用在粉煤灰的粉磨中到底能效怎么样呢,带着这个疑问,笔者走访了洛矿的工艺研究所的张工,通过张工的介绍,大致的了解了粉煤灰的粉磨工艺如下: 电厂灰库粉煤灰罐车粉磨场地料仓提升机 选粉机球磨机 提升机 成品仓 其中以小时产量15吨为例做了一个球磨机粉磨能效的分析,需要¤1.83×11000细球磨

飞灰处理

生活垃圾焚烧飞灰特性及处置技术 生活垃圾焚烧处理后产生飞灰,产生量为垃圾处理量的3-5%左右。飞灰为含水率很低的灰色粉末,飞灰成分主要有SiO2,NaC1,KCI,CaAl2Si2O8,CaCO3和CaSO4等矿物;含量高达17.9%的溶解盐;还含有能被水浸出的高浓度的Cd,Pb,Cu,Zn,Hg和Cr等多种重金属,对环境pH变化的抵抗能力强。同时焚烧中产生的二噁英,50%以上也附着在飞灰上。因此我国在《国家危险废物名录》中明确规定:生活垃圾焚烧飞灰属于危险废物,必须经过一定的处理,降低其危险性以后,才能进入填埋场进行安全填埋或者考虑进一步的利用。且进行焚烧飞灰预处置及运输的单位必须拥有危险废物经营许可证,运输过程中必须执行危险废物转移联单的管理办法。经过预处置后的飞灰,在达到《生活垃圾填埋场污染控制标准》(TB16889-2008)中的进场要求后,方可进入生活垃圾填埋场填埋。 飞灰的处置方式很多,目前普遍采用的有4种:水泥固化、化学药剂稳定化、酸溶剂提取和熔融固化等。水泥固化设备、操作要求简单,且固化费用相对较低,但水泥固化处理后增容量大,而且如果飞灰中含有阻碍水泥正常凝结的成分时,常会发生固化体强度低、有害物质浸出率高等问题;化学药剂稳定是利用化学药剂通过化学反应使有毒有害物质转变为低溶解性、低迁移性及低毒性物质的过程,可以在实现废物无害化的同时,达到废物少增容或不增容,转变后的物质可进行卫生填埋,但填埋场环境条件与飞灰稳定化时的条件相差很大,因此,一些长期的环境效应还有待于长期的监测数据和研究结果的验证; 酸溶剂提取可以将飞灰中的部分金属提出从而使飞灰进入

普通填埋场,但不同的飞灰由于生活垃圾成分、焚烧条件等不同,飞灰中重金属的存在形式和含量有很大差异,因此,即使在同样的处理条件之下,处理效果会有很大的不同;熔融技术主要是将飞灰和细小的玻璃质混和,经混合造粒成型后,在1000-1400℃高温下熔融一段时间,待飞灰的物理和化学状态改变后,降温使其固化,形成玻璃固化体,借助玻璃体的致密结晶结构,确保重金属的稳定,缺点在于所需能源和费用很高,熔融固化后的灰渣可以进行资源化利用。 美国、德国和日本等发达国家的环保部门最推崇熔融固化处理技术。因为该技术不仅可以使灰渣减容在2/3以上,减轻填埋用地的负担,还可以回收灰渣中的有价金属,分解二噁英等有害物质,因此垃圾焚烧飞灰的熔融固化处理技术已经成为研究的热点之一。经过熔融处理后的飞灰熔渣,如果经检验其中有毒有害物质的浓度在可接受的范围之内,就可以进行豁免管理。熔渣可以用作填坑、造田或垃圾填埋场的覆土材料等加以利用。 国内生活垃圾焚烧场,普遍采用水泥固化稳定和化学药剂稳定化的方法进行焚烧飞灰的预处理。上海御桥生活垃圾热能电厂和上海江桥生活垃圾热能电厂的飞灰,通过专用的密闭槽车运送至嘉定危险废弃物填埋场,采用水泥固化的方法,对飞灰中重金属等有害物固化、稳定后,进行填埋,处置费达1300元/吨;深圳市焚烧飞灰处理示范工程位于深圳下坪固体废弃物填埋场内,占地面积150平方米,处理规模36吨/天,项目采用高分子螯合剂药剂稳定化技术处理进场飞灰,实现飞灰无害化填埋;广州李坑生活垃圾焚烧发电厂每天产生45吨飞灰,经过飞灰固化系统,被水泥固化成块状物体,最后交给环保部门安全填埋;常熟市飞灰处理系统,总投资1600万元,占地

(完整版)粉煤灰细度试验方法

粉煤灰细度试验方法 1 适用范围 本方法适用于粉煤灰细度的检验。本方法利用气流作为筛分的动力和介质,通过旋转的喷嘴喷出的气流作用使筛网里的待测粉状物料呈流态状,并在整个系负压的作用下,将细 颗粒通过筛网抽走,从而达到筛分的目的。 2 实验步骤 2.1 将测试用粉煤灰样品置于温度为105~110℃烘箱内烘干至恒温,取出放在 干燥器中冷却至室温。 2.2 称取试样约10g ,精确至0.01g ,记录试样质量m 2,倒在0.075mm 方孔筛网上, 将筛子置于筛座上,盖上筛盖。 2.3 接通电源,将定时开关固定在3min ,开始筛析。 2.4 开始工作后,观察负压表,使负压稳定在4000~6000Pa 。若负压小于4000Pa , 则应停机,清理收尘器中的积灰后再进行筛析。 2.5 在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。 2.6 3min 后筛析自动停止,停机后观察筛余物,如出现颗粒呈球、粘筛或有细 颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1~3min 直至筛分彻底为止。将筛网内的筛余物收集并称量,精确至0.01g ,记录筛余物质量m 1。 2.7 称取试样约100g ,准确至0.01g ,记录试样质量m 3,倒入0.3mm 方孔筛网上, 使粉煤灰在筛面上同时有水平方向及上下方向的不停顿的运动,使小于筛孔的粉煤灰通过筛孔,直至1min 内通过筛孔的质量小于筛上残余量的0.1﹪为止。记录筛子上面粉煤灰的质量m 4。 3 计算 粉煤灰通过百分含量按式(T 0818-1)、(T 0818-2)计算。 1002 121?-=m m m X (T 0818-1) 1003 432?-=m m m X ( T 0818-2) 式中:X 1-0.075mm 方孔筛通过百分含量(%);

粉 煤 灰 标 准

粉煤灰标准 17.用于水泥和混凝土中的粉煤灰 标准名称用于水泥和混凝土中的粉煤灰 标准类型中华人民共和国国家标准 标准号 GB 1596-91 标准发布单位国家技术监督局发布 标准正文 1 主题内容与适用范围 本标准规定了用于水泥和混凝土中的粉煤灰的技术要求、试验方法和检验规则等。本标准适用于拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品和水泥生产中作混合材料的粉煤灰。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 2419 水泥胶砂流动度试验方法 3 定义:从煤粉炉烟道气体中收集的粉末称为粉煤灰。 4 技术要求 4.1 拌制水泥混凝土和砂浆时,作掺合料的粉煤灰成品应满足表1要求。 表1 4.2 水泥生产中作活性混合材料的粉煤灰应满足表2要求。 表2

5 试验方法 5.1 烧失量、含水量和三氧化硫 按GB176进行。 5.2 细度 按附录A进行。 5.3 需水量比 按附录C进行。 5.4 28天抗压强度比 按附录C进行。 6 检验规则 6.1 组批与取样 6.1.1 以连续供应的200t相同等级的粉煤灰为一批。不足200t者按一批论,粉煤灰的数量按干灰(含水量小于1%)的重量计算。 6.1.2 取样方法 6.1.2.1 散装灰取样:从运输工具、贮灰库或堆场中的不同部位取15份试样,每份试样1  ̄3kg,混合拌匀,按四分法,缩取出比试验所需量大一倍的试样(称为平均样)。 6.1.2.2 袋装灰取样:从每批任抽10袋,从每袋中分取试样不少于1kg,按6.1.2.1的方法混合缩取平均试样。 6.1.3 拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品,必要时,需方可对粉煤灰的质量进行随机抽样。 6.2 检验项目 6.2.1 型式检验 6.2.1.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按4.1条规定的技术要求每半年检验一次。 6.2.1.2 水泥厂启用粉煤灰作活性混合材料时,必须按4.2条规定的技术要求进行检验。作为生产控制,要求烧失量,三氧化硫和含水量每月检验一次,28天抗压强度比每季度检验一次。 6.2.1.3 当电厂的煤种和设备工艺条件变化时,也应及时检验。 6.2.2 交货检验 6.2.2.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按6.1条要求,进行细度、烧失量和含水量检验。 6.2.2.2 水泥厂作活性混合材料使用的粉煤灰,供方必须按6.1条要求,进行烧失量和含 水量检验。 6.3 检验结果评定 6.3.1 符合本标准第4章各级技术要求的为等级品。若其中任何一项不符合要要求的,应重新加倍取样,进行复验。复验不合格的需降级处理。 6.3.2 凡低于第4章技术要求中最低级别技术要求的粉煤灰为不合格品。 6.3.3 按4.2条技术要求,28天抗压强度比指标低于62%的粉煤灰,可作为水泥生产中的非活性混合材料。 6.3.4 粉煤灰出厂合格证,内容包括: a.厂名和批号; b.合格证编号及日期; c.粉煤灰的级别及数量; d.质量检验结果。 7 包装、标志、运输和贮存 7.1 袋装粉煤灰的包装袋上应清楚标明“粉煤灰”、厂名、级别、重量、批号及包装日期。 7.2 粉煤灰运输和贮存时,不得与其他材料混杂。并注意防止受潮和污染环境。

粉煤灰烘干机

粉煤灰烘干机 产品简介 在电厂的燃煤锅炉系统中,粉煤灰的排放可分为干排和湿排两种。目前,在水泥工业 发达地区,干粉煤灰作为水泥生产的混合材料,行情较好,跃升为一种供不应求的资源;湿粉煤灰各项物化性能与干粉煤灰基本一样,只是由于水份含量大(最大可达45%),不能满足水泥生产的要求,因而不受市场的青睐,只能堆放于湿灰灰库中, 愈积愈多,严重污染环境。随着国家产业政策的不断优化,环保法规的日趋完善,湿 粉煤灰的处理方案已被提上议事日程。只有提高粉煤灰综合利用价值将湿粉煤灰以合 理的能耗、简洁的工艺进行烘干,使其水份低于5%,才能变废为宝,实现社会效益与经济效益的双丰收。 湿粉煤灰具有水份大、比重小、粒度细等显著特点,传统的烘干设备不能解决湿粉 煤灰的烘干问题。由于该种物料具备上述三种特点,在使用传统烘干机烘干湿粉煤灰时,会在设备内形成风洞,导致热气流短路,废气温度高,热损失非常严重。在初水 份≤20%,终水份≤5%时,煤耗为15~20Kg标煤/T干料。 粉煤灰烘干机系统工作原理及特点 在热风炉的热风温度达350℃时,粉煤灰烘干机在PC系统指示下开始工作。湿 料输送设备将水份低于20%的湿粉煤灰送入打散喂料机(打散喂料机具有打散和输送 双重功能)内,将物料均匀地送入带式输送机。然后粉煤灰进入储料仓,再经过螺旋 喂料器,进入干燥滚筒内。该技术在国内处于领先水平,使能源消耗降低三分之一, 大大降低了生产成本。 其工作原理如下: 物料首先由供料装置送入三层滚筒的内层,实现顺流烘干,在内层的抄板下不断被抄起,散落呈螺旋行进式实现热交换;紧接着物料移动至内层的另一端进入中层,在中层呈 进两步、退一步的行进方式不断地被反复扬进,进行逆流烘干,(物料在中层既充分 吸收内层滚筒散发的热量,又吸收中层滚筒的热量,同时又延长了干燥时间,物料在 此达到最佳干燥状态);最后物料行至中层另一端,落入外层,在外层滚筒内呈矩形 多回路方式行进。达到干燥效果的物料在热风作用下快速行进排出滚筒。没有达到干 燥效果的湿物料因自重而不能快速行进,物料在此矩形抄板内再次进行充分干燥。由 此完成干燥过程。

粉煤灰八项常规项目检测操作细则

粉煤灰操作细则 一、含水量的试验方法 1、操作步骤 称取粉煤灰试样50g,准确至0.01g,倒入蒸发皿中;将烘干箱温度调整并控制在105℃~110℃;将粉煤灰试样放入烘干箱内烘至恒重,取出放在干燥器中冷却至室温后称量,准确至0.01g。 2、计算公式 W = [(W1-W0)/ W1] × 100 式中:W ——含水量,%; W1——烘干前试样的质量,g; W0——烘干后试样的质量,g; 计算至0.1%。 二、细度的试验方法 1、操作步骤 将粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 称取试样50 g,准确至0.01 g,倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。接通电源,将定时开关固定在3,开始筛析;开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa,若负压小于4000Pa则应停机,清理收尘器中的积灰后再进行筛析。在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。

3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛可有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止,将筛网内的筛余物收集并称量,准确至0.01 g。 2、计算公式 F = (G1/G)×100 式中:F ——45μm方孔筛筛余,%; G1——筛余物的质量,g; G ——称取试样的质量,g。 计算至0.1%。 三、烧失量的试验方法 1、操作步骤 准确称取试样约1 g,放入已灼烧至恒量的瓷坩埚中,在950℃~1000℃的高温下灼烧30min,取出,稍冷后置于干燥器中,冷却至室温后进行称量。 2、计算公式 Loss =(m -m1)/ m×100 式中:Loss ——烧失量的百分含量,%; m ——灼烧前试样的质量,; m1——灼烧后试样的质量,。 四、需水量比的试验方法 1、操作步骤 (1)胶砂配比按下表

粉煤灰路堤施工工艺及方法

4粉煤灰路堤 1.4.1施工特征 粉煤灰路堤是利用电厂的废料粉煤灰填筑路堤,粉煤干燥后松散,无粘性,填筑路堤时必须严格控制含水量并与路肩包边土协调施工。粉煤灰路堤填筑多数采用机械化联合施工。1.4.2施工方法 恢复路基中线并按20m加密中桩,测标高,放出粉煤灰填筑边桩和包边土坡脚桩,桩上注明桩号,标上填筑高度。 清除填方范围内的草皮,树根,淤泥,积水,并翻松,平整压实地基,经监理工程师检查认可,实测填前标高后,方能上粉煤灰填筑路基。 选择符合质量要求的粉煤灰和土,提前做好标准击实试验,并报监理工程师批准。 在平整压实的地基上,准确放出粉煤灰填筑线和包边土填筑线,以及排水沟的具体位置。在施工前做好排水系统的施工并保证排水沟不被路基填料和施工机械破坏,保持粉煤灰路堤的排水畅通。 按设计要求分层进行土质护坡和粉煤灰路堤填筑施工。要求配合紧密,包边土宽度和填筑粉煤灰宽度准确,包边土配合人工整修,粉煤灰用装载机和自卸汽车运到施工路段,用推土机,平地机摊铺,应在路堤中心和路堤边缘设置松铺厚度控制桩,控制摊铺厚度。 粉媒灰路堤采用水平分层填筑施工法。当分成不同作业段填筑时,先填地段应按1:1坡度分层留台阶,使每一压实层相互交叠衔接,搭接长度应大于150cm,以保证相邻作业段接头范围的压实度。 粉煤灰的松铺系数应通过试验确定。无实测资料时,可按下列数值选用并在施工中调整。松铺系数大致为: 人工摊铺:1.5—1.7; 推土机摊铺:1.2—1.3; 平地机摊铺:1.1—1.2; 粉煤灰的含水量宜在灰场调整后再运到工地直接摊铺辗压,以达到提高工效之目的。已摊铺的粉煤灰因故造成过湿或过干,应晾晒或喷洒水份调整含水量,以达到最佳含水量。加水量可按下式计算: Q=[L×B×H×ρLW/(1+0.1W0)] ×0.01(W1—W0) 式中:Q—所需加水量(Kg) L—路段长度(m) B—路段宽度(m) H—松铺厚度(m) ρLW——松铺湿密度(Kg/m3) W1——粉煤灰原始含水量(%) W0——粉煤灰要求达到的含水量(%) 摊铺后的粉煤灰必须及时碾压,做到当天摊铺,当天压实完毕,以防水份蒸发而影响压实效果。碾压时应使粉煤灰处于最佳含水量范围内。 粉煤灰路堤宜采用振动压路机碾压。压实厚度应根据压实机械种类和压实功能的大小而定,事前要进行试压试验。一般20—30t的中型振动压路机,每层压实厚度不大于20cm,中型振动单足碾或40—50t的重型振动压路机,每层压实厚度不得大于30cm。 粉煤灰辗压,应遵循先轻后重原则,对人工摊铺的灰层宜先用履带式机具或8—12t轻型压路机静压1—2遍,稳定后,用振动压路机碾压3—4遍。机械摊铺的灰层可直接用20t以上

电厂粉煤灰的无害化处理和综合利用

矸石电厂粉煤灰的综合利用 摘要:粉煤灰是从煤燃烧后的烟气中收捕下来的细灰,粉煤灰是燃煤电厂排出的主要固体废物,是我国当前排量较大的工业废渣之一,随着电力工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害。 关键词:粉煤灰;矸石;综合利用 1 引言 我国是个产煤大国,以煤炭为电力生产基本燃料。近年来,我国的能源工业稳步发展,发电能力年增长率为7.3%,电力工业的迅速发展,带来了粉煤灰排放量的急剧增加,燃煤热电厂每年所排放的粉煤灰总量逐年增加,1995年粉煤灰排放量达1.25亿吨,2000年约为1.5亿吨,到2009年,中国粉煤灰产量达到了 3.75亿吨,相当于当年中国城市生活垃圾总量的两倍多,其体积可达到 4.24亿立方米,相当于每两分半钟就倒满一个标准游泳池,或每天一个水立方。给我国的国民经济建设及生态环境造成巨大的压力。另一方面,我国又是一个人均占有资源储量有限的国家,粉煤灰的综合利用,变废为宝、变害为利,已成为我国经济建设中一项重要的技术经济政策,是解决我国电力生产环境污染,资源缺乏之间矛盾的重要手段,也是电力生产所面临解决的任务之一。 煤矸石是在煤矿建设、生产过程及煤的洗选加工过程中排出的固废弃物。由于我国煤炭开采量大,煤矸石大量堆放形成无数座矸石山,不仅占用大量土地,而且还污染环境,给煤矿企业带来沉重的经济环境负担。目前煤矿矸石大部分靠矸石电厂发电消耗掉,但是煤矸石的灰分高,约为6 5 — 8 5 %,粉煤排放量大,而且这些电厂粉煤灰的利用率比较低,大多直接排放,对环境造成了很大的压力。

粉煤灰检测实施细则

粉煤灰检测实施细则 1.适用范围、检测参数及技术标准 1.1适用范围 适用于拌制混凝土和砂浆时作为掺合料的粉煤灰及水泥生产中作为活性混合材料的粉煤灰。 1.2检测参数 细度( 45μ m 方孔筛筛余)、含水量、安定性、烧失量、需水量比、活性指数、三氧化硫、游离氧化钙。 1.3技术标准 1.3.1 产品标准(判定标准)及其需引用标准 GB/T 1596-2005用于水泥和混凝土中的粉煤灰 1.3.2 试验方法标准及其需引用标准 a.GB/T 176-2008水泥化学分析方法 b.GB/T 1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法 c.GB/T 2419-2005水泥胶砂流动度试验方法 d.GB 12573-2008水泥取样方法 e.GB/T 17671-1999水泥胶砂强度检验方法(ISO 法) 2.检测环境 普通混凝土、砂浆用粉煤灰的设施环境应能满足下列要求: 2.1试件成型试验室的温度应保持在20℃± 2℃、相对湿度不低于50%。 2.2试件养护池水温应保持在20℃± 1℃范围内。 3.检测设备与标准物质 3.1检测设备 见表 3.1

3.2标准物质 3.2.1 GSB14-1511水泥细度和比表面积标准粉。 表 3.1 序 名称型号量程精度 号(最小分度值)1负压筛析仪FSY-150———— 245μm 方孔筛—————— 3电子天平AY20020-200g0.01g 4电热恒温干燥箱101-350℃ ~300℃1℃ 5蒸发皿—————— 6干燥器—————— 7电子天平YP30010~3000g0.1g 8水泥专用量瓶150mL——0.5mL 9水泥净浆搅拌机NJ-160A———— 10水泥稠度和凝结时间测定仪——0~70mm1mm 11雷氏夹¢30*30———— 12雷氏值膨胀值测定仪LD-500~25mm1mm 13自动控制养护箱HBY-40B———— 14水泥沸煮箱F2-31A 型———— 15箱式电阻炉SRJX-4-100~1000℃11℃ 16分析天平TG328A0.1mg~200g0.1mg 17水泥胶砂搅拌机JJ-5———— 18水泥胶砂流动度测定仪STNLD-3 型———— 19游标卡尺300mm0~300mm0.02mm 20水泥专用量瓶250mL225mL—— 21ISO 水泥胶砂振实台ZT-96———— 22胶砂试模40×40×160———— 23全自动水泥强度试验机DY208M 型0~300kN 1.0 0~10kN 24试验筛0.08mm方孔筛————25滤纸快、中、慢————26瓷坩埚(带盖)——————27滴定管、容量瓶、移液管—————— 3.2.2 GSB14-1510强度检验用水泥标准样。 4.取样方法及试样数量 4.1对于同一产家、同一等级、同一品种、连续进场且不超过10d 的掺合料为

粉煤灰综合利用方案

. 崇信电厂 粉煤灰综合利用报告 一、粉煤灰综合利用方案 为了更有效的拓宽粉煤灰开发和利用渠道,提高粉煤灰利用挡次,以进一步提高企业经济与社会效益。近几年来,各电站普遍对粉煤灰进行精加工。即选用以下 几种方式:分选、磨细、分选+磨细组合方式。 1、选用分选或磨细或两者组合方式的先决条件 a)应确保电除尘器或布袋收尘器及气力输灰系统运行可靠; b)应力求煤源包括掺烧煤源的稳定,掺烧煤种应力求掺均,特别是应重视灰中Cao和f—Cao含量的变化。 2、选用分选方案 分选即将电除尘器或布袋收尘器第一电场分离下来的粗灰下行筛选,将掺混在粗灰内的部分一、二级细灰分离出来进入细灰库,将分离后残留的粗灰进入粗灰库。再按质销售。所以在选用分选分案时应首先将原灰进行检测。若原灰中一、二级 细灰的含量低于20%,则选用分选方案意义不大,即效益太低。若接近40%, 则可选用。 选用分选方案的优点 a)系统简单; b)施工时间短,见效快。一般安装、调试仅需2—3月; c)分选技术日趋完善,分级机的运行可靠性提高; d)分选后粉煤灰外层玻璃体未遭破坏,其化学内能和表面自由能大,活性. . 较高,对混凝土强度的贡献较大。如三峡水电站掺用粉煤灰全部是经分选后的一 级灰.。

3、选用磨细方案 所谓磨细即将电除尘器或布袋收尘器第一电场分离下来的粗灰全部进球磨机进行碾磨,而磨细灰可全部达国家一级或二级灰标准。再进入细灰库。 选用磨细方案的优点 a)粗粉煤灰可100%全部利用。产量高,磨细灰质量也较稳定. b)当碾磨高钙灰时,能降低和改善士f—Cao的功能。 4、选用分选和磨细的组合方案 所谓分选和磨细的组合方式即上述两种方式的叠加。即对选用分选方案经分离后残留的粗灰再进至球磨机进行碾磨。其磨细灰与分选后细灰均进至细灰库内。该组合方式的优缺点更明显,即同时吸取分选和磨细方案的优点,当然,其投资、维护工作量、运行费用等环保问题的处理均明显增加。但其经济效益和社会效益可观。一般情部下,投资回收期也就一年左右。 5、如何正确选择上述粉煤灰精加工方案。 电站锅炉若已投产1—2台,燃用煤种稳定为低钙灰煤种,且在原灰中一、二级细灰的含量达30—40%左右,一般推荐选用分选方案, 电站锅炉若已投产3~4台或更多台数,燃用煤种稳定为低钙灰煤种。上述各锅炉已装置分选系统,考虑到粗灰能100%全部利用及改善周边环境状况,推荐选用磨细方案,可增装1台球磨机为碾磨全部粗灰的补充, 若该锅炉燃用高钙灰的煤种,又未选用分选系统,则为了降低和改善f—Cao含量,可考虑选用 磨. . 细方案。 不管选用分选或磨细或组合方案,投用后应抓紧做好性能和出力试验,完善粉煤灰计量装置,建立和完善粉煤灰质保体系,包括定期监测粉煤灰细度和各项指标等内容。尽快开拓粉煤灰在周边地区应用力度,建立销售网络,健全运作机制,可以说,粉煤灰应用的前景是相当好的。 二、我国粉煤灰的主要应用途径及评价 目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主 要有以下几类: 1、建材制品方面的应用

粉煤灰试题

粉煤灰试题

试验检测试题(矿物掺合料试验) 一、填空题(15题) 1、混凝土的总碱含量包括水泥、矿物掺合料、外加剂及水的碱含量之和。其中,矿物掺合料的碱含量以其所含可溶性碱计算。粉煤灰的可溶性碱量取粉煤灰总碱量的1/6,矿渣粉的可溶性碱量取矿渣总碱量的1/2,硅灰的可溶性碱量取硅灰总碱量的1/2。 2、按TB10424规范中要求,预应力混凝土中粉煤灰的掺量不宜大于30%。 3、拌制混凝土和砂浆用的粉煤灰一般分为F类粉煤灰和C类粉煤灰。 4、胶凝材料是指用于配制混凝土的水泥与粉煤灰、磨细矿渣粉和硅灰等活性矿物掺和料的总称。水胶比则是混凝土配制时的用水量与胶凝材料总量之比。 5、测定试验样品和对比样品的流动度,两者流动度之比评价矿渣粉的流动度比。 6、矿渣粉活性指数试验是分别测定对比胶砂和试验胶砂的7d和28d抗压强度。 7、粉煤灰用于混凝土中有四种功效火山灰效应、形态效应、微集料效应、稳定效应。 8、粉煤灰的需水量比对混凝土影响很大除了强度外,还影响流动性和早期收缩,因此做好需水量比为混凝土试配提供依据。 9、测定试验样品和对比样品的抗压强度,采用两种样品同龄期的抗压强度之比来评价矿渣粉的活性指数。 10、矿渣粉28d活性指数计算,计算结果保留至整数。 11、粉煤灰的矿物组成结晶矿物、玻璃体、炭粒。 12、粉煤灰对混凝土性能的影响工作性、抗渗性、强度、耐久性、水化热、干缩及弹性模量。 13、筛网的校正采用粉煤灰细度标准样品的标准值与实测值的比值来计算。

14、粉煤灰细度筛工作负压范围4000-6000Pa,筛析时间为180秒,若有成球、粘筛情况可延长筛析时间1-3分钟,直到筛分彻底为止。 15、矿渣粉烧失量检测由于硫化物的氧化引起的误差,可通过检测灼烧前后的SO3来进行校正。 二、单选题(15题) 1、在粉煤灰化学成分中, C 约占 45%—60%。 A、Al2O3 B、Fe2O3 C、SiO2 D、CaO 2、 A 粉煤灰适用于钢筋混凝土和预应力钢筋混凝土。 A、Ⅰ级 B、Ⅱ级 C、Ⅲ级 D、以上说法都不正确 3、提高混凝土抗化学侵蚀性,最好的掺合料是 C 。 A、粉煤灰; B、磨细矿粉; C、硅灰; D、以上说法都不正确 4、矿渣粉的密度试验结果计算到第三位,且取整数到0.01g/cm3,试验结果取两次测定结果的算数平均值,两次测定结果之差不得超过 B 。 A、0.01g/cm3; B、0.02g/cm3; C、0.03g/cm3; D、以上说法都不正确 5、依据TB10424中规定,硅灰的检验要求同厂家、同批号、同品种、同出厂日期的产品每 A t为一批,不足 A t时也按一批计。 A.30,30 B. 60,60 C.120,120 D、以上说法都不正确 6、 B 方孔筛筛余为粉煤灰细度的考核依据。 A.35μm B. 45μm C.50μm D、以上说法都不正确 7、混凝土中粉煤灰掺量大于30%时,混凝土的水胶比不宜大于 B 。 A.0.35 B. 0.40 C.0.45 D、0.55 8、用于C50混凝土以下的C类Ⅱ级粉煤灰烧失量,不大于 D %。 A.5% B. 6% C.7% D、8%

粉煤灰烘干机综合利用前景

粉煤灰烘干机综合利用前景

粉煤灰烘干机综合利用前景 鼎力牌粉煤灰烘干机在结构形式上独特新颖,在技术性能上处于国内同类产品中的领先地位,主要用于建材、化工生产中的粉煤灰、粘土、矿渣、煤炭和矿石等物料的烘干;在电厂的燃煤锅炉系统中,粉煤灰的排放可分为干排和湿排两种。目前,在水泥工业发达地区,干粉煤灰作为水泥生产的混合材,行情较好,已呈供不应求之势,跃升为一种资源;湿粉煤灰各项物化性能与干粉煤灰基本一样,只是由于水份大(最大可达45%),不能满足水泥生产的要求,不受市场的青睐,只能堆放于湿灰灰库中,愈积愈多,严重污染环境。随着国家产业政策的不断优化,环保法规的日趋严历,湿粉煤灰的妥善处理已被提上议事日程。只有将湿粉煤灰以合理的能耗、简洁的工艺进行烘干,使其水份低于5%,才能变废为宝,实现社会效益与经济效益的双丰收。粉煤灰烘干机是由三个不同直径的同心圆彼此相嵌组合而成,作为烘干机的主体。主体通过两端的轮带4水平旋转在两端的四个托轮5上,筒体的入料端设有燃油、燃汽、燃煤等热风炉装置。卸料端设有防尘罩及自动下料装置。防尘罩通过管

道与除尘器相联,除尘设备、喂料设备及输送设备可根据用户工艺条件和要求另行设计。套筒式三筒烘干机的烘干过程是这样实现的,被烘干的物料由入料端喂入烘干机内筒,物料通过内筒的螺旋导向板进入内筒,内筒内部设有许多螺旋状扬料板,物料通过筒体的回转,被扬料板不断的拨起并作纵向运动,物料到达内筒的左端因自重的作用落入中筒,对过导向板,在筒体回转作用下物料被推回中筒,在中筒扬料板的作用下物料向右运动,直到中筒右端,物料在自重作用下落入外筒。同样道理,物料在外筒螺旋扬料板的作用下折回向左运动,直到外筒左端。在封堵外导料锥的作用下落入出料端筒体内。 粉煤灰烘干机主体的1、2、3、三个同心圆筒内,设有不同数量、不同角度的曲面螺旋状扬料板,每个筒体的端部设有导向板。套筒式短筒烘干机的主体通过两个减速电机,分别驱动两端的两个传动托轮,使轮带绕中心转动。待烘干机的湿物料经喂料设备,入料管喂入内筒3的入料端,湿物料通过螺旋导向板迅速推向螺旋扬料板,随着筒体的旋转,设在四个筒内的螺旋式扬料板臻使物料被举升的同时,不断的翻滚、抛散

粉煤灰综合利用方案

崇信电厂 粉煤灰综合利用报告 一、粉煤灰综合利用案 为了更有效的拓宽粉煤灰开发和利用渠道,提高粉煤灰利用挡次,以进一步提高企业经济与社会效益。近几年来,各电站普遍对粉煤灰进行精加工。即选用以下几种式:分选、磨细、分选+磨细组合式。 1、选用分选或磨细或两者组合式的先决条件 a)应确保电除尘器或布袋收尘器及气力输灰系统运行可靠; b)应力求煤源包括掺烧煤源的稳定,掺烧煤种应力求掺均,特别是应重视 灰中Cao和f—Cao含量的变化。 2、选用分选案 分选即将电除尘器或布袋收尘器第一电场分离下来的粗灰下行筛选,将掺混在粗灰的部分一、二级细灰分离出来进入细灰库,将分离后残留的粗灰进入粗灰库。再按质销售。所以在选用分选分案时应首先将原灰进行检测。若原灰中一、二级细灰的含量低于20%,则选用分选案意义不大,即效益太低。若接近40%,则可选用。 选用分选案的优点 a)系统简单; b)施工时间短,见效快。一般安装、调试仅需2—3月; c)分选技术日趋完善,分级机的运行可靠性提高; d)分选后粉煤灰外层玻璃体未遭破坏,其化学能和表面自由能大,活性较

高,对混凝土强度的贡献较大。如三峡水电站掺用粉煤灰全部是经分选 后的一级灰.。 3、选用磨细案 所谓磨细即将电除尘器或布袋收尘器第一电场分离下来的粗灰全部进球磨机进行碾磨,而磨细灰可全部达一级或二级灰标准。再进入细灰库。 选用磨细案的优点 a)粗粉煤灰可100%全部利用。产量高,磨细灰质量也较稳定. b)当碾磨高钙灰时,能降低和改善士f—Cao的功能。 4、选用分选和磨细的组合案 所谓分选和磨细的组合式即上述两种式的叠加。即对选用分选案经分离后残留的粗灰再进至球磨机进行碾磨。其磨细灰与分选后细灰均进至细灰库。 该组合式的优缺点更明显,即同时吸取分选和磨细案的优点,当然,其投资、维护工作量、运行费用等环保问题的处理均明显增加。但其经济效益和社会效益可观。一般情部下,投资回收期也就一年左右。 5、如正确选择上述粉煤灰精加工案。 电站锅炉若已投产1—2台,燃用煤种稳定为低钙灰煤种,且在原灰中一、二级细灰的含量达30—40%左右,一般推荐选用分选案, 电站锅炉若已投产3~4台或更多台数,燃用煤种稳定为低钙灰煤种。上述各锅炉已装置分选系统,考虑到粗灰能100%全部利用及改善边环境状况,推荐选用磨细案,可增装1台球磨机为碾磨全部粗灰的补充, 若该锅炉燃用高钙灰的煤种,又未选用分选系统,则为了降低和改善f—Cao含量,可考虑选用磨细案。 不管选用分选或磨细或组合案,投用后应抓紧做好性能和出力试验,完善粉

相关主题
文本预览
相关文档 最新文档