判别分析的理论依据以及SPSS实现方法
- 格式:ppt
- 大小:987.00 KB
- 文档页数:35
判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类。
判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量。
既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和回归分析类似1.自变量和因变量的关系符合线性假定违反时,可以使用曲线直线化、二次判别分析等方法2.因变量取值是独立的,并且必须事先就已确定这个很好理解,既然最终要归类,就要实现确定归为哪几类3.自变量服从多元正态分布违反时影响不大4.自变量各组间方差齐性,协方差矩阵齐违反时,可使用经典判别分析、非参数判别分析、距离判别分析5.自变量间不存在共线性违反时可以采用类似于线性回归中对共线性的处理,如逐步判别分析,岭判别分析等,和线性回归一样,共线性可以使判别函数的系数发生变化,但是对于判别结果则影响不大判别分析根据不同的判别准则可以分为经典判别分析、贝叶斯判别分析、非参数判别分析等,SPSS中将其和聚类共用一个过程,下面我们来介绍这几种方法在SPPS中的应用一、经典判别分析收集了一些鸢尾花的数据,其中spno为类别,有三个水平,其余四个为变量,想通过此数据进行判别分析,建立判别函数以对花进行区分,数据组成如下分析—分类—判别二、贝叶斯判别分析贝叶斯体系的主要思想是根据先验概率去推证后验概率也就是实验结果,将其引入判别分析之后,就变成计算后验概率及错判率,用最大后验概率来进行判别,并使错判率最小。
在SPSS中,贝叶斯判别和经典判别只是设置上稍有不同。
判别分析方法与SPSS判别分析(Discriminant Analysis)是一种常用的统计方法,用于分析两个或多个已知样本分类的特征,确定如何将新样本分配到已知分类中的方法。
该方法通常用于判别样本的所属类别或进行预测分类,并且可以应用于多个学科领域,如市场研究、医学、生物学等。
SPSS(Statistical Package for the Social Sciences)是一种常用的统计软件,广泛应用于社会科学领域的数据分析。
SPSS提供了丰富的统计方法和数据分析工具,包括描述统计、相关分析、回归分析等,同时也提供了判别分析方法。
在SPSS中,进行判别分析需要先导入数据集并选择“分类”方法。
在分类方法中,可以选择“线性鉴别法”或者“二次鉴别法”,通常选择线性鉴别法。
选择线性鉴别法后,可以选择“反向排序”和“选择必备输入变量”。
反向排序是指将判别函数的变量排序方式从最大向最小递减排序的方式转变为最小向最大递增排序。
选择必备输入变量是指程序会自动选择在判别分析中具有最大判别力的变量。
在SPSS中执行判别分析后,可以得到一些结果,其中最重要的是判别函数。
判别函数用于预测未知样本的类别,可以提供样本的判别得分,判别得分越高表示属于该类别的可能性越大。
判别分析的结果也包括统计指标,如Wilks' Lambda、标准化判别函数系数等。
Wilks' Lambda是判别分析的一个重要统计量,用于衡量所有判别函数的总效应,其值介于0和1之间,越接近0表示判别函数越有效。
标准化判别函数系数用于表示各个变量对判别函数的贡献,系数绝对值越大表示对判别函数的影响越大。
总之,判别分析是一种常用的统计方法,可用于分类和预测。
SPSS 是一种常用的统计软件,提供了判别分析方法和相关的数据分析工具,可以方便地进行判别分析并解释结果。
SPSS判别分析SPSS(Statistical Package for the Social Sciences)是一款广泛使用的统计分析软件,也提供了强大的判别分析功能。
本文将介绍SPSS中判别分析的步骤、应用以及结果的解读。
一、判别分析的步骤1.数据准备:首先,将已知类别的样本数据录入SPSS中,每个样本对应一个实例,每个实例有一组预测变量和一个类别变量。
2.变量选择:选择要作为预测变量的特征或属性,并将其加入模型。
通常,只有连续型或分类型的自变量(预测变量)可以用于判别分析。
3.数据分割:将已知类别的样本数据分为训练集和测试集,一般按照70%的比例划分。
4.判别模型:使用SPSS中的判别分析功能建立判别模型。
在SPSS中,可以通过路径“分析-分类-判别”打开判别分析对话框。
5.模型评估:使用测试集来评估模型的准确性和性能。
可以查看分类结果的混淆矩阵,计算预测准确率、召回率、F1值等指标。
6.结果解读:根据模型的解读提示,分析各个预测变量对判别结果的重要性,找出主要影响判别的变量。
二、判别分析的应用领域判别分析广泛应用于各个领域,包括社会科学、医学、市场营销等。
以下是几个常见的应用案例:1.疾病诊断:通过患者的生物特征(如血液检测结果、基因表达谱等)来判断是否患有其中一种疾病。
2.风险评估:用于评估贷款申请者的信用风险,根据一些个人特征(如年龄、收入、居住地等)来预测违约概率。
3.市场细分:根据消费者的特征(如年龄、性别、购买行为等)将市场区分为不同的细分市场,以制定更精准的市场营销策略。
4.情感识别:通过分析文本数据(如社交媒体评论、产品评论等)来判断用户的情感倾向,以评估产品或服务的满意度。
三、结果解读判别分析的结果包括判别函数、判别系数和预测结果。
判别函数可以看作是一组线性加权的预测变量,用于将实例划分到不同的类别中。
判别系数表示了每个预测变量对判别结果的贡献程度,可以用于解释影响判断的主要变量。