推荐七年级数学上册1-2-4绝对值教学设计1(新版)新人教版
- 格式:doc
- 大小:106.50 KB
- 文档页数:3
2.1有理数的加法与减法(第1课时)教学目标1.能用数形结合的思想方法得出有理数加法法则,能正确地进行有理数的加法运算.2.能运用有理数的加法解决实际问题.教学重点能根据有理数加法法则进行有理数的加法运算.教学难点有理数加法法则的正确使用.教学准备准备带有刻度的直尺.教学过程知识回顾小学学过的加法运算涉及正数与正数相加、正数与0相加以及0与0相加.引入负数后,在有理数范围内,加法有哪几种情况?三种类型:(1)同号两个数相加.正数+正数,负数+负数.(2)异号两个数相加.负数+正数.(3)一个数同0相加.正数+0,0+0,负数+0.小学学习过的:正数+正数,正数+0,0+0.小学没有学习过的:负数+负数,负数+正数,负数+0.新知探究一、探究学习小明在东西方向的马路上活动,我们规定向东为正,向西为负.例如,向东走2 m记作+2 m,向西走2 m,记作-2 m.小明想知道自己走两次后离起点的距离,你有办法帮帮他吗?【问题】方向相同的情况:(1)先向东走2 m,再向东走3 m,两次运动后的结果是什么?可以用怎样的算式表示?(2)先向西走2 m,再向西走3 m,两次运动后的结果是什么?可以用怎样的算式表示?【师生活动】学生先自己画图,然后师生一起用PPT画出数轴.让学生对比自己所画的数轴,寻找差距.【设计意图】借助学生熟悉的日常生活问题解释有理数加法,让学生感受有理数加法法则的合理性.【思考】怎样用数轴表示小明两次运动的结果(方向、距离)?【新知】符号相同的两个数相加,和的符号不变,且和的绝对值等于加数的绝对值的和.【问题】方向相反的情况:(3)先向东走3 m,再向西走2 m,两次运动后的结果是什么?可以用怎样的算式表示?(4)先向西走3 m,再向东走2 m,两次运动后的结果是什么?可以用怎样的算式表示?(5)先向西走3 m,再向东走3 m,两次运动后的结果是什么?可以用怎样的算式表示?【师生活动】学生先独立思考,再相互交流.教师提醒学生注意用数轴表示运动情况,引导学生发现规律.【设计意图】为学生提供了自主探究学习的机会,在探究过程中加强引导,以帮助学生攻克难点.【新知】绝对值不相等、符号相反的两个数相加,和的符号与绝对值较大的加数的符号相同,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加,结果为0.【问题】特殊情况:(6)第1 s向东走3 m,第2 s原地不动,2 s后的结果是什么?可以用怎样的算式表示?【师生活动】学生归纳、交流,教师在适当的时候提供帮助.由教师对学生讨论的结果进行补充总结,进而得出有理数加法法则的三种不同情况.【设计意图】锻炼学生的思维严谨性,培养归纳和概括的能力、语言表达能力.【新知】有理数加法法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.【思考】按照有理数加法法则进行正数及0的加法运算,它和小学学过的正数及0的加法运算一致吗?【师生活动】学生独立思考,教师在适当的时候提供帮助.【设计意图】联系新旧知识,给学生独立思考、自主探究的机会,并在探究的思路上加以引导.二、典例精讲【例1】计算:(1)(-3)+(-9);(2)(-8)+0;(3)12+(-8);(4)(-4.7)+3.9;(5)11.22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-++【答案】(1)-12;(2)-8;(3)4;(4)-0.8;(5)0.【师生活动】教师提醒学生计算时要注意观察两个加数的符号和绝对值.让学生独立完成后,展示结果并进行讲解,讲解后师生一起归纳出有理数加法的运算步骤.【归纳】有理数加法的运算步骤:(1)先判断加法的类型(同号、异号、0);(2)再确定和的符号;(3)最后进行绝对值的加减运算.【设计意图】巩固学生对有理数加法法则的理解.【思考】任何一个数加上一个正数,和与原来的数有怎样的大小关系?加上一个负数呢?请你先辅助数轴直观地得出结论,再利用有理数的加法法则进行说明.【师生活动】学生先独立思考,再相互交流.教师在适当的时候提供帮助.【设计意图】一方面得出“任何一个数加上一个正数,和比原来的数大;任何一个数加上一个负数,和比原来的数小”,另一方面让学生对有理数的加法法则加以运用.课堂小结板书设计一、有理数加法法则二、有理数加法的运算步骤课后任务完成教材P28练习1~4题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
绝对值第二课时教案人教版一、教学目标1. 学生能够准确理解绝对值的概念,知道一个数的绝对值表示这个数在数轴上的距离。
2. 掌握绝对值的性质,比如正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0。
3. 能够熟练进行绝对值的简单运算,像求一个数的绝对值,或者已知一个数的绝对值求这个数。
4. 通过实际问题的解决,培养学生的数学思维能力和解决问题的能力。
比如说,能根据绝对值的意义解决实际生活中的距离问题。
5. 提高学生对数学的兴趣,让他们感受到数学在生活中的实用性。
二、教学重点与难点教学重点:1. 绝对值的概念和性质的理解与掌握。
这是后续学习的基础,只有把这个弄明白了,才能进行更复杂的运算和问题解决。
2. 绝对值的运算。
包括求一个数的绝对值,以及根据绝对值求原数等。
教学难点:1. 绝对值的综合运算。
当涉及多个数的绝对值运算时,学生容易混淆和出错。
比如说,计算式子中既有加法又有绝对值的情况。
2. 运用绝对值的概念和性质解决实际问题。
这需要学生将抽象的数学知识与实际生活联系起来,对于一些学生来说可能有一定难度。
咱得想办法通过具体的例子和练习,让学生逐步掌握这些难点内容。
三、教学方法1. 小组讨论法:将学生分成小组,让他们共同探讨绝对值的问题,培养他们的合作能力和思维能力。
比如在实践活动环节,让小组一起讨论如何解决有挑战性的绝对值问题,然后派代表发言。
2. 问题引导法:通过提出一系列问题,引导学生思考绝对值的性质和运算。
例如在知识讲解部分,先提出问题“绝对值是什么呢?”让学生回忆上一课时的内容,然后再逐步深入提问。
3. 实例分析法:结合具体的实例,帮助学生更好地理解绝对值的概念和运算。
比如给出一些具体的数字,让学生计算它们的绝对值,或者通过实际生活中的例子,如距离、温度等,来说明绝对值的意义。
4. 多媒体辅助教学法:利用多媒体课件展示绝对值的图形、动画等,使抽象的概念更加直观形象。
比如用动画演示绝对值的几何意义,让学生更直观地理解。
第一章有理数1.1正数和负数【教学目标】1.经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性;掌握正、负数的概念和表示方法,会判断一个数是正数还是负数;理解数0表示的量的意义.2.理解具有相反意义的量的含义,熟练地运用正、负数描述现实世界具有相反意义的量,体会数学符号与对应的思想,掌握用正、负数表示具有相反意义的量的符号化方法.3.通过用正负数表示相反意义的量的教学,培养学生观察、比较和概括的能力.【重点难点】重点:灵活掌握正负数的概念,理解正数、负数及0的意义.难点:1.正确了解负数,能准确地举出具有相反意义的量的典型例子;2.会用正数、负数表示具有相反意义的量.【教学过程】一、创设情境在小学,我们从日常生活中的实例出发,先后学习了整数、小数、分数及其运算,在日常生活、生产和科研中,还会遇到另外一些数的表示问题,例如:教师出示教材P1的问题(1)-(3).上面的问题都涉及意义相反的两个量,如何用数表示像这样具有相反意义的两个量,需要引入负数.今天我们就来学习正数与负数.二、新知探究探究点1:正、负数的认识问题1:(1)负数有什么特点?(2)如果一个数不是正数就是负数,对吗?问题2:0只表示没有吗?要点归纳:引入正、负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的分界点.1.正数和负数的定义:像3,50,7.8%这样大于0的数叫作正数,正数的“+”有时可以省去不写.在正数前加上符号“-”的数叫作负数,其中符号“-”是负号,例如-10,-3,…,负数的“-”不能省去不写.2.正数与负数的表示法及读法一个数前面的“+”“-”号叫作这个数的符号.+3读作正3或3,-3读作负3.讨论思考:你认为0应该放在什么地方?+0与-0都是0,0是正数与负数的分界.0的意义不仅是表示“没有”,如0 ℃是一个确定的温度,海拔0表示海平面的平均高度.注:0既不是正数,也不是负数.探究点2:用正负数表示具有相反意义的量在日常生活中,你会遇到:(1)你向东走了5米和向西走了3米;(2)你的爸爸给(收入)你20元和你用了(支出)8元;(3)下雨池塘里的水位升高了0.01米和干旱池塘里的水位降低了0.03米;(4)温度是零上10度和零下6度.问题:上面出现的每一对量有什么共同特点?向东和向西,给(收入)和用了(支出),升高和降低,零上和零下都是具有相反意义的量.为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.要点归纳:具有相反意义的量包含两层含义:一是意义相反,二是必须含有具体的量.探究点3:0的意义及用正负数表示相对基准量问题:下图是吐鲁番盆地的示意图,你能用语言表述它与海平面的高度关系吗?它的含义是什么?要点归纳:“0”可以表示一种基准,高于基准的量用正数来表示,低于基准的量用负数表示.解题时注意,一定要先弄清“基准”是什么,再把数据还原成原数据.【典例评析】例1:读出下列各数,并把它们填在相应的圈里:,+38,-0.36,2.7,0,+9-11,49例2:教材P3【例1】.例3:教材P4【例2】.三、检测反馈1.下列语句正确的是()A.零上与零下是具有相反意义的量B.快和慢是具有相反意义的量C.向东走10米与向西走8米是具有相反意义的量D.+15米表示向南走15米2.飞机上升-50米实际上就是()A.上升50米B.下降50米C.下降-50米D.先上升50米,再下降50米3.如果收入300元表示为+300元,那么支出200元用表示.4.向南走-4米实际上是向走了米.5.在数-6,2.5,+23,0,-45,+8中,正数是,负数是,非正非负的数是.6.思考:某学校地面上的旗杆高28米,甲楼高26米,乙楼高35米,若以旗杆的高为基准,记作“0”米,如何表示甲、乙两大楼的高度?同学们,你能再举一些用正负数表示数量的实际例子吗?四、本课小结1.相反意义的量和正数、负数(1)为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.(2)0既不是正数也不是负数,正负数以0为界.2.基准在用正负数表示相反意义的量时,实际上除了规定正负外,还必须确定以什么为基准,并把它记为0.五、布置作业课堂作业:P3,P5练习课后作业:P5T1,4,5,6,P6T7六、板书设计七、教学反思本节是小学所学算数之后数的范围的第一次扩充,是从算数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量.本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践.能正确识别负数、用正负数表示具有相反意义的量是本节的难点.教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点.教学中应多结合实例让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.。
2.2有理数的乘法与除法(第1课时)1.运用数形结合的思想方法得出有理数乘法法则.2.能正确地进行有理数乘法运算.3.初步理解有理数乘法法则的合理性.利用有理数乘法法则进行两个数的乘法运算.运用数形结合的思想方法得出有理数乘法法则.新课导入如图,有甲、乙两座水库,甲水库的水位每天升高3 cm,乙水库的水位每天下降3 cm.如果用“+”号表示水位的上升,用“-”号表示水位的下降,请用算式表示,3天后甲、乙水库水位的总变化量分别是多少.【师生活动】通过水库水位的上升和下降问题所列出的算式,引出正数与负数、负数与正数、负数与负数、负数与零相乘问题,引发学生思考:这类的运算该如何进行呢?从而点出这节课所要学习的内容.教师可以引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、0与0相乘、正数乘负数、负数乘正数、负数乘负数、负数与0相乘.【设计意图】通过实际问题,自然地引出本节课要解决的问题,给出有理数相乘的几种情况,为下面的教学做好准备;渗透分类讨论思想,引导学生借助于已有的经验开始着手研教学目标教学重点教学难点教学过程究解决新问题.新知探究一、探究学习【问题】分别观察下面的两列乘法算式,你能发现什么规律?(1)3×3=9,(2)3×3=9,3×2=6,2×3=6,3×1=3,1×3=3,3×0=0;0×3=0.【师生活动】教师引导学生从算式的两边分别分析两个乘数和积去观察发现规律.【设计意图】构造这组有规律的算式,通过合情推理,为得到正数乘负数的法则做准备,通过引导和提示,使学生知道“如何观察”“如何发现规律”.【问题】对于(1)中的算式,要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=-6,3×(-3)=-9.对于(2)中的算式,要使这个规律在引入负数后仍然成立,那么应有:(-1)×3=-3,(-2)×3=-6,(-3)×3=-9.【思考】从符号和绝对值两个角度分别观察上述所有算式,你能说说它们的共性吗?你能发现什么规律?【师生活动】先让学生观察、叙述、补充,教师再带领学生总结.【新知】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也为负数.积的绝对值等于乘数的绝对值的积.【问题】利用上面归纳的结论计算下面的算式,你能发现什么规律?(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.按照上述规律,下面的空格应各填什么数?(-3)×(-1)=3,(-3)×(-2)=6,(-3)×(-3)=9.【思考】从符号和绝对值两个角度观察上述算式,能发现什么规律?【师生活动】让学生自主探究得出负数乘负数的结论.【新知】负数乘负数,积为正数,且积的绝对值等于乘数的绝对值的积.【设计意图】让学生根据前面积累的经验,独立完成归纳、概括.【问题】总结上面所有的情况,你能试着自己总结出有理数乘法法则吗?【师生活动】学生独立思考后进行课堂交流,师生共同完成,得出结论.【新知】有理数乘法法则:1.两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.2.任何数与0相乘,都得0.有理数乘法法则也可以表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=+(a×b),(-a)×(-b)=+(a×b);(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b);c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.【问题】你认为根据有理数乘法法则进行有理数乘法运算时,应按照怎样的步骤进行运算?你能举例说明吗?【师生活动】学生独立思考、回答.【设计意图】让学生尝试归纳有理数乘法运算的关键步骤.【新知】有理数乘法的运算步骤:有理数相乘,可以先确定积的符号,再确定积的绝对值.二、典例精讲【例1】计算:(1)(-3)×9;(2)8×(-1);(3)(-5)×0;(4)122⎛⎫⎪⎝⎭-×(-);(5)2537⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-×-.【答案】(1)-27;(2)-8;(3)0;(4)1;(5)10 21.【师生活动】教师引导学生共同完成例题的分析和总结.【设计意图】巩固乘法法则,规范答题步骤.并指出有理数乘法运算和有理数加法运算是类似的,都是先确定结果的符号,再确定结果的绝对值,建立知识之间的联系.【例2】用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km气温的变化量为-6 ℃,登高3 km后,气温有什么变化?【答案】解:依题意,得(-6)×3=-18.答:登高3 km后,气温下降18 ℃.【设计意图】利用有理数乘法解决实际问题,体现数学的应用价值.课堂小结板书设计一、有理数乘法法则二、有理数乘法的运算步骤课后任务完成教材P40练习1~3题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。
下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。
最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
数轴、相反数、绝对值(讲义)➢ 课前预习1. 为了表示相反意义的量,我们可以把其中一个量规定为正的, 用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走 5 m 可记作+5 m,向西走 8 m可记作m.(2)一种袋装食品标准净重为 200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重 205 g 记为+5 g,那么食品净重 197 g 就记为g.2. 正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5 等都是负整数,而-1.5, 数.请将下列各数进行分类:1 都是负分 23 3,-2.5,3.14, ,-9,100,02其中属于整数的有:;其中属于分数的有:;其中属于正数的有:;其中属于负数的有:.3. 如图,点 A 表示小明的家,动物园在小明家西边 500 米,书店在小明家东边 500 米,车站在书店东边 200 米,小明从动物园出发向东走 1000 米,到达;动物园和书店到小明家的距离都是米;小明从家出发,走了 500 米,可以到达 ; 动 物 园 和 车 站 之间的距离为米.B 动物园ACD家书店 车站1➢ 知识点睛1.与2. 有理数的分类:统称为有理数.有理数有理数3. 非正数:非正整数:;非负数: ;非负整数:4. 数轴的定义:规定了、、叫做数轴.任何一个都可以用数轴上的一个点来表示.画数轴时注意以下几点: ①三要素; ②直线; ③数字和点的位置.. . 的一条画数轴:5. 数轴的作用:、、.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越,越往左数越,右边的总比左边的.正数0,负数0,正数负数.7. 相反数的定义:地,的两个数,互为相反数.特别 .互为相反数的两个数,和为 0.8. 绝对值的定义:在上,一个数所对应的点与原点的叫做这个数的绝对值.9. 绝对值法则:正数的绝对值是;;.字母表示: a 请尝试写出下列式子的相反数:a 的相反数是 a 的相反数是 a b 的相反数是; ; .事实上:绝对值是它本身的数是;绝对值是它的相反数的数是.2➢ 精讲精练1. 若上升 5 m 记作+5 m,则 8 m 表示表示支出 10 元,那么+50 元表示;如果 10 元 ;如果零上 5℃记作+5℃,那么零下 2℃记作;太平洋中的马里亚纳海沟深达 11 034 m,可记作海拔 11 034 m(即低于海平面 11 034m),则比海平面高 50 m 的地方,它的高度记作海拔 , 比 海 平 面 低30 m 的地方,它的高度记作海拔.2. 有四包真空小包装火腿,每包以标准克数(450 克)为基数, 超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.+2B. 3 C.+3D.+43. 某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( )A.10 gB.8 gC.7 gD.5 g4. 把下列各数填入它所在的集合里:2,7, 2 ,0,2 015,0.618,3.14, 1.732, 5,+3 3①正数集合:{…}②负数集合:{…}③整数集合:{…}④非正数集合:{…}⑤非负整数集合:{…}⑥有理数集合:{…}5. 在数轴上表示下列各数:0, 3.5,11 , 1,+3, 2 2 ,并23比较它们的大小.36. a,b 为有理数,在数轴上的位置如图所示,则下列关于 a,b,0 三者之间的大小关系,正确的是()a0bA.0<a<bB.a<0<bC.b<0<aD.a<b<07. 在数轴上大于 4.12 的负整数有.8. 到原点的距离等于 3 的数是.9. 数轴上表示 2 和 101 的两个点分别为 A,B,则 A,B 两点间的距离是.10. 在数轴上,点 M 表示的数是 2,将它先向右移 4.5 个单位, 再向左移 5 个单位到达点 N,则点 N 表示的数是.11. 文具店、书店和玩具店依次坐落在一条东西走向的大街上, 文具店在书店西边 20 米处,玩具店位于书店东边 100 米处, 小明从书店沿街向东走了 40 米,接着又向东走了 60 米,此时小明的位置在()A.玩具店B.文具店C.文具店西边 40 米D.玩具店东边 60 米12. 已知数轴上点 A 与原点的距离为 2,则点 A 对应的有理数是,点 B 与点 A 之间的距离为 3,则点 B 对应的有理数是.13. 下列各组数中,互为相反数的是()A.0.4 与 0.41 C. ( 8) 与 8 14. 下列化简不正确的是(B.3.8 与 2.9D. ( 3) 与 ( 3) )A. ( 4.9)4.9B. ( 4.9)4.9C.( 4.9)4.915. 下列各数中,属于正数的是(A. ( 2)C. ( a)D. 4.9 )( 4.9)B. 3 的相反数D. 3 的相反数的相反数16. a,b 是有理数,它们在数轴上的对应点的位置如图所示,把a, a,b, b 按照从小到大的顺序排列正确的是()A. baabC. b aaba0B. baD. b bbba aa417. 有理数的绝对值一定是()A.正数B.整数C.正数或零D.非正数18. 下列说法正确的是()A.一个数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数19. 填空:3.5 =; 1= 2;5=;若 x<0,则 x,x;若 m<n,则 m n.20. 下列各数中: 2, 1 , 3 , 0 ,2 , ( 2),2,3是正数的有.21. 若 xx ,则 x 的取值范围是( )A. x 22. 若 a1B. x 0C.x≥03 ,则 a=;若 3 a ,则 a=D.x≤0 ;若 a 2 ,a<0,则 a=.23. 若 a b ,b=7, 则 a=;若 a b ,b=7,a≠b, 则 a=.24. 填空:(1)11 =;3(2) 4.2 4.2 == _;(3) 35= + = ;(4) 22 =||=;(5) 3 6.2 = × = _;2 (6)14=÷ = × =.335【参考答案】➢ 课前预习1. (1)-8.(2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14, 其中属于正数的有:3,3.14,100;3 ; 2其中属于负数的有:-2.5, 3 ,-9. 23. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数正整数 整数 0正有理数 正整数2. 有理数 负整数正分数分数负分数 正分数 有理数 0负整数 负有理数 负分数3. 负数和 0;正数和 0;负整数和 0;正整数和 0 4. 原点、单位长度、正方向、直线; 有理数.5. 表示数比较大小表示距离6. 大,小;大;大于,小于,大于7. 符号不同.0 的相反数为 0.8. 数轴,距离9. 它本身;负数的绝对值是它的相反数;0 的绝对值是 0a (a 0)a 0 (a 0) a (a 0)右侧框内答案框 2:图略框 3:-a,a,-a+b框 4:正数和 0,负数和 06➢ 精讲精练1. 下降 8 m 收入 50 元-2℃ +50 m -30 m2. A3. A4. ①7,2 015,0.618,3.14,+3; ②-2,2 ,-1.732,-5 3③-2,7,0,2 015,-5,+3; ④-2,2 ,0,-1.732,-5 3⑤7,0,2 015,+3;⑥-2,7,2 ,0,2 015,0.618,3.14,-1.732,-5,+3 35. 11223 31 0 图略; 26. B 7. -4,-3,-2,-18. ±39. 99 10. -2.511. B 12. ±2;-5,1,-1,513. C14. D15. B16. C17. C18. C19. 3.51-5-x -x2120., 3 ,-(-2)3-m +n21. D22. ±3 3-223. ±7 -724. (1) 11 ; (2)4.2 3(4)2 2 0;(5)3(6) 2 14 3323 3 144.2 0; (3)3 6.2 18.6; 1 7.5 8;7。
1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。
绝对值
【教学习目标】一、知识与技能
(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.
二、过程与方法
通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.三、情感态度与价值观
培养学生积极参与探索活动,体会数形结合的方法.
【教学方法】
讲授法、谈话法、讨论法。
【教学重点】
正确理解绝对值的概念,能求一个数的绝对值.
【教学难点】
正确理解绝对值的几何意义和代数意义.
【课前准备】
教师准备教学用课件。
【教学过程】
一、复习提问,新课引入
1.什么叫互为相反数?
2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?
二、新授
在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.
1.观察课本第11页图1.2-6,回答:
(1)两辆汽车行驶的路线相同吗?
(2)它们行驶路程的远近相同吗?
• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.
课本图1.2-6中表示-10的点B和表示10的点A离开原点的距离都是10,•我们就把这个距离10叫做数-10、10的绝对值.
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.
这里的数a可以是正数、负数和0.
例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原
点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.
2.试一试:
(1)│+2│=______,││=_____,│+10.6│=________.
(2)│0│=_______.
(3)│-12│=_______,│-20.8│=_______,│-32│=_______.
我们用a表示任意一个有理数,上述式子可以表示为:
①当a是正数时,│a│=_______;
②当a是负数时,│a│=_______;
③当a=0时,│a│=_______.
以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.
教师问:
(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?
(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?
(3)绝对值等于2的数有几个?它们是什么?
归纳:
①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.
②两个互为相反数的绝对值相等,即│a│=│-a│.
③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.
三、巩固练习
课本第11页练习1、2题.
四、课堂小结
理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为。