华师大版八年级数学上册全套同步练习题及答案
- 格式:doc
- 大小:4.13 MB
- 文档页数:110
《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45± (4)29± (5)±100 (6) ±23.(1)±0.2 (2)±3 (3)79±(4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、,-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:13,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π. §12.2实数(二) 一、 1.C 2.B 3.B二、1. (11(2)2三、1.(1)(2)--(3)12.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b+2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯1710 2.2.37⨯710 3. 11,,23a b c ==-=-§13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy + 2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x <3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +- (2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=- 三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二)一、1.A 2.D 3.C 二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282§13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+三、1.(1)2961m m ++ (2)21424x x -+(3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy 2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3 三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三)一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm 三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB=§14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41§15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC 与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC 与∠DAE ,∠B与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100°2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD.3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115°三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可. §16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF ,理由略. §16.3 梯形的性质(一) 一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD 是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。
《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45±(4)29± (5)±100 (6) ±2 3.(1)±0.2 (2)±3 (3)79± (4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:1,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π.§12.2实数(二) 一、 1.C 2.B 3.B二、1. 2.(11(2)2 3. 5 .三、1.(1)(2)--(3)1+2.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b +2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯17102. 2.37⨯710 3. 11,,23a b c ==-=- §13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy +2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x < 3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +-(2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=-三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二) 一、1.A 2.D 3.C二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282 §13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+ 三、1.(1)2961m m ++ (2)21424x x -+ (3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三) 一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12 三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB= §14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41 §15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=o,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC与∠DAE ,∠B 与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100° 2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD. 3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115° 三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE ⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可.§16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF,理由略. §16.3 梯形的性质(一)一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。
华师大版八年级上册数学单元测试题全套(含答案)第11章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1.27的立方根是( B ) A .±3B .3C .-3D.32.在给出的一组数0,π,5,3.14,39,227中,无理数有( C )A .1个B .2个C .3个D .5个 3.下列各组数中互为相反数的是( A ) A .-2与(-2)2 B .-2与3-8 C .-2与-12D .|-2|与24.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③49的平方根是23;④0.01的算术平方根是0.1;⑤a 4=±a 2,其中正确的是( C )A .1个B .2个C .3个D .4个 5.下列说法中正确的是( B ) A .立方根是它本身的数只有1和0 B .算术平方根是它本身的数只有1和0 C .平方根是它本身的数只有1和0 D .绝对值是它本身的数只有1和06.(六盘水中考)下列说法正确的是( D ) A .|-2|=-2 B .0的倒数是0 C .4的平方根是2 D .-3的相反数是37.(北京中考)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( A )A .aB .bC .cD .d 8.已知a 的平方根是±8,则a 的立方根是( D ) A .±2 B .±4 C .2D .49.★若a <0,则化简|a 2-a |的结果是( B ) A .0 B .-2a C .2a D .以上都不对10.★已知x 是169的平方根,且2x +3y =x 2,则y 的值是( D )A .11B .±11C .±15D .65或1433第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分) 11.3-0.125的相反数是 0.5 ,-π2的倒数是 -2π .12.比较大小:5-12__>__12.(用“>”“<”或“=”填空) 13.若a ,b 都是无理数,且a +b =2,则a ,b 的值可以是 a =2+3,b =-2-1 (填上一组满足条件的即可).14.-8的立方根与81的算术平方根的和为 1 .15.若一个正数的平方根是2a -1和-a +2,则a = -1 .16.(宜昌中考)数轴上表示2,5的点分别是A ,B ,且AC =AB ,则点C 所表示的数是4- 5 .17.★若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是 2 . 18.请你认真观察、分析下列计算过程: (1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321= 111__111__111 . 三、解答题(本大题共8小题,共66分) 19.(12分)计算:(1)0.64+3-8-(-4)2; 解:原式=0.8-2-4 =-5.2.(2)3(-3)3+(-5)2+(32)3; 解:原式=-3+5+2=4.(3)25-364+|3-2|-(-1)2 018; 解:原式=5-4+2-3-(+1)=2- 3.(4)318-523-1125+3-343-3-27.解:原式=12+52×15-7+3=-3.20.(6分)求下列各式中x 的值. (1)4x 2=25; 解:x 2=254,x =±52.(2)(x -0.7)3=0.027. 解:x -0.7=0.3 x =1.21.(6分)比较大小:(1)12.1与3.5;解:∵(12.1)2=12.1,3.52=12.25. 而12.25>12.1,∴3.5>12.1 .(2)3260与6.解:∵(3260)3=260,63=216. 而216<260,∴3260>6.22.(6分)如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,完成下列各题:(1)如果点A 表示实数-3,将点A 向右移动3个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.(2)如果点A 表示实数是3,将点A 向左移动3个单位长度,再向右移动5个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.一般地,如果点A 表示的实数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的实数是________,A ,B 两点间的距离是________.解:(1)-3+3 3;(2)8-3 5-3 a +b -c |b -c|.23.(6分)已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x -3y 的平方根和立方根.解:∵3为x -1的算术平方根,∴x -1=9,x =10;把x =10代入x -2y +1,即11-2y ,又∵3是11-2y 的立方根,∴11-2y =27,∴y=-8;则4x-3y=64,∴4x+3y的平方根为±8,立方根为4.24.(6分)实数a,b,c在数轴上对应点如图,其中|a|=|c|,化简|b+3|+|a-2|+|c -2|+2c.解:由题图可知a>2,c<2,b<-3,∴原式=-b-3+a-2+2-c+2c=-b-3+a+c,又|a|=|c|,∴a+c=0,∴原式=-b- 3.25.(8分)已知a,b满足2a+8+|b-3|=0,解关于x的方程(a+2)x+b2=a-1.解:由题意得2a+8=0,b-3=0,解得a=-4,b= 3.将a,b的值代入方程中得-2x+3=-5,解得x=4.26.(8分)如图,长方形ABCD的面积为300 cm2,长和宽的比为3 ∶2.在此长方形内沿着边的方向能否并排裁出两个面积均为147 cm2的圆(π取3),请通过计算说明理由.解:设长方形的长DC为3x cm,宽AD为2x cm.由题意,得3x·2x=300,解得:x2=50,∵x>0,∴x=50,∴AB=350 cm,BC=250 cm.∵圆的面积为147 cm2,设圆的半径为r cm,∴πr2=147,解得:r=7 cm.∴两个圆的直径总长为28 cm.∵350<364=3×8=24<28,∴不能并排裁出两个面积均为147 cm2的圆.27.(8分)观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310.(1)猜想5-526等于什么,并通过计算验证你的猜想;(2)请用含字母n(n≥2,且n为整数)的式子来表示上述规律(不需证明).解:(1)5-526=5526;验证:5-526=12526=25×526=5526; (2) n -nn 2+1=nn n 2+1.华师大版八年级数学上册第12章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.计算2x 2·(-3x )的结果是( D ) A .-6x 2 B .5x 3 C .6x 3 D .-6x 3 2.下列运算中,正确的是( D ) A .(a +1)2=a 2+1 B .3a 2b 2÷a 2b 2=3ab C .(-2ab 2)=8a 3b 4 D .x 3·x =x 43.下列从左边到右边的变形,属于因式分解的是( D ) A .(x +1)(x -1)=x 2-1 B .x 2-2x +1=x (x -2)+1 C .x 2-4y 2=(x +4y )(x -4y ) D .x 2-x -6=(x +2)(x -3)4.(白银中考)若a 2+(m -3)a +25是一个完全平方式,则m 的值是( C ) A .8或-5 B .13 C .13或-7 D .-105.若n 为正整数,且a n =2,则(-3a 2n )2-9[a ·(-a )2]n 的值为( C ) A .0 B .64 C .72 D .216 6.在算式(x +m )(x -n )的积中不含x 的一次项,则m ,n 一定( C ) A .互为倒数 B .互为相反数 C .相等 D .mn =07.★如果多项式p =a 2+2b 2+2a +4b +2 018,则p 的最小值是( A ) A .2 015 B .2 016 C .2 017 D .2 018 8.将多项式[(17x 2-3x +4)-(ax 2+bx +c )]除以(5x +6)后,得商式为(2x +1),余式为0,则a -b -c 的值是( D ) A .3 B .23C .25D .29第Ⅱ卷(非选择题 共96分) 二、填空题(本大题共8小题,每小题3分,共24分)9.计算:a 3·a 5= a 8 ,-14a 2b ÷2a = -7ab ,(-2a 3)2= 4a 6 .10.已知x a =3,x b =2,则x 2a +3b = 72 . 11.分解因式:a 3b -4ab = ab(a +2)(a -2) .12.若m -n =2,m +n =5,则m 2-n 2的值为 10 . 13.若x -y =12,则代数式(y -x )3·(x -y )的值为 -116 .14.如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积为272a 3+4b 3 .15.★若一个正方形的面积为a 2+a +14,则此正方形的周长为 4a +2 .16.★观察下列等式:(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,……,利用你发现的规律回答:若(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)=-2,则x 2 018的值是 1 .三、解答题(本大题共8小题,共72分) 17.(12分)计算:(1)2(x 3)2·x 3-(3x 3)3+(5x )2·x 7; 解:原式=2x 9-27x 9+25x 9 =0.(2)(27a 3x 2-9a 2x 2-3abx )÷(-3ax ); 解:原式=-9a 2x +3ax +b.(3)x (4x +3y )-(2x +y )(2x -y ); 解:原式=4x 2+3xy -4x 2+y 2 =3xy +y 2.(4)(a -2b -3c )(a -2b +3c ). 解:原式=(a -2b)2-9c 2 =a 2-4ab +4b 2-9c 2.18.(12分)分解因式: (1)12x 2y 2+2xy +2y 2; 解:原式=12y(x 2y +4x +4y).(2)(2x +y )(2y -x )-2x (x -2y ); 解:原式=(2y -x)(4x +y).(3)-9x 3+6x 2-x ;解:原式=-x(9x 2-6x +1) =-x(3x -1)2.(4)a 4-8a 2+16.解:原式=(a 2-4)2 =[(a -2)(a +2)]2 =(a -2)2(a +2)2.19.(10分)(1)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2. 解:原式=x 2-x +5x -5+x 2-4x +4 =2x 2-1.当x =-2时,原式=8-1=7.(2)若x 满足x 2-2x -1=0,求代数式(2x -1)2-x (x +4)+(x -2)(x +2)的值. 解:原式=4x 2-4x +1-x 2-4x +x 2-4 =4x 2-8x -3.∵x 2-2x -1=0,∴x 2-2x =1,∴原式=4(x 2-2x)-3=4-3=1.20.(6分)已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y )3m ·y m 的值. 解:原式=x 6m +y 6m -x 6m y 3m ·y m =(x 3m )2+(y 2m )3-(x 3m )2(y 2m )2 =4+27-4×9 =-5.21.(6分)已知⎪⎪⎪⎪a +12+(b -3)2=0,求代数式[(2a +b )2+(2a +b )(b -2a )-6b ]÷2b 的值. 解:∵⎪⎪⎪⎪a +12+(b -3)2=0,且⎪⎪⎪⎪a +12≥0,(b -3)2≥0, ∴由非负数性质知a +12=0,b -3=0,即a =-12,b =3.将代数式化简,得原式=2a +b -3. 当a =-12,b =3时,原式=-1.22.(8分)已知多项式M =x 2+5x -a ,N =-x +2,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求字母a 的值.解:M ·N +P =(x 2+5x -a)(-x +2)+(x 3+3x 2+5) =-x 3+2x 2-5x 2+10x +ax -2a +x 3+3x 2+5 =(10+a)x -2a +5.∵代数式的值与x 的取值无关, ∴10+a =0,即a =-10.23.(8分)根据条件,求下列代数式的值: (1)若x (y -1)-y (x -1)=4,求x 2+y 22-xy 的值;(2)若a +b =5,ab =3,求代数式a 3b -2a 2b 2+ab 3的值. 解:(1)由题知xy -x -xy +y =4, 即x -y =-4,∴x 2+y 22-xy =(x -y )22=8;(2)原式=ab(a2-2ab+b2)=ab(a-b)2.∵(a-b)2=(a+b)2-4ab=25-4×3=13,∴原式=3×13=39.24.(10分)(1)分解下列因式,将结果直接写在横线上:x2-6x+9=(x-3)3 ,25x2+10x+1=(5x+1)2 ,4x2+12x+9=(2x+3)2 .(2)观察上述三个多项式的系数,有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,那么系数a,b,c之间一定存在某种关系.请你用数学式子表示小明的猜测:b2=4ac .(3)已知代数式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x)是一个完全平方式,试问以a,b,c为边的三角形是什么三角形?解:原式=x2-(a+b)x+ab+x2-(b+c)x+bc+x2-(a+c)x+ac=3x2-(2a+2b+2c)x+ab+bc+ac.∵结果为完全平方式,即(2a+2b+2c)2=4×3(ab+bc+ac),∴a2+b2+c2-ab-bc-ac=0,即2a2+2b2+2c2-2ab-2bc-2ac=0,∴(a-b)2+(b-c)2+(a-c)2=0,即a=b=c.∴以a,b,c为边的三角形是等边三角形.华师大版八年级数学上册第13章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状和大小的玻璃.那么最省事的办法是带(C)A.带①去B.带②去C.带③去D.带①②去第1题图第2题图第7题图2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为(A)A.70°B.75°C.60°D.80°3.在△ABC中,AB=AC,∠A=36°,BD⊥AC于D,则∠DBC的度数是(D)A.36°B.30°C.24°D.18°4.下列语句中不是命题的是(B)A.对顶角相等B.过A,B两点作直线C.两点之间线段最短D.内错角相等5.下列命题中的真命题是(D)①相等的角是对顶角②在△ABC和△A′B′C′中,若AB=A′B′,BC=B′C′,∠C=∠C′=90°,则△ABC≌△A′B′C′③如果一个命题是定理,那么它的逆命题也是真命题④在一个三角形中,任意两边之差小于第三边A.①②B.②③C.③④D.②④6.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是( C )A .①B .②C .③D .④7.如图,在△ABC 中,AD 为∠BAC 的平分线,AB =2,AC =3,则△ABD 与△ADC 的面积之比为( B )A .3 ∶2B .2 ∶3C .2 ∶5D .3 ∶58.★已知等边△ABC 的边长为12,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( C )A .3B .4C .8D .9第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.命题“等腰三角形两腰上的高相等”的逆命题是: 如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 .10.(上海中考)如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 AC =DF 或∠A =∠D 或∠B =∠E .(只需写一个,不添加辅助线)第10题图 第11题图 第12题图11.如图,在△ABC 中,∠B =30°,∠C =70°,点D 是BC 上一点,DE ⊥AB ,DF ⊥AC ,且DE =DF ,则∠BAD 的度数为 40° .12.★如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,连结BD ,若△BDC 的周长为10,BC =3,则△ABC 的周长为 17 .13.如果△ABC ≌△A ′B ′C ′,AB =24,S △A ′B ′C ′=180,那么△ABC 中AB 边上的高是 15 . 14.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 15 度.第14题图 第16题图15.★等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 67.5°或22.5° .16.如图,∠ABC =∠DCB ,AB =DC ,ME 平分∠BMC 交BC 于点E ,结论:①△ABC ≌△DCB ;②ME 垂直平分BC ;③△ABM ≌△EBM ;④△ABM ≌△DCM .其中正确的是 ①②④ .(填序号)三、解答题(本大题共8小题,共72分)17.(6分)如图:已知点A ,E ,F ,B 在一条直线上,AE =BF ,CF =DE ,AC =BD ,求证:GE =GF .证明:∵AE =BF ,∴AF +EF =BE +EF ,即AF =BE.在△ACF 和△BDE 中,⎩⎨⎧CF =DE ,AC =BD ,AE =BE ,∴△ACF ≌△BDE(S.S.S.),∴∠GEF =∠GFE ,∴GE =GF.18.(6分)已知:如图,点D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等腰三角形.证明:∵DE ⊥AC ,DF ⊥AB , ∴∠BFD =∠CED =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BDF 与Rt △CDE 中⎩⎨⎧DB =DC ,DE =DF ,∴Rt △BDF ≌Rt △CDE ,∴∠B =∠C ,∴△ABC 是等腰三角形.19.(8分)用直尺和圆规作图,求作一条直线把△ABC 分成两个三角形,使分后的两个三角形都是等腰三角形.(保留作图痕迹)(1)如图①,△ABC 中,∠ABC =90°,AB =BC ; (2)如图②,△ABC 中,∠B =25°,∠C =80°.解:(1)如图,过点B 作BE ⊥AC ,垂足为E ,作直线BE ,则直线BE 就是所求作的直线.(方法不唯一);(2)如图,在∠BAC 内作∠BAF =∠B ,交BC 于点F ,作直线AF ,则直线AF 就是所求作的直线.20.(10分)如图所示,在△ABC 中,∠ACB =90°,点D 是BC 延长线上一点,点E 是AB 上一点,且在BD 的垂直平分线EG 上,DE 交AC 于点F .求证:点E 在AF 的垂直平分线上.证明:∵EG 垂直平分BD ,∴EB =ED ,∴∠B =∠BDE.又∠ACB =90°,∴∠B +∠BAC =90°.又∵∠BDE +CFD =90°,∴∠BAC =∠CFD ,又∠CFD =∠AFE ,∴∠BAC =∠AFE ,∴EA =EF ,即E 在AF 的垂直平分线上.21.(10分)如图:在△ABC ,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于点F .求证:AF 平分∠BAD .证明:∵BD ⊥AC 于D ,CE ⊥AB 于E , ∴∠AEC =∠ADB =90°.在△ABD 和△ACE 中,⎩⎨⎧∠BAC =∠CAE ,∠ADB =∠AEC ,AB =AC ,∴△ABD ≌△ACE(A.A.S.),∴AE =AD.在Rt △AEF 和Rt △ADF 中,⎩⎨⎧AE =AD ,AF =AF ,∴Rt △AEF ≌Rt △ADF(H.L.),∴∠EAF =∠DAF ,∴AF 平分∠BAD.22.(10分)如图,△ABC 中,BD 是∠ABC 的平分线,CD 是外角∠ACE 的平分线,连结AD ,∠BAC =70°,求∠CAD 的度数.解:过点D 作DM ⊥BC 于点M ,作DN ⊥AC 于点N ,作DP ⊥BF 于点P. ∵BD 是∠ABC 的平分线,∴DP =DM , ∵CD 是∠ACE 的平分线,∴DM =DN ,∴DN =DP.∵DN ⊥AC ,DP ⊥AF ,∴AD 平分∠CAF.∵∠BAC =70°,∴∠CAF =110°,∴∠CAD =55°.23.(10分)如图,△ABC 中,∠1=∠2,∠C =2∠B .求证:AB =AC +CD .证明:在AB 上截取AE =AC ,连结DE ,在△ACD 和△AED 中,∵AE =AC ,∠1=∠2,AD =AD ,∴△ACD ≌△AED(S.A.S.),∴DE =DC ,∠C =∠AED.∵∠C =2∠B ,∴∠AED =2∠B.∵∠AED =∠B +∠BDE ,∴∠B =∠BDE , ∴BE =DE(等角对等边),∴BE =CD. ∵AB =AE +BE ,∴AB =AC +CD.24.(12分)如图,△ABC 是等边三角形,点D 为BC 边上一个动点(点D 与B ,C 均不重合),AD =AE ,∠DAE =60°,连结CE .(1)求证:△ABD ≌△ACE ; (2)求证:CE 平分∠ACF ;(3)若AB =2,当四边形ADCE 的周长取最小值时,求BD 的长.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°, ∵∠DAE =60°,∴∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ;(2)证明:∵△ABC 是等边三角形,∴∠B =∠BCA =60°,∵△ABD ≌△ACE ,∴∠ACE =∠B =60°,∴∠ECF =180-∠ACE -∠BCA =60°, ∴∠ACE =∠ECF ,∴CE 平分∠ACF ; (3)解:∵△ABD ≌△ACE ,∴CE =BD.∵△ABC 是等边三角形,∴AB =BC =AC =2,∴四边形ADCE 的周长=CE +DC +AD +AE =BD +DC +2AD =2+2AD ,根据垂线段最短,当AD ⊥BC 时,AD 值最小,四边形ADCE 的周长取最小值, ∵AB =AC ,∴BD =12BC =12×2=1.华师大版八年级数学上册期中测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是(B)A.a3·a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a22.如图,在数轴上表示15的点可能是(B)A.点P B.点Q C.点M D.点N3.下列各命题的逆命题成立的是(C)A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等4.若a=3-8,b=16,那么a b的值等于(D)A.-8 B.8 C.-16 D.165.下列多项式,能用公式法分解因式的有(A)①x2+y2②-x2+y2③-x2-y2④x2+xy+y2⑤x2+2xy-y2⑥-x2+4xy-4y2A.2个B.3个C.4个D.5个6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为(B) A.3 B.4C.5 D.3或4或57.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为(A)A.-16 B.-8 C.8 D.168.★如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有(B)A.2个B.3个C.4个D.1个第8题图第13题图第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.-64的立方根是 -4 ,327的平方根为 ± 3 .10.计算:(-a )2·(-a )3= -a 5 .11.分解因式:1-x 2+2xy -y 2= (1+x -y)(1-x +y) . 12.已知x -y =6,则x 2-y 2-12y = 36 .13.如图,已知AB =BC ,要使△ABD ≌△CBD ,还需要添加一个条件,你添加的条件是 ∠ABD =∠CBD 或AD =CD .(只需写一个,不添加辅助线)14.如图,∠ABC =50°,AD 垂直且平分BC 于点D ,∠ABC 的平分线BE 交AD 于点E ,连结EC ,则∠AEC 的度数是 115 度.第14题图 第15题图 第16题图15.★如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =6 cm ,一条线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QP A 全等,则AP = 6cm 或12cm .16.★如图,C 是△ABE 的BE 边上一点,F 在AE 上,D 是BC 的中点,且AB =AC =CE ,对于下列结论:①AD ⊥BC ;②CF ⊥AE ;③∠1=∠2;④AB +BD =DE .其中正确的结论有 ①④ (填序号).三、解答题(本大题共8小题,共72分) 17.(8分)计算:(1)3125-3216-121;解:原式=5-6-11=-12.(2)(-2a 2b )2·(6ab )÷(-3b 2);解:原式=4a 4b 2·6ab ÷(-3b 2)=[4×6÷(-3)]a 4+1b 2+1-2=-8a 5b.(3)[(x +y )2-(x -y )2]÷2xy ;解:原式=[x 2+2xy +y 2-(x 2-2xy +y 2)]÷2xy =(x 2+2xy +y 2-x 2+2xy -y 2)÷2xy =4xy÷2xy =2.(4)(3x -y )2-(3x +2y )(3x -2y ).解:原式=(9x 2-6xy +y 2)-(9x 2-4y 2)=9x 2-6xy +y 2-9x 2+4y 2=-6xy +5y 2.18.(6分)若a -b +6与|a +b -8|互为相反数,求4a +3b 的算术平方根.解:依题意得⎩⎨⎧a -b +6=0,a +b -8=0,∴⎩⎨⎧a =1,b =7,则4a +3b =25,∴4a +3b =25=5.19.(8分)已知2x =4y +1,27y =3x -1,求x -y 的值.解:∵2x =4y +1,∴2x =22y +2,∴x =2y +2.①又∵27y =3x -1,∴33y =3x -1,∴3y =x -1.② 把①代入②,得y =1,∴x =4,∴x -y =3.20.(8分)如图,已知AB ∥CF ,点E 为DF 的中点,若AB =7 cm ,CF =4 cm ,求BD 的长.解:∵AB ∥FC ,∴∠ADE =∠EFC. ∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠EFC ,DE =EF ,∠AED =∠CEF ,∴△ADE ≌△CFE(A.S.A.), ∴AD =CF =4 cm ,∴BD =AB -AD =7-4=3 cm.21.(8分)分解因式: (1)m 4-2⎝⎛⎭⎫m 2-12; 解:原式=m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.(2)x 2-9y 2+x +3y .解:原式=(x 2-9y 2)+(x +3y)=(x +3y)(x -3y)+(x +3y)=(x +3y)(x -3y +1).22.(10分)一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是150 cm 3,求原正方形的边长是多少?(1)由题意可知剪掉正方形的边长为________cm ;(2)设原正方形的边长为x cm ,请你用x 表示盒子的容积. 解:(1)因为剪掉一个36 cm 2的正方形, 所以剪掉正方形的边长是6 cm , 故答案为6.(2)因为设原正方形的边长为x cm , 所以盒子的容积为6(x -12)2 cm 3. ∴6(x -12)2=150,解得x =17或7,∵x>12,∴x =7(舍去),则原正方形的边长为17 cm.23.(10分)如图,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于点M ,PN ⊥CD 于点N ,求证:PM =PN .证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(S.A.S.).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM =PN.24.(14分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)BF ⊥CE 于点F ,交CD 于点G (如图①).求证:AE =CG ;(2)AH ⊥CE ,垂足为点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.(1)证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°, ∴∠CAE =∠BCG ,又∵BF ⊥CE ,∴∠CBG +∠BCF =90°,又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG ,在△AEC 和△CGB 中,⎩⎨⎧∠CAE =∠BCG ,AC =BC ,∠ACE =∠CBG ,∴△AEC ≌△CGB(A.S.A.), ∴AE =CG.(2)解:BE =CM.证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°, ∴∠CMA =∠BEC ,又∵∠ACM =∠CBE =45°,在△BCE 和△CAM 中,⎩⎨⎧∠BEC =∠CMA ,∠ACM =∠CBE ,BC =AC ,∴△BCE ≌△CAM(A.A.S.), ∴BE =CM.华师大版八年级数学上册第14章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组数中,是勾股数的是( D ) A .1,2,3 B .2,3,4 C .1.5,2,2.5 D .6,8,102.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( A )A .∠A >45°,∠B >45° B .∠A ≥45°,∠B ≥45°C .∠A <45°,∠B <45°D .∠A ≤45°,∠B ≤45° 3.适合下列条件的△ABC 中,直角三角形的个数为( C )①a =3,b =4,c =5 ②a =6,∠A =45° ③a =2,b =2,c =22 ④∠A =38°,∠B =52°A .1个B .2个C .3个D .4个 4.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( D ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形5.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( C ) A .5 B.7 C .5或7 D .不确定6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 的距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( B )A .0.9米B .1.3米C .1.5米D .2米第6题图第7题图7.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段(D)A.4条B.6条C.7条D.8条8.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为(C)A.42 B.32C.42或32 D.37或33第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若一个三角形的三边满足c2-a2=b2,则这个三角形是直角三角形.10.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线长为100 cm,则这个桌面合格(填“合格”或“不合格”).11.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为12a2 .第11题图第12题图第13题图12.如图,△ABC中,∠C=90°,BC=45 cm,CA=60 cm,一只蜗牛从C点出发,以每分钟20 cm的速度沿CA→AB→BC的路径再回到C点,则需要9 分钟.13.如图是由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于10 .14.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M第14题图第15题图第16题图15.如图,一只蚂蚁沿边长为1的正方形表面从顶点A爬到棱的中点B,则它走的最短路程为172.16.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 018= 2 019 .三、解答题(本大题共8小题,共72分)17.(6分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若a∶b =3 ∶4,c=75 cm,求△ABC的面积.解:∵a ∶b=3 ∶4,则设a=3x,b=4x,在Rt△ABC中,∠C=90°,a2+b2=c2,即(3x)2+(4x)2=752,解得x=15.∴S△ABC=12·3x·4x=12×45×60=1 350 cm2.18.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,所以AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54;(2)因为AB=20,AC=13,BC=21,AB2+AC2≠BC2,所以△ABC不是直角三角形.19.(8分)在一棵树上10米高的点B处有两只猴子,一只猴子爬下树并走到离树底20米处的A处;另一只则爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,问这棵树高多少米?解:设BD为x米,则树高为(x+10)米,在Rt△ADC中,∠C=90°,DC2+AC2=AD2,即(x+10)2+202=(30-x)2,解得x=5,x+10=5+10=15米.答:树高为15米.20.(8分)如图,△ABC中,AD⊥BC于点D,AB=13,AC=8,求BD2-DC2的值.解:在Rt△ADB中,由勾股定理得,BD2=AB2-AD2,在Rt△ADC中,由勾股定理得,DC2=AC2-AD2,所以BD2-DC2=(AB2-AD2)-(AC2-AD2)=AB2-AD2-AC2+AD2=AB2-AC2=132-82=105.21.(8分)用反证法证明:等腰三角形的底角必定是锐角.已知:在△ABC中,AB=AC.求证:∠B,∠C必定是锐角.证明:∵AB=AC,∴∠B=∠C,假设∠B不是锐角,则∠B是直角或钝角.①若∠B是直角,即∠B=90°,则∠C=90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是直角.②若∠B是钝角,即∠B>90°,则∠C>90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是钝角.∴综上,∠B既不是直角也不是钝角,即∠B,∠C是锐角.∴等腰三角形的底角必定是锐角.22.(10分)如图所示,已知AD⊥CD于点D,且AD=4,CD=3,AB=12,BC=13.求:(1)四边形ABCD的面积;(2)若∠B=35°,求∠ACB的度数.解:(1)连结AC,∵AD⊥CD于点D,AD=4,CD=3,∴AC=AD2+CD2=42+32=5.在△ABC中,AB=12,BC=13,AC=5,∵52+122=132,即AC2+AB2=BC2,∴△ABC是直角三角形.∴S四边形ABCD=S△ACD+S△ABC=12AD·CD+12AB·AC=12×4×3+12×12×5=6+30=36.(2)由(1)知,△ABC是直角三角形,且AC2+AB2=BC2,∴∠BAC=90°.∵∠B=35°.∴∠ACB=90°-35°=55°.23.(12分)如图,某沿海城市A接到台风警报,在该市正南方向150 km的B处有一台风中心正以20 km/h的速度沿BC方向移动,已知城市A到BC的距离AD=90 km,那么:(1)台风中心经过多长时间从B点移动到D点?(2)如果在距台风中心30 km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必须在接到台风警报后的几个小时内撤离(撤离速度为6 km/h)?最好选择什么方向?解:(1)在Rt△ABD中,AB=150 km,AD=90 km,所以BD2=AB2-AD2=14 400,所以BD=120 km.120÷20=6 h,故台风中心经过6 h从B点移动到D点.(2)台风从B点到达D点需要6 h,游人从D点沿AD方向撤离到30 km之外需用:30÷6=5 h,6-5=1 h.因此游人必须在接到台风警报后的1 h内撤离.最好选择DA方向或AD 方向.24.(12分)牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家.如图,A点到河边C的距离为500 m,B点到河边D的距离为700 m,且CD=500 m.(1)请在原图上画出牧童回家的最短路线;(2)求出最短路线的长度.解:(1)作点A关于直线CD的对称点A′,连结A′B交CD于点P,连结AP,则AP -PB即为所求的最短路线,如图所示.(2)由作图可得最短路程为A′B的长度,如图,过A′作A′F⊥BD的延长线于F,则DF =A′C=AC=500 m,A′F=CD=500 m,BF=700+500=1 200 m.根据勾股定理,可得A′B2=1 2002+5002=1 3002,∴A′B=1 300 m.即最短路线的长度为1 300 m.华师大版八年级数学上册第15章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.若要清楚地反映住院部某病人的体温变化情况,则应选用的统计图是(B)A.条形统计图B.折线统计图C.扇形统计图D.以上都可以2.某少数民族自治区中的汉族、苗族、土家族人数的比为2 ∶3 ∶4,若制成一个扇形统计图,则表示苗族人数的圆心角为(A)A.120°B.60°C.90°D.150°3.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是(B)A.20% B.30% C.50% D.60%4.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是(D)A.22,44% B.22,56% C.28,44% D.28,56%5.为了了解某校七年级学生的运算能力,抽取了100名学生进行测试,将所得成绩(单位:分)整理后,列出下表:本次测试这100名学生成绩良好(大于或等于80分为良好)的频数是(D)A.22 B.30 C.60 D.706.在扇形统计图中,如果A部分扇面的面积是B部分扇面面积的2倍,则A部分扇面所对的圆心角是B部分扇面所对圆心角的(A)A.2倍B.1倍到2倍之间C.1.5倍D.无法计算7.如图是某公司在2017年的月营业额,从图中我们可以了解到:(1)夏季的营业额比较高;(2)从6月份开始,营业额缓慢下降;(3)5月是营业额最高的一个月;(4)冬季的营业额偏低主要是因为天气寒冷;其中正确的是(B)A.(1)(2) B.(1)(2)(3)C.(2)(3)(4) D.都是正确的8.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是(C)A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.在条形统计图上,如果表示180的数据的条形高为4.5 cm,那么表示数据60的条形高是 1.5cm .10.在检测某种品牌奶粉的营养含量的时候,要检验糖、蛋白质、钙、其他物质在奶粉中的百分比含量,已知某次检测的结果是x%,y%,z%,w%,则x+y+z+w=100 .11.如图是各年龄段人群收看某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1 400人,则其中50岁以上(含50岁)的观众约有504 人.12.已知某班的一次语文测验中,有6名同学不及格,不及格率为12.5%,同时也有9名同学优秀,则这个班在这次测验中的优秀率为18.75% .13.我校八年级(1)班对60名学生寒假在家每天做作业的时间进行了统计,并绘制成扇形统计图.发现做作业时间在2~3小时这一组的圆心角为198°,则这一组的频数为33 .14.如图是根据某市2013年至2017年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是2017 年,比它的前一年增加50 亿元.15.则全市视力不良的初中生约有7.2 万人.16.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有56 名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有17 名体尖生.三、解答题(本大题共8小题,共72分)17.(8分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:(1)请你重新设计一张统计表,使全班同学在每个月的出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月过生日的每一位同学送一份小礼物,那你应该准备几份礼物?解:(1)按生日的月份重新分组可得统计表:(2)读表可得10月份出生的学生的频数是5,频率为540=0.125;(3)2月份有4位同学过生日,因此应准备4份礼物.18.(8分)从某时起,中国电信执行新的电话收费标准,其中本地网营业区内通话话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算).现有一学生调查了A,B,C,D,E共5位同学上星期天打本地网营业区内的通话时间情况,原始数据如表:回答问题:(1)这5位同学共通了10 次电话;(2)这一天通话时间不超过3分钟的频率是20% ,频数是 2 ;(3)这一天通话时间超过4分钟而不超过5分钟的频数是 2 ,频率是20% ;(4)这一天中哪位同学电话费最多?是多少?解:这一天中C同学通话费最多,0.2×3+0.1×4=1元.19.(9分)(杭州中考)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,m=69.01;(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8吨.20.(9分)某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组绘成条形统计图如图所示,图中从左到右各小组小长方形的高的比是1 ∶2 ∶6 ∶4 ∶2,最右边一组的人数是6,结合图形提供的信息解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以下(含60分)的人数是多少?解:(1)6÷21+2+6+4+2=45人.答:这个班级一共有45人参赛;(2)这个班70-79.5的参赛人数最多,有18人;(3)45×11+2+6+4+2=3人.答:成绩在60分以下(含60分)的人数是3人.21.(8分)某年级组织学生参加冬令营活动,本次冬令营分为甲、乙、丙三组进行.下面两幅统计图都反映了学生参加冬令营的报名情况.请你根据图中的信息解答下面的问题:(1)该年级报名参加丙组的人数是多少?(2)该年级报名参加本次活动的总人数是多少?解:(1)观察条形图可知报名参加丙组的人数为25人;(2)该年级参加本次活动的总人数为:15+10+25=50人.22.(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.。
最新华师大版八年级数学上册单元测试题及答案全套含期末试题,共6套第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列4个数:的、年、兀、(诵)°,其中无理数是()224筋B— C. 7t D.(V3)°2.8的平方根是()A. 4B. ±4 0.^8 D.3.(2015*安徽)与1 +诉最接近的整数是()A. 4B. 3C. 2D. 14.下列算式中错误的是()A.—V(i64=-0.8B. ±7^96=± 145.如图,数轴上点N表示的数可能是()Bf C.书D 迈6.比较扌,爭,一当的大小,正确的是()7.若a?=4, b2=9,且ab>0,贝a+b 的值为()A. -1 B・ ±5 C. 5 D. -58.如图,有一个数值转换器,原理如下:丿金入乡/ 取算术平方根|遢无『数夕金出妙/(第8题)当输入的X为64时,输出的y等于()A. 2B. 8C.y/2D.y[s9.已知2x—l的平方根是±3, 3x+y—l的立方根是4,贝0 y-x2的平方根是()4・ 5 B. -5 C. ±5 D. 2510・如图,己知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列(第10题)各数最接近的是()A. 0.1 5.V^04 C.^/008 D. 0.3二、填空题(每题3分,共30分)11.实数迈一2的相反数是 ________ ,绝对值是 _______ •12.在肩疋,-4, 0这四个数中,最大的数是_____________ .13.4+^3的整数部分是_________ ,小数部分是________ ・14.某个数的平方根分别是a+3和2a+15,则这个数为____________ .15.若寸2x_b + |y J|=0,则坂是 ______________ 理数.(填“有”或“无”)16.点P在数轴上和原点相距迈个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P, Q之间的距离为 _______________ .(注:数轴的正方向向右)17.—个正方体盒子的棱长为6c〃?,现要做一个体积比原正方体体积大127幼丿的新盒子,则新盒子的棱长为 _______ cm.18.对于任意两个不相等的实数a, b,定义运算※如下:那么7探9= _________________________ .19.若何是整数,则正整数n的最小值是____________ .20.请你认真观察、分析下列计算过程:(1) vn2=i2i, ・・・V^T=II;(2) V 1112=12 321, .*.^12 321 = 111;(3) VI 1112=1 234 321, ・・・pl 234 321 = 1 111;・・•由此可得:p 12 345 678 987 654 321= _____________________ .三、解答题(22题9分,26题7分,27, 28题每题10分,其余每题6分,共60分)21・求下列各式中x的值.(1 )4x2=25 ;(2)(x一0.7)3 = ° 027.22 •计算:(一3) ?+(2一苗一3|).⑵戸 + M (_1) 3+乜(_1) 2+寸(_1) 2;23.已知|3x—y—1|和p2x + y—4互为相反数,求x+4y的平方根.24.己知3既是x-l的算术平方根,又是x-2y+1的立方根,求4x+3y的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a| = |c|,化简|b+迈| + |a—迈| + |c—迈| + 2c.-2* -1—o―1 *2 (第25 题)26.某段公路规定汽车行驶速度不得超过80肋〃力,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v= 16嗣,其中v表示车速(单位:km/h), d表示刹车后.车轮滑过的距离(单位:加),f表示摩擦系数.在一次交通事故中,己知d=16, f=1.69.请你判断一下,’肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(V2+1)(V2-1)=1, (75+迈)(诵一迈)=1,(甫+诵)(甫一迈)=1, (&+甫)(诉一甫)=1,・・•(1)观察上面的规律,计算下面的式子:V2+l +V3 + 迈 + 甫+迈 + …+p2 015 +p2 014(2)利用上面的规律,试比较、币一帧与辰一帧的大小.28. 李奶奶新买了一套两室一厅的住房,将原边长为1加的方桌换成边长是1.3 m 的方桌,为使新方•桌 有块桌布,且能利用原边2为1〃?的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的 小刚想了想说:“奶奶,你再去买一块和原來一样的桌布,按照如图①,图②所示的方法做就行了. ”(1) 小刚的做法对吗?为什么?(2) 你还有其他方法吗?请画出图形.答案—、l.C 2.D 3・B 4.C 5.A 6.D l.B 8.D 9.C10. B 点拨:由题意可得,正方形的边长为1,则圆的半径为*,阴影部分的面积为1— 故选二、11・2—筋;2-^3 12.Tr 13.5; ^3-1 14.9 15•有16. 2-J3或 2+羽 17.7 18.-2 19.5 20. Ill 111 111三、21 •解:⑴因为4x2=25,所以x 2=y,(2) 因为(x —0.7尸=0.027,所以 x —0.7 = 0.3,所以 x=l.(第28题) 5_-222.解:⑴原式=j+2—2=T. (2)原式=一1一1 + 1 + 1=0・x+4y 的平方根是±3.24. 解:根据题意得x-l=9且x —2y+l=27,解得x=10, y=-8. A4x + 3y=16,其平方根为±4,立方根为横.25. 解:由题图知,c <寸b <—"\/3, /.原式=—b —*\/3 + a —\/2+^2 —c + 2c= — b —*\/3 + a+c.又|a| = |c|, a + c=0,・;原式=—b —y[3.26. 解:把 d=16, f=1.69 代入 v=16嗣,得 v = 16X#16X 1.69 = 83.2伙加仏),V83.2>80,二肇事 汽车当时的速度超出了规定的速度.27-解:⑴詬+^^+^^+“・+顾;顾=(返7)+心一沏+曲一曲+…+ (寸2 015-A /2 014)=#2 015 -1.⑵因为而勺矿回+你,辰勺倉如+帧’-aVii+Vio <Vi2+ViT.所以而勺!訐 ]V^-V H *又因为边1一帧>0, 如一帧>0,所以QTT —帧>7迁一帧.点拨:此题运用归纳迭,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:⑴小刚的做法是对的,因为将边长为1 〃?的两个正方形分别沿着一条对角线剪开,成为四个 大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为迈, 而也>1.3,故能铺满新方桌;(2)有.如图所示.第12章达标检测卷(120分,90分钟)题号—・二三总分得分一、选择题(每题3分,共30分)1. (2015-B 照)计算(一/)2的结果是() A. a 5 B, —a 5 C. a 6 D. —a 62. 下列运算正确的是()23.解:根据题意得:|3x —y —l|+p2xlf^4 = 0, 3x —y —1=0,即2x+p —4 = 0, 解得 x=LV=2, 所以x+4y=9.所以 (3)原式=A. (a+l)2 = a2+lB. 3a2bWb2=3abC. (-2ab2)3=8a3b6D. x3 x=x43.下列从左边到右边的变形,是因式分解的是()A. (3-x)(3+x)=9-x2B. (y+l)(y_3)=_(3—y)(y+l)C. 4yz—2y2z+z=2y(2z—yz)+zD.—8x2 + 8x—2= —2(2x— l)2Q、2013 Z,X20144.计算自X(—1严5的结果是()D・一5.若a m=2, a n=3, a p=5, WO a2m+n_p的值是( )A. 2.4B. 2C. 1 DO6.下列各式中,不能用两数和(差)的平方公式分解因式的个数为()①X2—10x + 25;②4a'+4a—1;③x2—2x—1;④一n?+m—*;⑤4x°—只彳+右力・1 B. 2 C, 3 D. 47.己知a, b都是整数,则2(a2+b2)-(a+b)2的值必是( )A.正整数B.负整数C.非负整数D. 4的整数倍8.已知一个长方形的而积为18x3y4+9xy2-27x2y2,长为9xy,则宽为( )A. 2x2y,+y+3xyB. 2x2y3—2y+3xyC. 2x2y3 + 2y —3xyD. 2x2y3 + y—3xy9.因式分解x' + ax+b,甲看错了a的值,分解的结果是(x + 6)(x—1),乙看错了b的值,分解的结果为(X —2)(x+1),那么x2 + ax+b分解因式正确的结果为()A. (x-2)(x+3)B. (x + 2)(x-3)C. (x-2)(x-3)D. (x + 2)(x + 3)10.用四个完全一样的长方形(长和宽分别设为x, y)拼成如图所示的大正方形,己知大正方形的而积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是()(第10题)A, x+y=6 B. x—y=2 C. xy=8 D. x2+y2 = 36二、填空题(每题3分,共30分)11.(1)计算:(2af・(一3a?)= ___________ ;⑵若a m=2, a n=3,则a m+n= _______________ , a m_n= ___________ .12.已知x+y=5, x—y=l,则代数式x2-y2的值是________________ ・13.若x+p与x+2的乘积屮不含x的一次项,则p的值是____________14. 计算:2 015 X 2 017 - 2 0162= __________ .15. 若|a+2| + a 2—4ab+4b 2=0,则 a= ___________ , b= _________ . 16. 若一个正方形的面积为a 2+a+|,则此正方形的周长为 _____________ 17. 分解因式:4+12(x —y)+9(x —y)2= ___________ . 18. 观察下列等式: 1 X32X5+4=72=(12+4X 1+2)2 2 X 42 X 6 +4=142=(22 + 4 X 2 + 2)2 3 X 52 X 7 +4 = 232=(32 +4 X 3 + 2)2 4 X 62 X 8 + 4 = 342=(42 + 4 X 4 + 2)2根据你发现的规律:可知 ii(n + 2)2(n+4)+4= _________2 (2+a)(2 - a)+a(a - 5b)+3 a 5b 3-( - a 2b)2,其中 ab=-|.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成打定义cb.=ad —be, dx+11—x上述记号就叫做2阶行列式.若,=8,则x= _____________1—X X 十120.根据(X — l)(x+ 1) = X 2— 1 , (X — l)(x 2 + x+ 1) = X 3— 1 , (X — l)(x 3 + x 2 + x+ 1) = X 4— 1, (x — l)(x 4 + x 3 +x 2+x+l)=x 5-l,-的规律,则可以得tn 2201-4+22013 + 22012+- + 23+22 + 2+l 的末位数字是 ______________________三、解答题(27题12分,其余每题8分,共60分)21 •计算:22. 先化简,再求值:(l) (x+5)(x —l) + (x —2几 其中 x=-2;23. 把下列各式分解因式: (l)6ab 3-24a 3b ;(3 )a 2(x —y)+4b 2(y —x); (4)4m 2n 2—(m 2 + n 2)2.24. 己知 x 3m =2, y 2m =3, >R(x 2m )3 + (y m )6-(x 2y)3m -y m 的值.25. 已知a, b, c 是Z\ABC 的三边长,且a 2+2b 2+c 2-2b(a+c)=0,你能判断ZXABC 的形状吗?请 说明理rh.26. 因为(x+a)(x + b)=x 2 + (a+b)x+ab,所以 x 2+(a+b)x + ab = (x+a)(x + b).利用这个公式我们可 将形如x 2+(a+b)x+ab 的二次三项式分解因式.例如:X 2+6X +5=X 2+(1+5)X +1X5=(X +1)(X +5),X 2-6X + 5=X 2 + (-1-5)X + (-1)X(-5) = (X -1)(X -5), X 2-4X -5=X 2 + (-5+1)X +(-5)X l=(x-5)(x+l), X 2+4X — 5=X 2+(5— l)x + 5 X (— l)=(x + 5)(x — 1).请你用上述方法把下列多项式分解因式:(l)y 2 + 8y+15; (2)y 2-8y+15;(3)y 2-2y-15; (4)y 2 + 2y-15.(l) [x(x 2—2x+3) —3x]^-^x 2;(2) x (4x + 3y)—(2x+y)(2x —y);(4)(a —2b —3c)(a —2b+3c).(2)2x 2y-8xy+8y ;27.仲考哒州)选取二次三项式ax2+bx+c (aHO)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:X2-4X+2=(X-2)2-2;②选収二次项和常数项配方:x?—4x + 2 = (x—迈尸+(2迈一4)x,或x?_4x+2 = (x+迈y_(4 + 2迈)x;③选取一次项和常数项配方:x2—4x + 2 = —A/2)2—x2.根据上述材料,解决下而的问题:(1)写出X2-8X+4的两种不同形式的配方;(2)已知x2+y2+xy—3y+3=0,求x y的值.答案—、l.C 2.D 3.D 4・D 5.A 6・C 7.C 8.D 9・B 10.Z)二、11.(1)-24a5 (2)6; | 12.5 13.-2 14.-115.-2; -1 16.|4a + 2| 17,(3x-3y+2)218.(n2+4n + 2)2 19.220. 7 点拨:由题意可知22 0,44-22 0,3+22 0,2+-+23+22+2+l=(2-l)X(22 014+22013+22 0,2 + - +23 + 22+2+1)=22015-1,而2*=2, 22=4, 23 = 8, 24=16, 25=32, 26=64,…,•可知2%n 为正整数) 的末位数字按2、4、8、6的顺序循环,而2 015-4=503……3,所以,恥的末位数字是8,则22015-1的末位数字是7.三、21 •解:⑴原式=(x3— 2x2+3x — 3x)-^-^x2=(x3—2x2)^-^x2=2x—4.(2)原式=4x2+3xy—(4x2—y2)=4x2+3xy—4x2+y2=3xy+y2.(3)原式=5a2b^—|ab^-4a2b4 = — 60a3b4.(4)原式=[(a—2b)—3c] [(a—2b)+3c] = (a—2b)2—(3c)2 = a2—4ab+4b2—9c2.22.解:(1)原式=x2—x+5x—5+x2—4x+4=2x2— 1.当x=-2 时,原式=2X(—2尸一1=7.(2)原式=4—a2+a2—*时,原式=4—2X— 5ab +3a5b3-^a4b2=4—a' + a2— 5ab+3ab=4 — 2ab.当ab =23.解:⑴原式=6ab(b2-4a2)=6ab(b+2a)(b-2a).(2)原式=2y(x2-4x+4)=2y(x 一2)2.(3)原式= a2(x—y)—4b2(x—y) = (x—y)(a2—4b2)=(x—y)(a+2b)(a—2b).(4)原式=(2mn+n?+n2)(2mn — m2—n2)=— (m+n)2(m—n)2.24.解:原A=(x3m)2+(y2m)3-(x3m)2-(y2m)2 = 22+33-22X32=4+27-4X9=-5.25.解:AABC是等边三角形.理由如下:Va2+2b2+c2—2b(a+c)=0, Aa2—2ab + b~ + b2—2bc+c“ = 0, BP (a—b)2+(b—c)2=0. /.a—b = 0,且b —c=0,即a=b=c.故厶ABC是等边三角形.26.解:(l)y2+8y+15=y2+(3+5)y+3X5=(y+3)(y+5).(2)y2-8y+15=y2+(-3-5)y+(-3)X(-5)=(y-3)(y-5).(3)y2-2y-15=y2+(-5 + 3)y+(-5)X3 = (y-5)(y+3).(4)y2+2y-15=y2+(5-3)y+5X(-3)=(y+5)(y-3).27.解:解:(1)答案不唯一,例如:x2-8x+4=x2-8x+16- 16+4=(x-4)2-12 或x2-8x+4=(x -2)2-4X.(2)因为x2+y2 + xy-3y + 3=0,所以(x+劲+|(y—2尸=0,即x+*=0, y—2=0,所以y=2, x= —1,所以x y=(—1)2=1.第13章达标检测卷(120分,90分钟)题号—二总分得分一、选择题(每题3分,共30分)1.下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等A. S.S.A.B. S.S.S.C. A.S.A. D・ S.A.S.3.如图,已知AABC的六个元素,则下列甲、乙、丙三个三角形中和AABC全等的是(2.下列方法中,不能判定三角形全等的是()A.甲、乙3•甲、丙C.乙、丙D•乙4.在Z\ABC中,ZB=ZC,与AABC全等的ADEF中有一个角是100。
新华师大版数学八年级上册第十一章第二节11.2实数同步练习一、选择题1、在实数0、π、、、中,无理数的个数有()A、1个B、2个C、3个D、4个2、估计的值在()A、在1和2之间B、在2和3之间C、在3和4之间D、在4和5之间3、﹣64的立方根与的平方根之和是()A、﹣7B、﹣1或﹣7C、﹣13或5D、54、如图,数轴上A ,B两点表示的数分别为﹣1和,点B关于点A的对称点为C ,则点C所表示的数为()A、B、C、D、5、化简| ﹣π|﹣π得()A、B、﹣C、2π﹣D、﹣2π6、有下列说法:①被开方数开方开不尽的数是无理数;②无理数是无限不循环小数;③无理数包括正无理数、零、负无理数;④无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A、1B、2C、3D、47、若0<x<1,则x ,x2,,中,最小的数是()A、xB、C、D、x28、若的整数部分为a ,小数部分为b ,则a﹣b的值为()A、B、2C、2﹣D、2+9、的值为()A、5B、C、1D、10、如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A、点AB、点BC、点CD、点D11、已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A、①②B、②③C、③④D、②③④12、有一个数值转换器原理如图,当输入的x的值为256时,输出的y的值为()A、16B、C、D、13、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A、B、C、D、2.514、任意实数a ,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1,现对72进行如下操作:72→[ ]=8→[ ]=2→[ ]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A、3B、4C、5D、615、将1、、、按如图方式排列,若规定(m,n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A、B、6C、D、二、填空题16、写出一个到2之间的无理数________.17、下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.18、在数轴上表示的点离原点的距离是________;的相反数是________,绝对值是________.19、若a1=1,a2= ,a3= ,a4=2,…,按此规律在a1到a2014中,共有无理数________个.20、有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,,这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的有________(填序号).三、解答题21、计算:(1).(2)(结果精确到0.01. ).22、有一组实数:2,,0,π,,,,0.1010010001…(两个1之间依次多个0);(1)将他们分类,填在相应括号内;有理数{________}无理数{________}(2)选出2个有理数和2个无理数,用+,﹣,x,÷中三个不同的运算符号列成一个算式,(可以添括号),使得运算结果为正整数.23、已知实数x和﹣1.41分别与数轴上的A、B两点对应.(1)直接写出A、B两点之间的距离________(用含x的代数式表示).(2)求出当x= ﹣1.41时,A、B两点之间的距离(结果精确到0.01).(3)若x= ,请你写出大于﹣1.41,且小于x的所有整数,以及2个无理数?24、如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图1中正方形ABCD的面积及边长;(2)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.25、阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a ,的整数部分为b ,求a+b的值;(2)已知:10+ =x+y ,其中x是整数,且0<y<1,求x﹣y的相反数.答案解析部分一、<h3 >选择题</h3>1、【答案】B【考点】无理数【解析】解答:π、是无理数了.分析:根据无理数的定义去判断:无限不循环小数叫做无理数.2、【答案】C【考点】估算无理数的大小【解析】解答:∵9<11<16,∴<<,从而有3<<4.分析:估算一个整数的算术平方根(无理数)的大小的一般方法是:找出与该无理数的平方相近的两个整数,其中这两个数的算术平方根是整数的,如此题中的9和16,从而可估算该无理数的大小.3、【答案】B【考点】实数的运算【解析】解答:﹣64的立方根为﹣4,的平方根±3,则﹣64的立方根与的平方根之和为﹣1或﹣7.分析:根据平方根和立方根的定义可分别求出相应的立方根和平方根;需要注意的是:=9的平方根,即求9的平方根.4、【答案】A【考点】实数与数轴【解析】解答:设点C表示的数是x ,∵A ,B两点表示的数分别为﹣1和,C ,B两点关于点A对称,∴,解得x= .分析:本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.5、【答案】B【考点】实数的运算【解析】解答:∵﹣π<0,∴| ﹣π|﹣π=π﹣﹣π=﹣.分析:在此运算中,应先化简绝对值,则要比较和π的大小.6、【答案】C【考点】无理数【解析】【解答】①被开方数开方开不尽的数是无理数,正确;②无理数是无限不循环小数,正确;③0是有理数,不是无理数,则命题错误;④无理数都可以用数轴上的点来表示,正确.【分析】此题主要考查了无理数的定义.7、【答案】B【考点】实数【解析】解答:可采用特殊值,令,0<<1,则x2= ,= ,=4,则x2<x<<.分析:此题宜采用特殊法去做更简便.8、【答案】C【考点】估算无理数的大小【解析】解答:∵0<<1,,∴,,则.分析:此题的难点就在于如何去表示的小数部分:首先,应估算的大小,在1和2之间,则1是的整数部分,小数部分= 减去整数部分.9、【答案】C【考点】估算无理数的大小,实数的运算【解析】解答:原式=3﹣+ ﹣2=1.分析:先去绝对值,然后合并即可.10、【答案】B【考点】实数与数轴,估算无理数的大小【解析】解答∵≈1.732,∴≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数表示的点最接近的是点B.分析:先估算出≈1.732,所以≈﹣1.732,易得与﹣2最接近.11、【答案】B【考点】实数【解析】【解答】①数轴上的点既能表示无理数,又能表示有理数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数无限个,故④错误.【分析】本题考查了实数,利用了实数与数轴的关系,有理数、无理数的定义,注意数轴上的点与实数一一对应.12、【答案】A【考点】算术平方根,无理数【解析】解答:x=256,第一次运算,=16,第二次运算,=4,第三次运算,=2,第四次运算,,输出.分析:此题求无理数的同时,要判断其结果是否是无理数.13、【答案】C【考点】实数与数轴【解析】解答:2<<2.5<,2与离的最近,故选C.分析:由图可知这个点与2离的最近,而其中四个选项中的数与2离的最近且大于1的数是.14、【答案】C【考点】估算无理数的大小【解析】解答:900→第一次[ ]=30→第二次[ ]=5→第三次[ ]=2→第四次[ ]=1,即对数字900进行了4次操作后变为1.分析:根据[a]表示不超过a的最大整数计算,即求出a的整数部分.15、【答案】B【考点】实数的运算【解析】解答:6,5)表示第6排从左向右第5个数是,(13,6)表示第13排从左向右第6个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第6个就是,则(6,5)与(13,6)表示的两数之积是6.分析:根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m ﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第n个数到底是哪个数后再计算.二、<h3 >填空题</h3>16、【答案】【考点】无理数【解析】【解答】设此无理数为x ,∵此无理数在到2之间,∴<x<2,∴2<x2<4,∴符合条件的无理数可以为:,(答案不唯一).【分析】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分.本题属开放性题目,答案不唯一.17、【答案】3;5;4;2【考点】实数【解析】【解答】无理数有:,,3.161661666…;有理数有:,,1.414,3.12122,;负数有:,,,;整数有:,.【分析】根据无理数、有理数、负数和整数的定义判断.18、【答案】;;【考点】实数与数轴【解析】【解答】在数轴上表示的点离原点的距离是,的相反数是= ,∵>2,∴.【分析】根据相反数的概念求出相反数,比较和2的大小,确定的符号,根据绝对值的性质求出的绝对值.19、【答案】1970【考点】无理数【解析】【解答】∵12=1,22=4,32=9,42=16,…,442=1936,452=2025,∴a1到a2014中,共有44个有理数,则无理数有2014﹣44=1970.【分析】12=1,22=4,32=9,42=16,…,442=1936,452=2025,可知a1到a2014中,共有44个有理数,继而可求出无理数的个数.20、【答案】①⑤【考点】实数与数轴,近似数,无理数【解析】【解答】①任何无理数都是无限小数,正确;②实数与数轴上的点一一对应,错误;③在1和3之间的无理数有无数个,错误;④是分数,它是无理数,错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,正确.【分析】此题主要考查了数轴、有理数近似数与有效数字、无理数等定义,解答本题要熟记有理数、无理数的定义以及实数与数轴的一一对应关系.三、<h3 >解答题</h3>21、【答案】(1)解答:原式;(2)解答:原式.【考点】实数的运算【解析】【分析】根据实数的运算法则运算即可.22、【答案】(1)2,0,,;,π,,0.1010010001…(两个1之间依次多个0)(2)解:选出2个有理数为:2,0;选出2个无理数为:π,;则π× ﹣0+2=4.(本题答案不唯一).【考点】有理数,实数的运算,无理数【解析】【解答】(1)将他们分类,填在相应括号内,如下:有理数{2,0,,}无理数{ ,π,,0.1010010001…(两个1之间依次多个0)}【分析】本题主要考查了实数的分类.实数分为:有理数和无理数.有理数分为:整数和分数;无理数分为:正无理数、负无理数(无限不循环小数).23、【答案】(1)|x+1.41|(2)解:当x= ﹣1.41时,A、B两点之间的距离为:|x+1.41|=| ﹣1.41+1.41|= ≈1.73.(3)±4解:∵x= ≈1.73,∴大于﹣1.41且小于的整数有﹣1,0,1.无理数:,1﹣等.【考点】实数与数轴【解析】【解答】(1)∵实数x和﹣1.41分别与数轴上的A、B两点对应,∴A、B两点之间的距离为:|x+1.41|.【分析】此题主要考查了实数与数轴,利用数形结合得出是解题关键.24、【答案】(1)解:四边形ABCD的面积是5 ,其边长为.(2)解:如图:在数轴上表示实数,【考点】算术平方根,实数与数轴【解析】【分析】在求正方形的面积时,可用大的正方形的面积减去三角形的面积可得正方形ABCD的面积;按照(1)的方法,同样可解得该图的面积为8,则其边长为.word版数学25、【答案】(1)解:根据题意得:a=2,b=3,则a+b=2+3=5.(2)解:∵x为整数,10+ =x+y ,且0<y<1,∴x=11,y= ﹣1,则x﹣y的相反数为﹣(x﹣y)=﹣x+y= ﹣12.【考点】估算无理数的大小【解析】【分析】此题考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.11 / 11。
最新华师大版八年级数学上册单元测试题及答案全套一、单项选择题(每小题1分,共20分)1. ( ) Which date is your birthday?A. WhatB. HowC. WhichD. When2. ( ) That is a______ car. It's Tom's car.A. nurseB. nurse'sC. nurses'D. nurses3. ( ) They are ______ big books.A. a fewB. a littleC. a lotD. a lot of4. ( ) The fish tastes _____. I like it.A. goodB. wellC. badlyD. bad5. ( ) He is going to____home to play the guitar.A. beB. doC. makeD. return6. ( ) Do you often go to the park by______?A. bikesB. bikeC. a bikeD. two bike7. ( ) The students can't____ = it + waterA. drinkB. goC. comeD. eat8. ( ) I have_____ to say.A. somethingB. anythingC. nothingD. sometime9. ( ) He has already ______home.A. goesB. wentC. is goingD. go10. ( ) Did you see_______?A. hearB. to hearC. hearingD. to hearing11. ( ) There are many __________.A. so many applesB. so much applesC. such applesD. such many apples12. ( ) These bags are ______.A. IB. meC. myD. mine13. ( ) This is ________ interesting book.A. aB. anC. theD. that14. ( ) Is this __ fruit?A. herB. her'sC. her orangesD. hers15. ( ) ______me to the zoo right now.A. ComeB. PassC. DriveD. Go16. ( ) Lily often ______ustla.A. goB. goesC. is goingD. went17. ( ) Mike doesn't like sport, ____?A. do heB. does heC. does sheD. is he18. ( ) These shoes ______ me ten dollars.A. spendB. costC. payD. take19. ( ) He _______ many new things in the travelling.A. sawB. seesC. has seenD. see20. ( ) ______ a picture of your grandmother on the wall?A. Have you gotB. Do you haveC. Is thereD. Are there二、单词拼写(每小题1分,共10分)21. I want to buy some________(橙子).22. There are some_______(花)in the garden.23. She has three_______(牙).24. Can you see a red kite in the_________(天空)?25. My uncle's wife is my_______(卧室).26. I want to buy some chicken_______(肉).27. Jenny is a good ________[音乐].28. He has a nice ________(运动).29. Is there a ________[汉堡] restaurant near the school?30. She takes a _________(乐器) lesson on Sundays.三、根据汉语意思完成句子(20)31. 手表在哪里了?__ _____ ______ the watch?32. 每天他们都锻炼身体。
11.2实数一、选择题(共15题)1.在实数0、π、227、2、9-中,无理数的个数有( )A . 1个B . 2个C .3个D . 4个答案:B解析:π、2是无理数了.2.估计11的值在( )A . 在1和2之间B . 在2和3之间C . 在3和4之间D . 在4和5之间答案:C 解析:∵9<11<16,∴9<11<16,从而有3<11<4.3.﹣64的立方根与81的平方根之和是( )A .﹣7B .﹣1或﹣7C .﹣13或5D .5答案:B 解析:﹣64的立方根为﹣4,81的平方根±3,则﹣64的立方根与81的平方根之和为﹣1或﹣7.4.如图,数轴上A ,B 两点表示的数分别为﹣1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .23--B .13--C .23-+D .13+ 答案:A解析:设点C 表示的数是x ,∵A ,B 两点表示的数分别为﹣1和3,C ,B 两点关于点A 对称,∴(1)3(1)x --=--,解得x=23--.5.化简|3﹣π|﹣π得( )A .3B .﹣3C .2π﹣3D .3﹣2π答案:B 解析:∵3﹣π<0,∴|3﹣π|﹣π=π﹣3﹣π=﹣3.6.有下列说法:①被开方数开方开不尽的数是无理数;②无理数是无限不循环小数;③无理数包括正无理数、零、负无理数;④无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( )A . 1B . 2C . 3D . 4答案:C解析:①被开方数开方开不尽的数是无理数,正确;②无理数是无限不循环小数,正确;③0是有理数,不是无理数,则命题错误;④无理数都可以用数轴上的点来表示,正确.7.若0<x <1,则x ,x2,x ,1x 中,最小的数是( )A . xB .xC .1x D . x2 答案:B 解析:可采用特殊值,令14x =,0<14<1,则x2=116,x =12,1x =4,则x2<x <x <1x .8.若2的整数部分为a ,小数部分为b ,则a ﹣b 的值为( )A . 2B . 2C . 2﹣2D . 2+2 答案:C解析:∵0<2<1,,∴1a =,21b =-,则1(21)22a b -=--=-. 9.|63||26|-+-的值为( )A . 5B . 526-C . 1D .261- 答案:C解析:原式=3﹣6+6﹣2=1.10.如图,数轴上的A 、B 、C 、D 四点中,与数3-表示的点最接近的是( )A .点AB .点BC .点CD .点D 答案:B 解答∵3≈1.732,∴3-≈﹣1.732,∵点A 、B 、C 、D 表示的数分别为﹣3、﹣2、﹣1、表示的点最接近的是点B.2,∴与数311.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A.①②B.②③C.③④D.②③④答案:B解析:①数轴上的点既能表示无理数,又能表示有理数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数无限个,故④错误.12. 有一个数值转换器原理如图,当输入的x的值为256时,输出的y的值为()A. 16 B.2C.3D.8答案:A解析:x=256,第一次运算,256=16,第二次运算,16=4,第三次运算,4=2,第四次运算,2,输出2.13.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.3B.8C.5D. 2.5答案:C5<2.5<8,2与5离的最近,故选C.解析:2<14. 任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操72]=8→[8]=2→[2]=1,这样对72只需进行3次操作后变为1.类似地:作:72→[对数字900进行了n次操作后变为1,那么n的值为()A. 3 B. 4 C. 5 D. 6答案:C900]=30→第二次[30]=5→第三次[5]=2→第四次[2]=1,即对解析:900→第一次[数字900进行了4次操作后变为1.15. 将1、2、3、6按如图方式排列,若规定(m ,n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A .6B .6C .2D .3答案:B解析:6,5)表示第6排从左向右第5个数是6,(13,6)表示第13排从左向右第6个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第6个就是6,则(6,5)与(13,6)表示的两数之积是6.二、填空题(共5题)16.写出一个2到2之间的无理数 . 答案:如3, 2.5解析:设此无理数为x ,∵此无理数在2到2之间,∴2<x <2,∴2<x2<4,∴符合条件的无理数可以为:3, 2.5(答案不唯一). 17.下列各数:32,514-,327-,1.414,3π-,3.12122,9-,3.161661666…(每两个1之间依次多1个6)中,无理数有 个,有理数有 个,负数有 个,整数有 个.答案:3|5|4|2解析:无理数有:32,3π-,3.161661666…;有理数有: 514-,327-,1.414,3.12122,9-;负数有:514-,327-,3π-,9-;整数有:327-,9-. 18.在数轴上表示3-的点离原点的距离是 ;52-的相反数是 ,绝对值是 .答案:3|25-|52-解析:在数轴上表示3-的点离原点的距离是|3|3-=,52-的相反数是(52)--=25-,∵5>2,∴|52|52-=-.19.若a1=1,a2=2,a3=3,a4=2,…,按此规律在a1到a2014中,共有无理数 个. 答案:1970解析:∵12=1,22=4,32=9,42=16,…,442=1936,452=2025,∴a1到a2014中,共有44个有理数,则无理数有2014﹣44=1970.20.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有2,3,5,7这4个; ④2π是分数,它是有理数.⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305.其中正确的有 (填序号).答案:①⑤解析:①任何无理数都是无限小数,正确;②实数与数轴上的点一一对应,错误;③在1和3之间的无理数有无数个,错误;④ 是分数,它是无理理数,错误.⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305,正确.三、解答题(共5题)21.计算:(1)118|83|()(20152)3-0+---+.答案:-1 解析:原式838311=+---=-;(2)3271022-+-(结果精确到0.01.10 3.16,2 1.43≈=). 答案:-2.7解析:原式3 3.162 1.43 2.7≈-+-⨯=-.分析:根据实数的运算法则运算即可.22.有一组实数:2,2,0,π,38-,2π,13,0.1010010001…(两个1之间依次多个0);(1)将他们分类,填在相应括号内;有理数{ }无理数{ }答案:2,0,38-,13|2,π,2π,0.1010010001…(两个1之间依次多个0)解析:(1)将他们分类,填在相应括号内,如下:有理数{2,0,38-,13}无理数{2,π,2π,0.1010010001…(两个1之间依次多个0)}(2)选出2个有理数和2个无理数,用+,﹣,x,÷中三个不同的运算符号列成一个算式,(可以添括号),使得运算结果为正整数.答案:π×2π﹣0+2=4.(本题答案不唯一)解析:选出2个有理数为:2,0;选出2个无理数为:π,2π;则π×2π﹣0+2=4.(本题答案不唯一).23.已知实数x和﹣1.41分别与数轴上的A、B两点对应.(1)直接写出A、B两点之间的距离(用含x的代数式表示).答案:|x+1.41|解析:∵实数x和﹣1.41分别与数轴上的A、B两点对应,∴A、B两点之间的距离为:|x+1.41|.(2)求出当x=3﹣1.41时,A、B两点之间的距离(结果精确到0.01).答案:1.73解析:当x=3﹣1.41时,A、B两点之间的距离为:|x+1.41|=|3﹣1.41+1.41|=3≈1.73.(3)若x=3,请你写出大于﹣1.41,且小于x的所有整数,以及2个无理数?答案:±4解析:∵x=3≈1.73,∴大于﹣1.41且小于3的整数有﹣1,0,1.无理数:2,1﹣2等.24. 如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图1中正方形ABCD的面积及边长;答案:5|5解析:(1)四边形ABCD的面积是21341252-⨯⨯⨯=,其边长为5.(2)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.答案:如图:解析:如图:在数轴上表示实数8,25.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为(7﹣2).请解答:(1)如果5的小数部分为a,13的整数部分为b,求a+b的值;答案:5解析:(1)根据题意得:a=2,b=3,则a+b=2+3=5.(2)已知:10+3=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.答案:3-12解析:∵x为整数,10+3=x+y,且0<y<1,∴x=11,y=3﹣1,则x﹣y的相反数为﹣(x﹣y)=﹣x+y=3﹣12.。
华师大版八年级上册数学单元测试题全套(含答案)第11章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1.27的立方根是( B ) A .±3B .3C .-3D.32.在给出的一组数0,π,5,3.14,39,227中,无理数有( C )A .1个B .2个C .3个D .5个 3.下列各组数中互为相反数的是( A ) A .-2与(-2)2 B .-2与3-8 C .-2与-12D .|-2|与24.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③49的平方根是23;④0.01的算术平方根是0.1;⑤a 4=±a 2,其中正确的是( C )A .1个B .2个C .3个D .4个 5.下列说法中正确的是( B ) A .立方根是它本身的数只有1和0 B .算术平方根是它本身的数只有1和0 C .平方根是它本身的数只有1和0 D .绝对值是它本身的数只有1和06.(六盘水中考)下列说法正确的是( D ) A .|-2|=-2 B .0的倒数是0 C .4的平方根是2 D .-3的相反数是37.(北京中考)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( A )A .aB .bC .cD .d 8.已知a 的平方根是±8,则a 的立方根是( D ) A .±2 B .±4 C .2D .49.★若a <0,则化简|a 2-a |的结果是( B ) A .0 B .-2a C .2a D .以上都不对10.★已知x 是169的平方根,且2x +3y =x 2,则y 的值是( D )A .11B .±11C .±15D .65或1433第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分) 11.3-0.125的相反数是 0.5 ,-π2的倒数是 -2π .12.比较大小:5-12__>__12.(用“>”“<”或“=”填空) 13.若a ,b 都是无理数,且a +b =2,则a ,b 的值可以是 a =2+3,b =-2-1 (填上一组满足条件的即可).14.-8的立方根与81的算术平方根的和为 1 .15.若一个正数的平方根是2a -1和-a +2,则a = -1 .16.(宜昌中考)数轴上表示2,5的点分别是A ,B ,且AC =AB ,则点C 所表示的数是4- 5 .17.★若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是 2 . 18.请你认真观察、分析下列计算过程: (1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321= 111__111__111 . 三、解答题(本大题共8小题,共66分) 19.(12分)计算:(1)0.64+3-8-(-4)2; 解:原式=0.8-2-4 =-5.2.(2)3(-3)3+(-5)2+(32)3; 解:原式=-3+5+2=4.(3)25-364+|3-2|-(-1)2 018; 解:原式=5-4+2-3-(+1)=2- 3.(4)318-523-1125+3-343-3-27.解:原式=12+52×15-7+3=-3.20.(6分)求下列各式中x 的值. (1)4x 2=25; 解:x 2=254,x =±52.(2)(x -0.7)3=0.027. 解:x -0.7=0.3 x =1.21.(6分)比较大小:(1)12.1与3.5;解:∵(12.1)2=12.1,3.52=12.25. 而12.25>12.1,∴3.5>12.1 .(2)3260与6.解:∵(3260)3=260,63=216. 而216<260,∴3260>6.22.(6分)如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,完成下列各题:(1)如果点A 表示实数-3,将点A 向右移动3个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.(2)如果点A 表示实数是3,将点A 向左移动3个单位长度,再向右移动5个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.一般地,如果点A 表示的实数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的实数是________,A ,B 两点间的距离是________.解:(1)-3+3 3;(2)8-3 5-3 a +b -c |b -c|.23.(6分)已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x -3y 的平方根和立方根.解:∵3为x -1的算术平方根,∴x -1=9,x =10;把x =10代入x -2y +1,即11-2y ,又∵3是11-2y 的立方根,∴11-2y =27,∴y=-8;则4x-3y=64,∴4x+3y的平方根为±8,立方根为4.24.(6分)实数a,b,c在数轴上对应点如图,其中|a|=|c|,化简|b+3|+|a-2|+|c -2|+2c.解:由题图可知a>2,c<2,b<-3,∴原式=-b-3+a-2+2-c+2c=-b-3+a+c,又|a|=|c|,∴a+c=0,∴原式=-b- 3.25.(8分)已知a,b满足2a+8+|b-3|=0,解关于x的方程(a+2)x+b2=a-1.解:由题意得2a+8=0,b-3=0,解得a=-4,b= 3.将a,b的值代入方程中得-2x+3=-5,解得x=4.26.(8分)如图,长方形ABCD的面积为300 cm2,长和宽的比为3 ∶2.在此长方形内沿着边的方向能否并排裁出两个面积均为147 cm2的圆(π取3),请通过计算说明理由.解:设长方形的长DC为3x cm,宽AD为2x cm.由题意,得3x·2x=300,解得:x2=50,∵x>0,∴x=50,∴AB=350 cm,BC=250 cm.∵圆的面积为147 cm2,设圆的半径为r cm,∴πr2=147,解得:r=7 cm.∴两个圆的直径总长为28 cm.∵350<364=3×8=24<28,∴不能并排裁出两个面积均为147 cm2的圆.27.(8分)观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310.(1)猜想5-526等于什么,并通过计算验证你的猜想;(2)请用含字母n(n≥2,且n为整数)的式子来表示上述规律(不需证明).解:(1)5-526=5526;验证:5-526=12526=25×526=5526; (2) n -nn 2+1=nn n 2+1.华师大版八年级数学上册第12章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.计算2x 2·(-3x )的结果是( D ) A .-6x 2 B .5x 3 C .6x 3 D .-6x 3 2.下列运算中,正确的是( D ) A .(a +1)2=a 2+1 B .3a 2b 2÷a 2b 2=3ab C .(-2ab 2)=8a 3b 4 D .x 3·x =x 43.下列从左边到右边的变形,属于因式分解的是( D ) A .(x +1)(x -1)=x 2-1 B .x 2-2x +1=x (x -2)+1 C .x 2-4y 2=(x +4y )(x -4y ) D .x 2-x -6=(x +2)(x -3)4.(白银中考)若a 2+(m -3)a +25是一个完全平方式,则m 的值是( C ) A .8或-5 B .13 C .13或-7 D .-105.若n 为正整数,且a n =2,则(-3a 2n )2-9[a ·(-a )2]n 的值为( C ) A .0 B .64 C .72 D .216 6.在算式(x +m )(x -n )的积中不含x 的一次项,则m ,n 一定( C ) A .互为倒数 B .互为相反数 C .相等 D .mn =07.★如果多项式p =a 2+2b 2+2a +4b +2 018,则p 的最小值是( A ) A .2 015 B .2 016 C .2 017 D .2 018 8.将多项式[(17x 2-3x +4)-(ax 2+bx +c )]除以(5x +6)后,得商式为(2x +1),余式为0,则a -b -c 的值是( D ) A .3 B .23C .25D .29第Ⅱ卷(非选择题 共96分) 二、填空题(本大题共8小题,每小题3分,共24分)9.计算:a 3·a 5= a 8 ,-14a 2b ÷2a = -7ab ,(-2a 3)2= 4a 6 .10.已知x a =3,x b =2,则x 2a +3b = 72 . 11.分解因式:a 3b -4ab = ab(a +2)(a -2) .12.若m -n =2,m +n =5,则m 2-n 2的值为 10 . 13.若x -y =12,则代数式(y -x )3·(x -y )的值为 -116 .14.如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积为272a 3+4b 3 .15.★若一个正方形的面积为a 2+a +14,则此正方形的周长为 4a +2 .16.★观察下列等式:(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,……,利用你发现的规律回答:若(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)=-2,则x 2 018的值是 1 .三、解答题(本大题共8小题,共72分) 17.(12分)计算:(1)2(x 3)2·x 3-(3x 3)3+(5x )2·x 7; 解:原式=2x 9-27x 9+25x 9 =0.(2)(27a 3x 2-9a 2x 2-3abx )÷(-3ax ); 解:原式=-9a 2x +3ax +b.(3)x (4x +3y )-(2x +y )(2x -y ); 解:原式=4x 2+3xy -4x 2+y 2 =3xy +y 2.(4)(a -2b -3c )(a -2b +3c ). 解:原式=(a -2b)2-9c 2 =a 2-4ab +4b 2-9c 2.18.(12分)分解因式: (1)12x 2y 2+2xy +2y 2; 解:原式=12y(x 2y +4x +4y).(2)(2x +y )(2y -x )-2x (x -2y ); 解:原式=(2y -x)(4x +y).(3)-9x 3+6x 2-x ;解:原式=-x(9x 2-6x +1) =-x(3x -1)2.(4)a 4-8a 2+16.解:原式=(a 2-4)2 =[(a -2)(a +2)]2 =(a -2)2(a +2)2.19.(10分)(1)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2. 解:原式=x 2-x +5x -5+x 2-4x +4 =2x 2-1.当x =-2时,原式=8-1=7.(2)若x 满足x 2-2x -1=0,求代数式(2x -1)2-x (x +4)+(x -2)(x +2)的值. 解:原式=4x 2-4x +1-x 2-4x +x 2-4 =4x 2-8x -3.∵x 2-2x -1=0,∴x 2-2x =1,∴原式=4(x 2-2x)-3=4-3=1.20.(6分)已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y )3m ·y m 的值. 解:原式=x 6m +y 6m -x 6m y 3m ·y m =(x 3m )2+(y 2m )3-(x 3m )2(y 2m )2 =4+27-4×9 =-5.21.(6分)已知⎪⎪⎪⎪a +12+(b -3)2=0,求代数式[(2a +b )2+(2a +b )(b -2a )-6b ]÷2b 的值. 解:∵⎪⎪⎪⎪a +12+(b -3)2=0,且⎪⎪⎪⎪a +12≥0,(b -3)2≥0, ∴由非负数性质知a +12=0,b -3=0,即a =-12,b =3.将代数式化简,得原式=2a +b -3. 当a =-12,b =3时,原式=-1.22.(8分)已知多项式M =x 2+5x -a ,N =-x +2,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求字母a 的值.解:M ·N +P =(x 2+5x -a)(-x +2)+(x 3+3x 2+5) =-x 3+2x 2-5x 2+10x +ax -2a +x 3+3x 2+5 =(10+a)x -2a +5.∵代数式的值与x 的取值无关, ∴10+a =0,即a =-10.23.(8分)根据条件,求下列代数式的值: (1)若x (y -1)-y (x -1)=4,求x 2+y 22-xy 的值;(2)若a +b =5,ab =3,求代数式a 3b -2a 2b 2+ab 3的值. 解:(1)由题知xy -x -xy +y =4, 即x -y =-4,∴x 2+y 22-xy =(x -y )22=8;(2)原式=ab(a2-2ab+b2)=ab(a-b)2.∵(a-b)2=(a+b)2-4ab=25-4×3=13,∴原式=3×13=39.24.(10分)(1)分解下列因式,将结果直接写在横线上:x2-6x+9=(x-3)3 ,25x2+10x+1=(5x+1)2 ,4x2+12x+9=(2x+3)2 .(2)观察上述三个多项式的系数,有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,那么系数a,b,c之间一定存在某种关系.请你用数学式子表示小明的猜测:b2=4ac .(3)已知代数式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x)是一个完全平方式,试问以a,b,c为边的三角形是什么三角形?解:原式=x2-(a+b)x+ab+x2-(b+c)x+bc+x2-(a+c)x+ac=3x2-(2a+2b+2c)x+ab+bc+ac.∵结果为完全平方式,即(2a+2b+2c)2=4×3(ab+bc+ac),∴a2+b2+c2-ab-bc-ac=0,即2a2+2b2+2c2-2ab-2bc-2ac=0,∴(a-b)2+(b-c)2+(a-c)2=0,即a=b=c.∴以a,b,c为边的三角形是等边三角形.华师大版八年级数学上册第13章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状和大小的玻璃.那么最省事的办法是带(C)A.带①去B.带②去C.带③去D.带①②去第1题图第2题图第7题图2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为(A)A.70°B.75°C.60°D.80°3.在△ABC中,AB=AC,∠A=36°,BD⊥AC于D,则∠DBC的度数是(D)A.36°B.30°C.24°D.18°4.下列语句中不是命题的是(B)A.对顶角相等B.过A,B两点作直线C.两点之间线段最短D.内错角相等5.下列命题中的真命题是(D)①相等的角是对顶角②在△ABC和△A′B′C′中,若AB=A′B′,BC=B′C′,∠C=∠C′=90°,则△ABC≌△A′B′C′③如果一个命题是定理,那么它的逆命题也是真命题④在一个三角形中,任意两边之差小于第三边A.①②B.②③C.③④D.②④6.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是( C )A .①B .②C .③D .④7.如图,在△ABC 中,AD 为∠BAC 的平分线,AB =2,AC =3,则△ABD 与△ADC 的面积之比为( B )A .3 ∶2B .2 ∶3C .2 ∶5D .3 ∶58.★已知等边△ABC 的边长为12,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( C )A .3B .4C .8D .9第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.命题“等腰三角形两腰上的高相等”的逆命题是: 如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 .10.(上海中考)如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 AC =DF 或∠A =∠D 或∠B =∠E .(只需写一个,不添加辅助线)第10题图 第11题图 第12题图11.如图,在△ABC 中,∠B =30°,∠C =70°,点D 是BC 上一点,DE ⊥AB ,DF ⊥AC ,且DE =DF ,则∠BAD 的度数为 40° .12.★如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,连结BD ,若△BDC 的周长为10,BC =3,则△ABC 的周长为 17 .13.如果△ABC ≌△A ′B ′C ′,AB =24,S △A ′B ′C ′=180,那么△ABC 中AB 边上的高是 15 . 14.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 15 度.第14题图 第16题图15.★等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 67.5°或22.5° .16.如图,∠ABC =∠DCB ,AB =DC ,ME 平分∠BMC 交BC 于点E ,结论:①△ABC ≌△DCB ;②ME 垂直平分BC ;③△ABM ≌△EBM ;④△ABM ≌△DCM .其中正确的是 ①②④ .(填序号)三、解答题(本大题共8小题,共72分)17.(6分)如图:已知点A ,E ,F ,B 在一条直线上,AE =BF ,CF =DE ,AC =BD ,求证:GE =GF .证明:∵AE =BF ,∴AF +EF =BE +EF ,即AF =BE.在△ACF 和△BDE 中,⎩⎨⎧CF =DE ,AC =BD ,AE =BE ,∴△ACF ≌△BDE(S.S.S.),∴∠GEF =∠GFE ,∴GE =GF.18.(6分)已知:如图,点D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等腰三角形.证明:∵DE ⊥AC ,DF ⊥AB , ∴∠BFD =∠CED =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BDF 与Rt △CDE 中⎩⎨⎧DB =DC ,DE =DF ,∴Rt △BDF ≌Rt △CDE ,∴∠B =∠C ,∴△ABC 是等腰三角形.19.(8分)用直尺和圆规作图,求作一条直线把△ABC 分成两个三角形,使分后的两个三角形都是等腰三角形.(保留作图痕迹)(1)如图①,△ABC 中,∠ABC =90°,AB =BC ; (2)如图②,△ABC 中,∠B =25°,∠C =80°.解:(1)如图,过点B 作BE ⊥AC ,垂足为E ,作直线BE ,则直线BE 就是所求作的直线.(方法不唯一);(2)如图,在∠BAC 内作∠BAF =∠B ,交BC 于点F ,作直线AF ,则直线AF 就是所求作的直线.20.(10分)如图所示,在△ABC 中,∠ACB =90°,点D 是BC 延长线上一点,点E 是AB 上一点,且在BD 的垂直平分线EG 上,DE 交AC 于点F .求证:点E 在AF 的垂直平分线上.证明:∵EG 垂直平分BD ,∴EB =ED ,∴∠B =∠BDE.又∠ACB =90°,∴∠B +∠BAC =90°.又∵∠BDE +CFD =90°,∴∠BAC =∠CFD ,又∠CFD =∠AFE ,∴∠BAC =∠AFE ,∴EA =EF ,即E 在AF 的垂直平分线上.21.(10分)如图:在△ABC ,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于点F .求证:AF 平分∠BAD .证明:∵BD ⊥AC 于D ,CE ⊥AB 于E , ∴∠AEC =∠ADB =90°.在△ABD 和△ACE 中,⎩⎨⎧∠BAC =∠CAE ,∠ADB =∠AEC ,AB =AC ,∴△ABD ≌△ACE(A.A.S.),∴AE =AD.在Rt △AEF 和Rt △ADF 中,⎩⎨⎧AE =AD ,AF =AF ,∴Rt △AEF ≌Rt △ADF(H.L.),∴∠EAF =∠DAF ,∴AF 平分∠BAD.22.(10分)如图,△ABC 中,BD 是∠ABC 的平分线,CD 是外角∠ACE 的平分线,连结AD ,∠BAC =70°,求∠CAD 的度数.解:过点D 作DM ⊥BC 于点M ,作DN ⊥AC 于点N ,作DP ⊥BF 于点P. ∵BD 是∠ABC 的平分线,∴DP =DM , ∵CD 是∠ACE 的平分线,∴DM =DN ,∴DN =DP.∵DN ⊥AC ,DP ⊥AF ,∴AD 平分∠CAF.∵∠BAC =70°,∴∠CAF =110°,∴∠CAD =55°.23.(10分)如图,△ABC 中,∠1=∠2,∠C =2∠B .求证:AB =AC +CD .证明:在AB 上截取AE =AC ,连结DE ,在△ACD 和△AED 中,∵AE =AC ,∠1=∠2,AD =AD ,∴△ACD ≌△AED(S.A.S.),∴DE =DC ,∠C =∠AED.∵∠C =2∠B ,∴∠AED =2∠B.∵∠AED =∠B +∠BDE ,∴∠B =∠BDE , ∴BE =DE(等角对等边),∴BE =CD. ∵AB =AE +BE ,∴AB =AC +CD.24.(12分)如图,△ABC 是等边三角形,点D 为BC 边上一个动点(点D 与B ,C 均不重合),AD =AE ,∠DAE =60°,连结CE .(1)求证:△ABD ≌△ACE ; (2)求证:CE 平分∠ACF ;(3)若AB =2,当四边形ADCE 的周长取最小值时,求BD 的长.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°, ∵∠DAE =60°,∴∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ;(2)证明:∵△ABC 是等边三角形,∴∠B =∠BCA =60°,∵△ABD ≌△ACE ,∴∠ACE =∠B =60°,∴∠ECF =180-∠ACE -∠BCA =60°, ∴∠ACE =∠ECF ,∴CE 平分∠ACF ; (3)解:∵△ABD ≌△ACE ,∴CE =BD.∵△ABC 是等边三角形,∴AB =BC =AC =2,∴四边形ADCE 的周长=CE +DC +AD +AE =BD +DC +2AD =2+2AD ,根据垂线段最短,当AD ⊥BC 时,AD 值最小,四边形ADCE 的周长取最小值, ∵AB =AC ,∴BD =12BC =12×2=1.华师大版八年级数学上册期中测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是(B)A.a3·a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a22.如图,在数轴上表示15的点可能是(B)A.点P B.点Q C.点M D.点N3.下列各命题的逆命题成立的是(C)A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等4.若a=3-8,b=16,那么a b的值等于(D)A.-8 B.8 C.-16 D.165.下列多项式,能用公式法分解因式的有(A)①x2+y2②-x2+y2③-x2-y2④x2+xy+y2⑤x2+2xy-y2⑥-x2+4xy-4y2A.2个B.3个C.4个D.5个6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为(B) A.3 B.4C.5 D.3或4或57.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为(A)A.-16 B.-8 C.8 D.168.★如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有(B)A.2个B.3个C.4个D.1个第8题图第13题图第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.-64的立方根是 -4 ,327的平方根为 ± 3 .10.计算:(-a )2·(-a )3= -a 5 .11.分解因式:1-x 2+2xy -y 2= (1+x -y)(1-x +y) . 12.已知x -y =6,则x 2-y 2-12y = 36 .13.如图,已知AB =BC ,要使△ABD ≌△CBD ,还需要添加一个条件,你添加的条件是 ∠ABD =∠CBD 或AD =CD .(只需写一个,不添加辅助线)14.如图,∠ABC =50°,AD 垂直且平分BC 于点D ,∠ABC 的平分线BE 交AD 于点E ,连结EC ,则∠AEC 的度数是 115 度.第14题图 第15题图 第16题图15.★如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =6 cm ,一条线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QP A 全等,则AP = 6cm 或12cm .16.★如图,C 是△ABE 的BE 边上一点,F 在AE 上,D 是BC 的中点,且AB =AC =CE ,对于下列结论:①AD ⊥BC ;②CF ⊥AE ;③∠1=∠2;④AB +BD =DE .其中正确的结论有 ①④ (填序号).三、解答题(本大题共8小题,共72分) 17.(8分)计算:(1)3125-3216-121;解:原式=5-6-11=-12.(2)(-2a 2b )2·(6ab )÷(-3b 2);解:原式=4a 4b 2·6ab ÷(-3b 2)=[4×6÷(-3)]a 4+1b 2+1-2=-8a 5b.(3)[(x +y )2-(x -y )2]÷2xy ;解:原式=[x 2+2xy +y 2-(x 2-2xy +y 2)]÷2xy =(x 2+2xy +y 2-x 2+2xy -y 2)÷2xy =4xy÷2xy =2.(4)(3x -y )2-(3x +2y )(3x -2y ).解:原式=(9x 2-6xy +y 2)-(9x 2-4y 2)=9x 2-6xy +y 2-9x 2+4y 2=-6xy +5y 2.18.(6分)若a -b +6与|a +b -8|互为相反数,求4a +3b 的算术平方根.解:依题意得⎩⎨⎧a -b +6=0,a +b -8=0,∴⎩⎨⎧a =1,b =7,则4a +3b =25,∴4a +3b =25=5.19.(8分)已知2x =4y +1,27y =3x -1,求x -y 的值.解:∵2x =4y +1,∴2x =22y +2,∴x =2y +2.①又∵27y =3x -1,∴33y =3x -1,∴3y =x -1.② 把①代入②,得y =1,∴x =4,∴x -y =3.20.(8分)如图,已知AB ∥CF ,点E 为DF 的中点,若AB =7 cm ,CF =4 cm ,求BD 的长.解:∵AB ∥FC ,∴∠ADE =∠EFC. ∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠EFC ,DE =EF ,∠AED =∠CEF ,∴△ADE ≌△CFE(A.S.A.), ∴AD =CF =4 cm ,∴BD =AB -AD =7-4=3 cm.21.(8分)分解因式: (1)m 4-2⎝⎛⎭⎫m 2-12; 解:原式=m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.(2)x 2-9y 2+x +3y .解:原式=(x 2-9y 2)+(x +3y)=(x +3y)(x -3y)+(x +3y)=(x +3y)(x -3y +1).22.(10分)一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是150 cm 3,求原正方形的边长是多少?(1)由题意可知剪掉正方形的边长为________cm ;(2)设原正方形的边长为x cm ,请你用x 表示盒子的容积. 解:(1)因为剪掉一个36 cm 2的正方形, 所以剪掉正方形的边长是6 cm , 故答案为6.(2)因为设原正方形的边长为x cm , 所以盒子的容积为6(x -12)2 cm 3. ∴6(x -12)2=150,解得x =17或7,∵x>12,∴x =7(舍去),则原正方形的边长为17 cm.23.(10分)如图,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于点M ,PN ⊥CD 于点N ,求证:PM =PN .证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(S.A.S.).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM =PN.24.(14分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)BF ⊥CE 于点F ,交CD 于点G (如图①).求证:AE =CG ;(2)AH ⊥CE ,垂足为点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.(1)证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°, ∴∠CAE =∠BCG ,又∵BF ⊥CE ,∴∠CBG +∠BCF =90°,又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG ,在△AEC 和△CGB 中,⎩⎨⎧∠CAE =∠BCG ,AC =BC ,∠ACE =∠CBG ,∴△AEC ≌△CGB(A.S.A.), ∴AE =CG.(2)解:BE =CM.证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°, ∴∠CMA =∠BEC ,又∵∠ACM =∠CBE =45°,在△BCE 和△CAM 中,⎩⎨⎧∠BEC =∠CMA ,∠ACM =∠CBE ,BC =AC ,∴△BCE ≌△CAM(A.A.S.), ∴BE =CM.华师大版八年级数学上册第14章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组数中,是勾股数的是( D ) A .1,2,3 B .2,3,4 C .1.5,2,2.5 D .6,8,102.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( A )A .∠A >45°,∠B >45° B .∠A ≥45°,∠B ≥45°C .∠A <45°,∠B <45°D .∠A ≤45°,∠B ≤45° 3.适合下列条件的△ABC 中,直角三角形的个数为( C )①a =3,b =4,c =5 ②a =6,∠A =45° ③a =2,b =2,c =22 ④∠A =38°,∠B =52°A .1个B .2个C .3个D .4个 4.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( D ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形5.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( C ) A .5 B.7 C .5或7 D .不确定6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 的距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( B )A .0.9米B .1.3米C .1.5米D .2米第6题图第7题图7.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段(D)A.4条B.6条C.7条D.8条8.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为(C)A.42 B.32C.42或32 D.37或33第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若一个三角形的三边满足c2-a2=b2,则这个三角形是直角三角形.10.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线长为100 cm,则这个桌面合格(填“合格”或“不合格”).11.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为12a2 .第11题图第12题图第13题图12.如图,△ABC中,∠C=90°,BC=45 cm,CA=60 cm,一只蜗牛从C点出发,以每分钟20 cm的速度沿CA→AB→BC的路径再回到C点,则需要9 分钟.13.如图是由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于10 .14.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M第14题图第15题图第16题图15.如图,一只蚂蚁沿边长为1的正方形表面从顶点A爬到棱的中点B,则它走的最短路程为172.16.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 018= 2 019 .三、解答题(本大题共8小题,共72分)17.(6分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若a∶b =3 ∶4,c=75 cm,求△ABC的面积.解:∵a ∶b=3 ∶4,则设a=3x,b=4x,在Rt△ABC中,∠C=90°,a2+b2=c2,即(3x)2+(4x)2=752,解得x=15.∴S△ABC=12·3x·4x=12×45×60=1 350 cm2.18.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,所以AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54;(2)因为AB=20,AC=13,BC=21,AB2+AC2≠BC2,所以△ABC不是直角三角形.19.(8分)在一棵树上10米高的点B处有两只猴子,一只猴子爬下树并走到离树底20米处的A处;另一只则爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,问这棵树高多少米?解:设BD为x米,则树高为(x+10)米,在Rt△ADC中,∠C=90°,DC2+AC2=AD2,即(x+10)2+202=(30-x)2,解得x=5,x+10=5+10=15米.答:树高为15米.20.(8分)如图,△ABC中,AD⊥BC于点D,AB=13,AC=8,求BD2-DC2的值.解:在Rt△ADB中,由勾股定理得,BD2=AB2-AD2,在Rt△ADC中,由勾股定理得,DC2=AC2-AD2,所以BD2-DC2=(AB2-AD2)-(AC2-AD2)=AB2-AD2-AC2+AD2=AB2-AC2=132-82=105.21.(8分)用反证法证明:等腰三角形的底角必定是锐角.已知:在△ABC中,AB=AC.求证:∠B,∠C必定是锐角.证明:∵AB=AC,∴∠B=∠C,假设∠B不是锐角,则∠B是直角或钝角.①若∠B是直角,即∠B=90°,则∠C=90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是直角.②若∠B是钝角,即∠B>90°,则∠C>90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是钝角.∴综上,∠B既不是直角也不是钝角,即∠B,∠C是锐角.∴等腰三角形的底角必定是锐角.22.(10分)如图所示,已知AD⊥CD于点D,且AD=4,CD=3,AB=12,BC=13.求:(1)四边形ABCD的面积;(2)若∠B=35°,求∠ACB的度数.解:(1)连结AC,∵AD⊥CD于点D,AD=4,CD=3,∴AC=AD2+CD2=42+32=5.在△ABC中,AB=12,BC=13,AC=5,∵52+122=132,即AC2+AB2=BC2,∴△ABC是直角三角形.∴S四边形ABCD=S△ACD+S△ABC=12AD·CD+12AB·AC=12×4×3+12×12×5=6+30=36.(2)由(1)知,△ABC是直角三角形,且AC2+AB2=BC2,∴∠BAC=90°.∵∠B=35°.∴∠ACB=90°-35°=55°.23.(12分)如图,某沿海城市A接到台风警报,在该市正南方向150 km的B处有一台风中心正以20 km/h的速度沿BC方向移动,已知城市A到BC的距离AD=90 km,那么:(1)台风中心经过多长时间从B点移动到D点?(2)如果在距台风中心30 km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必须在接到台风警报后的几个小时内撤离(撤离速度为6 km/h)?最好选择什么方向?解:(1)在Rt△ABD中,AB=150 km,AD=90 km,所以BD2=AB2-AD2=14 400,所以BD=120 km.120÷20=6 h,故台风中心经过6 h从B点移动到D点.(2)台风从B点到达D点需要6 h,游人从D点沿AD方向撤离到30 km之外需用:30÷6=5 h,6-5=1 h.因此游人必须在接到台风警报后的1 h内撤离.最好选择DA方向或AD 方向.24.(12分)牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家.如图,A点到河边C的距离为500 m,B点到河边D的距离为700 m,且CD=500 m.(1)请在原图上画出牧童回家的最短路线;(2)求出最短路线的长度.解:(1)作点A关于直线CD的对称点A′,连结A′B交CD于点P,连结AP,则AP -PB即为所求的最短路线,如图所示.(2)由作图可得最短路程为A′B的长度,如图,过A′作A′F⊥BD的延长线于F,则DF =A′C=AC=500 m,A′F=CD=500 m,BF=700+500=1 200 m.根据勾股定理,可得A′B2=1 2002+5002=1 3002,∴A′B=1 300 m.即最短路线的长度为1 300 m.华师大版八年级数学上册第15章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.若要清楚地反映住院部某病人的体温变化情况,则应选用的统计图是(B)A.条形统计图B.折线统计图C.扇形统计图D.以上都可以2.某少数民族自治区中的汉族、苗族、土家族人数的比为2 ∶3 ∶4,若制成一个扇形统计图,则表示苗族人数的圆心角为(A)A.120°B.60°C.90°D.150°3.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是(B)A.20% B.30% C.50% D.60%4.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是(D)A.22,44% B.22,56% C.28,44% D.28,56%5.为了了解某校七年级学生的运算能力,抽取了100名学生进行测试,将所得成绩(单位:分)整理后,列出下表:本次测试这100名学生成绩良好(大于或等于80分为良好)的频数是(D)A.22 B.30 C.60 D.706.在扇形统计图中,如果A部分扇面的面积是B部分扇面面积的2倍,则A部分扇面所对的圆心角是B部分扇面所对圆心角的(A)A.2倍B.1倍到2倍之间C.1.5倍D.无法计算7.如图是某公司在2017年的月营业额,从图中我们可以了解到:(1)夏季的营业额比较高;(2)从6月份开始,营业额缓慢下降;(3)5月是营业额最高的一个月;(4)冬季的营业额偏低主要是因为天气寒冷;其中正确的是(B)A.(1)(2) B.(1)(2)(3)C.(2)(3)(4) D.都是正确的8.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是(C)A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.在条形统计图上,如果表示180的数据的条形高为4.5 cm,那么表示数据60的条形高是 1.5cm .10.在检测某种品牌奶粉的营养含量的时候,要检验糖、蛋白质、钙、其他物质在奶粉中的百分比含量,已知某次检测的结果是x%,y%,z%,w%,则x+y+z+w=100 .11.如图是各年龄段人群收看某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1 400人,则其中50岁以上(含50岁)的观众约有504 人.12.已知某班的一次语文测验中,有6名同学不及格,不及格率为12.5%,同时也有9名同学优秀,则这个班在这次测验中的优秀率为18.75% .13.我校八年级(1)班对60名学生寒假在家每天做作业的时间进行了统计,并绘制成扇形统计图.发现做作业时间在2~3小时这一组的圆心角为198°,则这一组的频数为33 .14.如图是根据某市2013年至2017年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是2017 年,比它的前一年增加50 亿元.15.则全市视力不良的初中生约有7.2 万人.16.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有56 名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有17 名体尖生.三、解答题(本大题共8小题,共72分)17.(8分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:(1)请你重新设计一张统计表,使全班同学在每个月的出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月过生日的每一位同学送一份小礼物,那你应该准备几份礼物?解:(1)按生日的月份重新分组可得统计表:(2)读表可得10月份出生的学生的频数是5,频率为540=0.125;(3)2月份有4位同学过生日,因此应准备4份礼物.18.(8分)从某时起,中国电信执行新的电话收费标准,其中本地网营业区内通话话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算).现有一学生调查了A,B,C,D,E共5位同学上星期天打本地网营业区内的通话时间情况,原始数据如表:回答问题:(1)这5位同学共通了10 次电话;(2)这一天通话时间不超过3分钟的频率是20% ,频数是 2 ;(3)这一天通话时间超过4分钟而不超过5分钟的频数是 2 ,频率是20% ;(4)这一天中哪位同学电话费最多?是多少?解:这一天中C同学通话费最多,0.2×3+0.1×4=1元.19.(9分)(杭州中考)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,m=69.01;(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8吨.20.(9分)某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组绘成条形统计图如图所示,图中从左到右各小组小长方形的高的比是1 ∶2 ∶6 ∶4 ∶2,最右边一组的人数是6,结合图形提供的信息解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以下(含60分)的人数是多少?解:(1)6÷21+2+6+4+2=45人.答:这个班级一共有45人参赛;(2)这个班70-79.5的参赛人数最多,有18人;(3)45×11+2+6+4+2=3人.答:成绩在60分以下(含60分)的人数是3人.21.(8分)某年级组织学生参加冬令营活动,本次冬令营分为甲、乙、丙三组进行.下面两幅统计图都反映了学生参加冬令营的报名情况.请你根据图中的信息解答下面的问题:(1)该年级报名参加丙组的人数是多少?(2)该年级报名参加本次活动的总人数是多少?解:(1)观察条形图可知报名参加丙组的人数为25人;(2)该年级参加本次活动的总人数为:15+10+25=50人.22.(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.。
第11章 数的开方11.1平方根与立方根专题一 算数平方根与绝对值的综合运用1. 20b -=,则2013()a b +=______.2. 已知a 、b 满足7b =,求a b -的平方根.3. 如果1x y -+互为相反数,求3x y +的算术平方根.专题二 被开方数中字母的取值问题4. 已知△ABC 的三边长分别为a b c ,,,2690b b -+=,求c 的取值范围.5.在学习平方根知识时,老师提出一个问题:中的m 的取值范围相同吗?小明说相同,小刚说不同,你同意谁的说法?说出你的理由.专题三(算术)平方根与立方根的规律探究6. ===,…,请你将猜想到n≥的代数式表示出来.的规律用含自然数n(1)7.n>)的等式来表示你发现的规律吗?(1)你能用含有n(n为整数,且1(2的关系.状元笔记:[知识要点]1. 平方根与立方根=,那么x就叫做a的平方根.(1)一般地,如果2x a(2)一个正数a a的算术平方根.=,那么x就叫做a的立方根.(3)一般地,如果3x a2. 性质(1)平方根的性质:①一个正数有两个平方根,它们互为相反数;②0只有一个平方根,是0本身;③负数没有平方根.(2a≥;①被开方数a非负,即0≥.(3)立方根的性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0.[温馨提示]1. 负数没有平方根,但是它有立方根.2. 注意利用绝对值、算术平方根的非负性求解.[方法技巧]体会从一般到特殊的数学思想,从中得到规律.参考答案1. 1- 【解析】 0=,20b -=,即3a =-,2b =. ∴2013()a b +=2013(32)1-+=-.2. 解:根据算术平方根的意义,得9090a a -≥⎧⎨-≥⎩,∴9a =,7b =-,∴16a b -=.故a b - 的平方根是4±.3. 解:根据题意得10x y -+=,即1050x y x y -+=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩.∴33239x y +=⨯+=, ∴3x y +的算术平方根是3.4. 0≥,2269(3)0b b b -+=-≥2690b b -+=,0=,2(3)0b -=,∴1a =,3b =.由三角形三边关系得a b c a b -<<+, ∴24c <<.5. 解:同意小刚的说法.中,020m m ≥⎧⎨->⎩,得2m >;020m m ≥⎧⎨->⎩,或020m m ≤⎧⎨-<⎩,得2m >,或0m ≤.m 的取值范围是不同的,故小刚的说法正确.6. (1)n n =+≥.7. 解:(1=.(2=.11.2实数与数轴专题一 与实数分类有关的问题1. 要使22(327)x --为有理数,则x 的值是( ) A .0 B .3 C . ±3 D .不存在2. 已知314.34a =,30.1434b =,则ab的值为______. 3. 请写出满足条件51101x -+<<-的x 的整数解.4. 设23x =+,x 的整数部分为a ,小数部分为b ,求31b a b-++的值.专题二 数形结合思想在实数中的应用5. 如图:数轴上表示1、5的对应点分别为A 、B ,且点A 为线段BC 的中点,则点C 表示的数是( )A .51-B .15-C .52- D.25-6.实数a 、b 在数轴上的对应点A 、B 的位置如图所示,则化简233()a b a a b +---=______.7. 已知实数a 、b 、c 在数轴上的对应的点位置如图所示,化简: 222()(c )a a c a b -++--.专题三 相反数、倒数、绝对值的综合应用8. 已知a 、b 互为相反数,c 、d 互为倒数,m 2,求2a bm cd m++-的值.9. 已知a 、b 20a b b +-=;解关于x 的方程2(2)3a x b a ++=+.状元笔记[知识要点]1. 无理数无限不循环小数叫做无理数.2. 实数的有关概念及分类(1)实数的概念:有理数和无理数统称实数.(2)有理数的相反数、绝对值、倒数的概念在实数范围内仍适用. (3)实数的分类:[温馨提示]1. 实数与数轴上的点一一对应..2. 有理数的运算法则和运算律同样适用于实数,包括运算顺序. [方法技巧]利用数形结合的数学思想,可使化简变得方便.参考答案1. C 【解析】 ∵22(327)0x -≥,又22(327)0x --≥,∴22(327)0x -=,∴3x =±. 2. 1000000 【解析】根号内向左移动六位小数,根号外就向左移动两位.3. 解:∵2<-,∴121<-+,即11<-.∵3<,∴311-<,即21<,∴满足条件11x <<的x 的整数解是x =-1,0,1,2.4. 解:∵12<<11.2x =,∴x 的整数部分是31,即3a =. 1b =-,0a b=+.5. D 【解析】 点B 表示的数比点A 1,点C 表示的数比点A 表示的数小1,即点C 表示的数为11)2-=6. a - 【解析】 由数轴可知0,0,0a b a b <>+<.原式=()()()a b a a b -+----=a -.7. 解:根据a 、b 、c 在数轴上对应点的位置可知,0c a <<,0b >,∴0a c +<,0c a -<.原式=a a c c a b -++--=()()a a c a c b -+++--=a a c a c b -+++--=a b -.8. 解:由题意得:0a b +=,1cd =,m =m =∴2a bm cdm ++-2(1=+-1=.9. 0,0,b ≥≥0,b =∴0a b +=,0b =.∴a =b =代入方程得2(23x +=,即(21x -=-∴x =第12章整式的乘除12.1幂的运算专题一与幂的计算有关的探究题1. 我们约定a&b=10a×10b,如2&3=102×103=105,那么4&8为()A.32 B.1032 C.1012 D.12102. 已知10a=3,10b=5,10c=7,试把105写成底数是10的幂的形式___________.3. 小丽给小明出了一道计算题:若(-3)x•(-3)2•(-3)3=(-3)7,求x的值,小明的答案是-2,小亮的答案是2,你认为___________的答案正确(请填“小丽”、“小明”或“小亮”).并说明理由.4.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.专题二阅读理解题5. 为了求1+2+22+23+24+...+22013的值,可令S=1+2+22+23+24+ (22013)则2S=2+22+23+24+…+22013+22014,因此2S-S=(2+22+23+…+22013+22014)-(1+2+22+23+…+22013)=22014-1.所以:S=22014-1.即1+2+22+23+24+…+22013=22014-1.请依照此法,求:1+4+42+43+44+…+42013的值.6. 阅读下列解题过程,试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,,而16<27,∴2100<375.请根据上述解答过程解答:若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.(写出过程)状元笔记:[知识要点]1. 同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即a m·a n=a m+n(m、n都是正整数).a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再与n个a相乘,根据乘方的意义可得a m·a n=a m+n.2. 幂的乘方是指几个相同的幂相乘法则:幂的乘方,底数不变,指数相乘.即(a m)n=a mn(m,n都是正整数).3. 积的乘方是指底数是乘积形式的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)n=a n b n(n是正整数).4.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即a m÷a n= a m-n(a≠0,m,n都是正整数,且m>n).参考答案1. C 【解析】4&8=104×108=1012.故选C .2. 10a+b+c 【解析】105=3×5×7,而3=10a ,5=10b ,7=10c ,∴105=10a •10b •10c =10a+b+c . 故应填10a+b+c .3. 小亮 【解析】小亮的答案是正确的.理由如下:∵(-3)x •(-3)2•(-3)3=(-3)x+2+3=(-3)7,∴x+2+3=7,解得x=2.故填小亮.4. 解:(1)12*3=1012×103=1015,2*5=102×105=107;(2)相等.∵(a*b )*c=(10a ×10b)*c=b +a 1010×10c =b +a 1010+c ,a*(b*c )=a*(10b ×10c )=10a+10b+c .∴(a*b )*c ≠a*(b*c ).5. 解:为了求1+4+42+43+44+...+42013的值,可令S=1+4+42+43+44+ (42013)则4S=4+42+43+44+ (42014)所以4S-S=(4+42+43+44+…+42014)-(1+4+42+43+44+…+42013)=42014-1,所以3S=42014-1,所以S=31(42014-1), 即1+4+42+43+44+…+42013=31(42014-1). 6. 解:∵a=2555,b=3444,c=4333,d=5222,∴a=(25)111,b=(34)111,c=(43)111,d=(52)111,∴a=32111,b=81111,c=64111,d=25111.∵81>64>32>25,∴81111>64111>32111>25111,∴b >c >a >d .12.2 整式的乘法专题 阅读探究题1. 阅读下列解答过程,并回答问题.在(x 2+ax+b )与(2x 2-3x-1)的积中,x 3系数为-5,x 2系数为-6,求a ,b 的值.解:(x 2+ax+b )•(2x 2-3x-1)=2x 4-3x 3+2ax 3+3ax 2-3bx ①=2x 4-(3-2a )x 3-(3a-2b )x 2-3bx..②根据对应项系数相等,有⎩⎨⎧-=--=-623523b a a .③ 回答:(1)上述解答过程是否正确?____________.(2)若不正确,从第_________步开始出现错误,其他步骤是否还有错误? __________________.(3)写出正确的解答过程.2. (1)计算(x+1)(x+2)=_____________,(x-1)(x-2)=___________,(x-1)(x+2)=__________,(x+1)(x-2)=_______________.(2)你发现(1)小题有何特征,会用公式表示出来吗?(3)已知a 、b 、m 均为整数,且(x+a )(x+b )=x 2+mx+12,则m 的可能取值有多 少个?状元笔记【知识要点】1. 单项式与单顶式相乘法则:单项式与单项武相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2. 单项式与多项式相乘法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.3. 多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.【方法技巧】1. 先利用乘法交换律和乘法结合律,再利用同底数幂的乘法法则可完成单项式乘法.对于法则不要死记硬背,要注意以下几点:(1)积的系数等于各单项式的系数的积,应先确定符号后计算绝对值.(2)要注意只在一个单项式里含有的字母要连同它的指数写在积里,不能将这个因式丢掉.(3)单项式乘法法则对于三个以上的单项式相乘也适用.参考答案1. 解:(1)不正确,(2)第①步出现错误,第②③步还有错误;(3)(x 2+ax+b )(2x 2-3x-1)的展开式中含x 3的项有:-3x 3+2ax 3=(2a-3)x 3,含x 2的项有:-x 2+2bx 2-3ax 2=(-3a+2b-1)x 2.又∵x 3项的系数为-5,x 2项的系数为-6,∴有 ⎩⎨⎧-=-+--=-,,6123532b a a ,解得 ⎩⎨⎧-=-=41b a .2. 解:(1)(x+1)(x+2)=x 2+3x+2,(x-1)(x-2)=x 2-3x+2,(x-1)(x+2)=x 2+x-2,(x+1)(x-2)=x 2-x-2;(2)可以发现题(1)中,左右两边式子符合(x+p )(x+q )=x 2+(p+q )x+pq 结构.(3)因为12可以分解以下6组数,a ×b=1×12,2×6,3×4,(-1)×(-12), (-2)×(-6),(-3)×(-4),所以m=a+b 应有6个值.12.3 乘法公式 专题一 与乘法公式有关的规律探究题1. 观察下列各式:(x-1)(x+1)=x 2-1(x-1)(x 2+x+1)=x 3-1(x-1)(x 3+x 2+x+1)=x 4-1(x-1)(x 4+x 3+x 2+x+1)=x 5-1(1)你能否由此归纳出一般性规律:(x-1)(x n-1+x n-2+x n-3+…+x 2+x+1)=____;(2)根据(1)求出:1+2+22+…+262+263的结果.2.观察下面各式规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2…写出第n个的式子,并证明你的结论.专题二与平方差公式有关的图形问题3. 如下图,把正方形的方块,按不同的方式划分,计算其面积,便可得到不同的数学公式.按图1所示划分,计算面积,便得到一个公式:(x+y)2=x2+2xy+y2.若按图2那样划分,大正方形则被划分成一个小正方形和两个梯形,通过计算图中的面积,请你完成下面的填空.(1)图2中大正方形的面积为__________;(2)图2中两个梯形的面积分别为__________;(3)根据(1)和(2),你得到的一个数学公式为______________________.4. 图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为_______;(2)观察图2,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是_______若x+y=-6,xy=2.75,则x-y=___________(4)观察图3,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.专题三平方差公式的逆运用5.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”(1)28和2 012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?状元笔记【知识要点】1. 平方差公式:(a+b)(a-b)=a2-b2.用语言叙述为:两数和与这两数差的积,等于它们的平方差.2.完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2 -2ab+b2.语言叙述为:两数和(或差)的平方,【方法技巧】平方差公式常用的几种变化形式:(1)位置变化:(b+a)(-b+a)=(a+b)(a-b)=a2 -b2;(2)符号变化:(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2);(3)系数变化:(2a+3b)(2a-3b)=4a2-9b2;(4)指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4(5)增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,…完全平方公式常有以下几种变化形式:(l)a2+b2=(a+b)2-2ab;(2)a2+b2=(a-b)2+2ab;(3)2ab=(a+b)2-(a2+b2);(4)2ab=(a2+b2)-(a-b)2;(5)(a+b)2=(a-b)2+4ab;(6)(a-b)2-(a+b)2=4ab.参考答案1. 解:①(x-1)(x n-1+x n-2+x n-3+…+x 2+x+1)=x n -1;②原式=(2-1)(263+262+…+22+2+1)=264-1.2. 解:第n 个式子:n 2+[n (n+1)]2+(n+1)2=[n (n+1)+1]2.证明:因为左边=n 2+[n (n+1)]2+(n+1)2 =n 2+(n 2+n )2+(n+1)2=(n 2+n )2+2n 2+2n+1=(n 2+n )2+2(n 2+n )+1=(n 2+n+1)2,而右边=(n 2+n+1)2,所以,左边=右边,等式成立3. 解:(1)图中大正方形的面积为x 2;(2)两个梯形的面积分别为21(x+y )(x-y ); (3)x 2-y 2=2×21(x+y )(x-y );即x 2-y 2=(x+y )(x-y ). 4. 解:(1)(m-n )2(2)(m-n )2+4mn=(m+n )2(3)±5(4)(m+n)(2m+n)=2m2+3mn+n2(5)答案不唯一,例如:5. 解:(1)28=2×14=(8-6)(8+6)=82-62;2012=4×503=5042-5022,所以28和2012是神秘数.(2)(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数.(3)设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k=4×2k,∴两个连续奇数的平方差不是神秘数.12.4因式分解专题因式分解的巧妙应用1.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-112.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.3.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中.(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】我们把一个多项式化成几个整式的积的形式,像这样的式子边形叫做这个多项式因式分解,也叫做把这个多项式分解因式.【方法技巧】因式分解的方法:(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.(3)平方差公式:a2-b2=(a+b)(a-b),两个数的平方差,等于这两个数的和与这两个数的差的积.(4)完全平方公式:a2±2ab+b2=(a±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.参考答案1.B 【解析】∵m-n=-5,mn=6,∴m2n-mn2=mn(m-n)=6×(-5)=-30.故选B.2.2013 【解析】32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.3.解:(1)(x2-4x)+(x2+2x)=2x2-2x=2x(x-1).(2)x2-4x>x2+2x,合并同类项,得-6x>0,解得x<0.12.5整式的除法专题与乘除互逆运算相关的问题1. 已知一个多项式与单项式-7x2y3的积为21x4y5-28x7y4+14x6y6,试求这个多项式.2. 已知被除式为x3+3x2-1,商式是x,余式是-1,求除式.状元笔记【知识要点】1. 单项式除以单项式法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,2. 多项式除以单项式法则:多项式除以单项武,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加,即:(a+b+c)÷m=a÷m+b÷m+c÷m.【温馨提示】1. 计算单项式除以单项式时要注意:(1)商的符号;(2)运算顺序与有理数运算顺序相同.2. 在进行多项式除以单项式时,一定要注意符号,不要漏除每一项.多项式除以单项式的关键是逐项去除,结果的项数与多项的项数相同,这是检验是否漏项的重要方法.注意多项式带单位对要加括号.参考答案1. 解:依题意:所求多项式=(21x4y5-28x7y4+14x6y6)÷(-7x2y3)=-3x2y2+4x5y-2x4y3.2. 解:[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.第13章 全等三角形13.1命题与定理专题 定义与命题1.下列语句中,定义的个数有 ( ) ①两点之间,线段最短;②过点M 作已知直线l 的平行线;③规定了原点、正方向和单位长度的直线叫作数轴; ④两直线平行,同位角相等; ⑤单项式和多项式统称为整式.A.1个B.2个C.3个D.4个 2.下列语句中属于命题的有 ( ) (1)两点确定一条直线; (2)不许大声喧哗! (3)连结线段MN ;(4)两个锐角的和一定是直角; (5)536+>;(6)不相交的两条直线叫作平行线.A.2个B.3个C.4个D.5个4. 若规定“⊙”是一种运算符号,且2yx y x xy ⊕=-,试计算:(4)(32)-⊕⊕的值.状元笔记:[知识要点]1.定义:对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的定义.2.命题:对某一件事情作出正确或不正确的判断的语句(陈述句)叫作命题.3.命题的组成:命题由条件和结论组成,如果引入的部分是条件,那么引出的部分是结论.4. 逆命题:如果一个命题的条件和结论分别是另一个命题的结论和条件,这样的两个命题称为互逆命题,其中一个叫作原命题,另一个叫作逆命题.5. 真假命题:正确的命题叫作真命题,错误的命题叫作假命题.6. 证明:要判断一个命题是真命题,常常要从命题的条件出发,通过讲道理(推理),得出其结论成立,从而判断这个命题为真命题,这个过程叫作证明.参考答案1. B 【解析】③和⑤是定义.2. C 【解析】(1)(4)(5)(6)是命题.3. ②⑤4. 解:∵2yx y x xy ⊕=-,∴2(4)(32)(4)(3232)(4)(3)-⊕⊕=-⊕-⨯⨯=-⊕-311(4)2(4)(3)24246464-=--⨯--=--=-.13.2 三角形全等的判定专题一 与全等三角形有关的规律探究1. 如图,已知AB=AC ,D 为∠BAC 的平分线上的一点,连接BD ,CD ;如图2,已知AB=AC ,D 、E 为∠BAC 的角平分线上的两点,连接BD ,CD ,BE ,CE ;如图3,已知AB=AC ,D 、E 、F 为∠BAC 的平分线上的三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是________.2. 如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,BE 平分∠ABC 交CD 、AC 分别于G 、E ,GF∥AC 交AB 于F ,猜想:EF 与AB 有怎样的位置关系,请说明理由.3. 如图①,AB=CD,AD=BC.O为AC中点,过O点的直线分别与AD,BC相交于点M,N. (1)那么∠1与∠2有什么关系?AM,CN有什么关系?请说明理由.(2)若将过O点的直线旋转至图②③的情况时,其他条件不变,那么①中的关系还成立吗?请说明理由.专题二全等三角形与图形变换4. 两个大小不同的等腰直角三角板按如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母).5. 如图,在△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.6. 在△ABC中∠BAC是锐角,AD⊥BC,BE⊥AC,AD与BE相交于点H,垂足分别为D、E,且DB=DC,AE=BE.(1)求证:AH=2BD;(2)若将∠BAC改为钝角,其他条件不变,上述的结论还成立吗?若成立,请证明;若不成立,请说明理由.专题三利用三角形全等解决实际问题7.如图,铁路上A、B两站(视为直线上两点),相距25 km,C、D为铁路同旁的两个村庄(视为两点),DA⊥AB于A点,CB⊥AB于B点,DA=15 km,CB=10 km,现在要在铁路AB上建一个土特产产品收购站E,使C、D两村庄到E站的距离相等,求E站应建在离A站多远处,并说明理由.状元笔记[知识要点]1. 全等三角形的判定方法SSS、SAS、ASA、AAS.2. 全等三角形与图形变换寻找和利用两三角形间的平移或旋转变换关系,能够给命题的证明带来方便. [温馨提示]1. 全等图形指形状相同,大小相等的两个图形.2. 表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. [方法技巧]2. 解:EF⊥AB. 理由如下:∵BE平分∠ABC,∴∠CBG=∠FBG.∵GF∥AC,∴∠A=∠G FB.∵∠A+∠ACD=∠BCG+∠ACD=90°,∴∠A=∠BCG=∠G FB.又∵BG=BG,∴△FBG≌△CBG.∴BF=BC.∵EB=EB,∠CB E=∠FB E,∴△FBE≌△CBE,∴∠EFB=∠ECB=90°.∴EF⊥AB.3. 解:(1)∠1=∠2, AM=CN.理由如下:∵AB=CD,AD=BC,AC=CA,∴△ABC≌△CDA.∴∠DAC=∠BCA.又∵AO=CO,∠CON=∠AOM,∴△AOM≌△CON . ∴∠1=∠2,AM=CN.(2)成立,同理可证△AOM≌△CON . 4. 解:△BAE ≌△CAD.证明:∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE =∠EAD+∠CAE,即∠BAE=∠CAD. 又∵AB=AC ,AE=AD , ∴△BAE ≌△CAD.5. 解:BE=EC ,BE ⊥EC .证明:∵AC=2AB , AD=CD , ∴AB=AD=CD .∵∠EAD=∠EDA=45°, ∴∠EAB=∠EDC=135°. ∵EA=ED ,∴△EAB ≌△EDC(SAS), ∴∠AEB=∠DEC ,EB=EC , ∴∠BEC=∠AED=90°, ∴BE=EC ,BE ⊥EC .6. 解:(1)证明:如图(1),∵ AD ⊥BC ,BE ⊥AC , ∴∠A EH=∠BEC =90°,∴∠EAH +∠C =∠EBC +∠C=90°, ∴∠EAH =∠EBC . 又∵AE=BE ,∴△AEH≌△BEC, ∴AH=BC. 又∵DB=DC, ∴AH=2BD.(2)成立.同理可证△AEH≌△BEC .7. 解:E 站应建在离A 站10 km 处.理由如下: 在线段AB 上截取AE=BC=10 km , 又因为AB=25 km ,所以BE=AB-AE=25-10=15(km), 所以AD=BE=15km. 在△ADE 和△BEC 中,,90,,AD BE A B AE BC =⎧⎪∠=∠=⎨⎪=⎩所以△ADE ≌△BEC (SAS ). 所以DE=EC.13.3 等腰三角形专题一 与等腰三角形有关的探究题1. 设a 、b 、c 是三角形的三边长,且ca bc ab c b a ++=++222,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是等腰直角三角形.其中真命题的个数是( )A.4个B.3个C.2个D.1个 2. 如图,已知:∠MON =30°,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3……在射线 OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=1,则△A 2013B 2013A 2014 的边长为( ) A.2013 B. 2014 C.20122D. 201323. 如图,在△AB 1A 中, ∠B =20°,AB =1A B ,在1A B 上取一点C,延长1AA 到2A ,使得12A A =1A C ; 在2A C 上取一点D,延长12A A 到3A ,使得23A A =2A D ;……,按此做法进行下去,求∠n A 的度数.O MNB 1A 1B 2B 3A 2A 3A 44. 如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.5. 如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.专题二等腰(边)三角形中的动点问题6. 已知ΔABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图中的①②③),先用量角器分别测量∠BQM的大小,将结果填写在下面对应的横线上,然后猜测∠BQM在点M、N的变化中的取值情况,并利用图③证明你的结论.测量结果:图①中∠BQM=______;图②中∠BQM=______;图③中∠BQM=______.7. 如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=______°;点D从B向C运动时,∠BDA逐渐变_____ (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE 是等腰三角形.8. 阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:12AB•r1+12AC•r2=12AB•h,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?_____(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= _____.若不存在,请说明理由.状元笔记[知识要点]1.等腰三角形的性质:(1)等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线;(2)等腰三角形底边上的高、中线及顶角的平分重合(简称为“三线合一”);(3)等腰三角形的两底角相等(简称“等角对等边”).2.等边三角形的性质:等边三角形的三个内角相等,且都等于60°.3.等腰三角形的判定:(1)有两个角相等的三角形是等腰三角形(简称为“等角对等边”.(2)三个角都是60°的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.【方法技巧】1.等边对等角或等角对等边必须在同一个三角形中.2.判断一个三角形的形状一般要考虑:①等腰三角形;②直角三角形;③等边三角形;④等腰直角三角形.3.“等边对等角”和“等角对等边”成为今后证明角或边相等又一新方法.参考答案1. C 【解析】 由ca bc ab c b a ++=++222得:222()()()0a b b c a c -+-+-=,所以000a b b c a c -=⎧⎪-=⎨⎪-=⎩,所以a b c ==,所以②、③是真命题,故选C. 2. C 【解析】 ∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠1=60°. ∵∠MON=30°, ∴∠2=30°=∠MON , ∴A 1B 1 =OA 1=1= A 1A 2.同理可证:A 2B 2 =OA 2 =2,A 2A 3=OA 2 =2,A 3A 4=OA 3 =4=22,A 4A 5=OA 4 =8=32. 以此类推:A 2013B 2013A 2014=22012. 故选C .3. 解:如图,在△AB 1A 中, ∵∠B =20°,AB =1A B , ∴∠1AA B =80°. 在△12A A C 中, ∵12A A =1A C ,∴∠12A A C =112AA B ∠=1802⨯=211802-⎛⎫⨯ ⎪⎝⎭=40°. 在△23A A D 中, ∵23A A =2A D ,∴∠23A A D =1212A A C ∠=118022⨯⨯=311802-⎛⎫⨯ ⎪⎝⎭=20°. 依此类推, 得∠n A 的度数为11802n -⎛⎫⎪⎝⎭.故∠n A 的度数为1n-11808022n -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭或.4. 解:(1)∵△AOC 绕直角顶点C 按顺时针方向旋转90°得△BDC , ∴∠OCD=90°,CO=CD , ∴△COD 是等腰直角三角形;(2)△BOD 为等腰三角形. 理由如下:∵△COD 是等腰直角三角形, ∴∠COD=∠CDO=45°,而∠AOB=140°,α=95°,∠BDC=95°,∴∠BOD=360°-140°-95°-45°=80°,∠BDO=95°-45°=50°, ∴∠OBD=180°-80°-50°=50°. ∴△BOD 为等腰三角形. 5. 解:(1)△ODE 是等边三角形, 其理由是:∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°, ∵OD ∥AB ,OE ∥AC ,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°, ∴△ODE 是等边三角形; (2)BD=DE=EC ,其理由是: ∵OB 平分∠ABC ,且∠ABC=60°, ∴∠ABO=∠OBD=30°, ∵OD ∥AB ,∴∠BOD=∠ABO=30°,∴∠DBO=∠DOB , ∴DB=DO , 同理可证EC=EO. ∵DE=OD=OE , ∴BD=DE=EC . 6. 60°,60°,60°.证明: ∵BM=CN ;∠ABM=∠BCN=60°;BA=BC.ΔABM ≌ΔBCN(SAS),∠BAM=∠CBN;8. 解:(1)证明:连结AP ,BP ,CP.则=ABC BPC APC APB S S S S ++△△△△,即12311112222BC h BC r AC r AB r ⋅=⋅+⋅+⋅, ∵AB=BC=AC ,∴r 1+r 2+r 3=h (定值). (2)存在;2.13.4 尺规作图专题 作图应用题1. 如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()2 .如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30° B.45° C.60° D.90°3. 如图,四边形ABCD是一个长方形的台球桌,台球桌上还剩一个黑球没有被打进球袋,在点P的位置,现在轮到你打,你应该把在点Q位置的白球打到AB边上的哪一点,才能反弹回来撞到黑球?4. 如图所示,靠近河边有一块三角形菜地,要分给张、王、李、赵四家,为了分配合理,要求面积相同,为了便于浇地,每家都有靠河边的菜地,你能想办法将菜地合理分配吗?(尺规作图,保留作图痕迹)5. 如图,△ABC 与△A B C '''关于直线MN 对称,△A B C '''与△A B C ''''''关于直线EF 对称. (1)画出直线EF (尺规作图);(2)设直线MN 与EF 相交于点O ,夹角为α,试探求∠BOB ''与α的数量关系.参考答案1. D 【解析】(1)作点P关于直线l的对称点P';(2)连接P'Q,交直线l于点M;沿着P—M—Q的路线铺设,即为最短.2. 解:如图,作点P关于AB的对称点P',连接P Q'交AB于点M,则点M就是所求的点,即把在点Q位置的白球打到边AB上的点M处,才能反弹回来撞到黑球.3. A 【解析】如图,作点P关于OA的对称点C,关于OB的对称点D,连结CD,交OA于E,OB于F.此时,△PEF的周长最小.连结OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP.同理可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2.∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2.∴△COD是等边三角形.∴2α=60°.∴α=30°.故选A.4. 解:如图所示:(1)作BC的垂直平分线b,交BC于E;(2)分别作BE、CE的垂直平分线a,c,分别交BC于D,F;(3)连接AD,AE,AF,则AD,AE,AF即为分割线.5. 解:(1)如图,连接C C ''',作线段C C '''的垂直平分线EF ,则直线EF 即为所求.(2)连接BO ,B O ',B O ''.由△ABC 与△A B C '''关于直线MN 对称,易知∠BOM=∠B OM '.由△A B C '''与△A B C ''''''关于直线EF 对称,易知∠B OE '=∠B OE '',所以∠B OB '''=∠BOM+∠B OM '+∠B OE '+∠B OE ''=2(∠B OM '+∠B OE ')=2α,即:∠BOB ''=2α.14.2 勾股定理的应用专题 最短路径的探究1. 编制一个底面周长为a 、高为b 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的A 1C 1B 1,A 2C 2B 2,…则每一根这样的竹条的长度最少是______________2. 请阅读下列材料:问题:如图(2),一圆柱的底面半径为5 dm ,高为BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.小明设计了两条路线: 路线1:侧面展开图中的线段AC.如下图(2)所示:设路线1的长度为1l ,则222222212525)5(5ππ+=+=+==AC AB AC l路线2:高线AB + 底面直径BC.如上图(1)所示:设路线2的长度为2l ,则225)105()(2222=+=+=AC AB l .0)8(25200252252525222221>-=-=-+=-πππl l∴2221l l > ∴21l l >.所以要选择路线2较短.(1)小明对上述结论有些疑惑,于是他把条件 改成:“圆柱的底面半径为1dm ,高AB 为5dm ” 继续按前面的路线进行计算。
华师大新版八年级上学期《15.1 数据的收集》同步练习卷一.选择题(共41小题)1.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.2.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A.6组B.7组C.8组D.9组3.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组4.小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于15.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有()A.10人B.20人C.30人D.40人6.样本频数分布反映了()A.样本数据的多少B.样本数据的平均水平C.样本数据的离散程度D.样本数据在各个小范围内数量的多少7.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组B.5组C.6组D.7组8.当前,“低头族”已成为热门话题之一,小颖为了了解路边行人边走路边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查9.为了解游客在十渡、周口店北京人遗址博物馆、圣莲山和石花洞这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在十渡风景区调查400名游客;方案三:在云居寺风景区调查400名游客;方案四:在上述四个景区各调查100名游客.其中,最合理的收集数据的方案是()A.方案一B.方案二C.方案三D.方案四10.小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是()A.①②③B.①④⑤C.②③④D.②④⑤11.小明在一次射击训练中,共射击10发,成绩如下(单位:环):8 7 7 89 8 7 7 10 8,则中靶8环的频率是()A.0.1B.0.2C.0.3D.0.412.将某班女生的身高分成三组,情况如表所示,则表中a的值是()13.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1B.0.2C.0.3D.0.414.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.315.学校测量了全校1 200名女生的身高,并进行了分组.已知身高在1.60~1.65(单位:m)这一组的频率为0.25,则该组共有女生()A.150名B.300名C.600名D.900名16.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生17.已知数据:,,,π,﹣2,其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.818.我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是()A.0.28B.0.28C.0.26D.0.2419.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()20.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查21.现将一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28分成五组,其中第四组26.5~28.5的频数是()A.0.2B.3C.4D.522.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1B.60,60C.1,60D.1,123.频数m、频率p和数据总个数n之间的关系是()A.n=mp B.p=mn C.n=m+p D.m=np24.下列说法错误的是()A.在频数分布直方图中,频数之和为数据个数B.频率等于频数与组距的比值C.在频数分布表中,频率之和为1D.频率等于频数与样本容量的比值25.下面的调查,适合用实验方法的是()A.推荐班长候选人B.调查同学们的生日C.你在10秒内能跑多少米D.世界上发生的“禽流感”的情况26.2016年4月30日至5月2日,河北省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是()A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4000元以下的共有37人27.将50个数据分成五组,编成组号为①~⑤的五个组,频数分布如下表:那么,第②组的频数为()A.0.12B.0.6C.6D.1228.一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11B.10C.9D.829.某校七年级统计30名学生的身高情况(单位cm),其中身高最大值为175,最小值为149,且组距为3,则组数为()A.7B.8C.9D.1030.为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四31.一组数据的最大值是97,最小值是76,若组距为4,则可分为几组()A.4组B.5组C.6组D.7组32.要对大批量生产的商品进行检验,下列做法比较合适的是()A.把所有商品逐渐进行检验B.从中抽取1件进行检验C.从中挑选几件进行检验D.从中按抽样规则抽取一定数量的商品进行检验33.将100个数据分成8个组,如下表所示,则第五组的频数为()A.12B.13C.14D.1534.王老师对本班40名同学的血型作了统计,列出如下的统计表,则本班B型血的人数为()A.4人B.6人C.14人D.16人35.有40个数据,共分成6组,第1﹣4组的频数分别是10、5、7、6.第5组占10%,则第6组占()A.25%B.30%C.15%D.20%36.要调查某校初一学生周末完成作业的时间,选取对象最合适的是()A.选取50名女生B.选取50名男生C.选取一个班级的学生D.随机选取50名初一学生37.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1B.0.15C.0.2D.0.338.小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是639.据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,某数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查40.体育委员统计了七(1)班全体同学60秒跳绳的次数,并列出下面的频数分布表:给出以下结论:①全班有52个学生;②组距是20;③组数是7;④跳绳次数在100≤x<140范围的学生约占全班学生的67%.其中正确结论的个数是()A.1个B.2个C.3个D.4个41.已知样本7,8,10,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,13,11共20个数据,将这个样本分组,落在8.5~11.5这一组内的频率是()A.0.4B.0.6C.0.5D.0.65二.填空题(共9小题)42.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为.43.某班把学生分成5个学习小组,前4个小组的频率分别是0.04、0.04、0.16、0.34,第三小组的频数是8,则第5小组的频率是,这个班共有学生名.44.某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为人.45.对某校八年级(1)班50名同学的一次数学测验成绩进行统计,如果80.5﹣90.5分这一组的频数是18,那么这个班的学生这次数学测验成绩在80.5﹣90.5分之间的频率是.46.某校对九年级全部240名学生的血型作了调查,列出统计表,则该校九年级O型血的学生有人.47.一个样本的50个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率为.48.为了了解某地区45000名九年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤:①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据,按操作的先后进行排序为.(只写序号)49.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过10min的频率为.50.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.华师大新版八年级上学期《15.1 数据的收集》同步练习卷参考答案与试题解析一.选择题(共41小题)1.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.【分析】首先正确数出这句话中的字母总数,a出现的次数;再根据频率=频数÷总数进行计算.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选:B.【点评】考查了频率的概念以及计算方法:频率=频数÷总数.2.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A.6组B.7组C.8组D.9组【分析】根据极差与组距的关系可知这组数据的组数.【解答】解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40﹣16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故选:B.【点评】本题中注意要考虑数据不落在边界上,因而不要错误的认为是分为6组.3.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为143,最小值为50,它们的差是143﹣50=93,已知组距为10,那么由于=,故可以分成10组.故选:A.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.4.小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于1【分析】根据频率=,即可解答.【解答】解:频率=,当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1;可得B,C,D,都正确,A错误.故选:A.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.5.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有()A.10人B.20人C.30人D.40人【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选:B.【点评】本题考查频率、频数、总数的关系:频率=频数÷数据总和.6.样本频数分布反映了()A.样本数据的多少B.样本数据的平均水平C.样本数据的离散程度D.样本数据在各个小范围内数量的多少【分析】样本频数分布即各组(各个小范围内)内样本的数量,即反映了样本数据在各个小范围内数量的多少.【解答】解:样本频数分布即各组(各个小范围内)内样本的数量,反映了样本数据在各个小范围内数量的多少.故选:D.【点评】本题考查频数分布的意义.7.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组B.5组C.6组D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为35,最小值为12,它们的差是35﹣12=23,已知组距为4,那么由于23÷4=5.75,故可以分成6组,故选:C.【点评】本题考查的是组数的计算,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.8.当前,“低头族”已成为热门话题之一,小颖为了了解路边行人边走路边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;C、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故C错误;D、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.为了解游客在十渡、周口店北京人遗址博物馆、圣莲山和石花洞这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在十渡风景区调查400名游客;方案三:在云居寺风景区调查400名游客;方案四:在上述四个景区各调查100名游客.其中,最合理的收集数据的方案是()A.方案一B.方案二C.方案三D.方案四【分析】采取抽样调查时,应能够保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性偏差的可能性是极小的,样本对总体的代表性很强.【解答】解:方案一、方案二、方案三选项选择的调查对象没有代表性.方案四在上述四个景区各调查100名游客,具有代表性.故选:D.【点评】本题考查了抽样调查的可靠性.抽样调查是实际中经常用采用的调查方式,如果抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果会偏离总体的情况.10.小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是()A.①②③B.①④⑤C.②③④D.②④⑤【分析】利用调查问卷内容要全面且不能重复,进而得出答案.【解答】解:∵看课外书包含看小说,体育活动包含踢足球,∴④⑤的选项重复,故选取合理的是①②③.故选:A.【点评】此题主要考查了调查收集数据的过程与方法,正确把握选项设计的合理性是解题关键.11.小明在一次射击训练中,共射击10发,成绩如下(单位:环):8 7 7 89 8 7 7 10 8,则中靶8环的频率是()A.0.1B.0.2C.0.3D.0.4【分析】根据频率公式,可得答案.【解答】解:P(中靶8环)==0.4,故选:D.【点评】本题是对频率、频数灵活运用的综合考查,频率=.12.将某班女生的身高分成三组,情况如表所示,则表中a的值是()A.2B.4C.6D.8【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.【解答】解:∵第一组与第二组的频率和为1﹣20%=80%,∴该班女生的总人数为(6+10)÷80%=20,∴第三组的人数为20×20%=4.∴a=4.故选:B.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频率之和等于1,频率=.13.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A.0.1B.0.2C.0.3D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+4)=40﹣32=8,则第5组的频率为8÷40=0.2.故选:B.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.14.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.3【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:绘画小组的频数是40﹣8﹣11﹣9=12,频率是12÷40=0.3,故选:D.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.15.学校测量了全校1 200名女生的身高,并进行了分组.已知身高在1.60~1.65(单位:m)这一组的频率为0.25,则该组共有女生()A.150名B.300名C.600名D.900名【分析】根据频数=总数×频率,直接代值计算即可.【解答】解:根据题意,得该组共有女生为:1200×0.25=300(人).故选:B.【点评】此题考查频率、频数的关系:频率=.能够灵活运用公式是解题的关键.16.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生【分析】根据调查数据要具有随机性,进而得出符合题意的答案.【解答】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.17.已知数据:,,,π,﹣2,其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8【分析】根据题目中的数据可以判断哪几个数据是无理数,从而可以解答本题.【解答】解:∵在,,,π,﹣2中,无理数是,,π,∴无理数出现的频率为:=0.6,故选:C.【点评】本题考查频数与频率、无理数,解题的关键是能够断一个数据是无理数还是有理数.18.我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是()A.0.28B.0.28C.0.26D.0.24【分析】根据各小组频数之和等于数据总和,利用频率=,可得答案.【解答】解:参加羽毛球运动的频数是50﹣14﹣11﹣13=12,频率是:12÷50=0.24.故选:D.【点评】此题主要考查了频数与频率,注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=.19.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.3【分析】根据频数分布直方图可以知道绘画兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频数分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.3,故选:D.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;C、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故C正确;D、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21.现将一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28分成五组,其中第四组26.5~28.5的频数是()A.0.2B.3C.4D.5【分析】先将各数据划记到对应的小组,再正确数出第四组26.5~28.5的频数即可.【解答】解:∵落在第四组26.5~28.5的数据为:27,28,27,28,∴第四组26.5~28.5的频数是4,故选:C.【点评】本题考查频率、频数的概念,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.22.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1B.60,60C.1,60D.1,1【分析】根据频数和频率的定义求解.【解答】解:在对60个数进行整理的频数分布表中,这组的频数之和为60;频率之和为1.故选:A.【点评】本题考查了频数(率)分别表:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.23.频数m、频率p和数据总个数n之间的关系是()A.n=mp B.p=mn C.n=m+p D.m=np【分析】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总个数.【解答】解:∵频数为m、频率为p,数据总个数为n,∴m=np.故选:D.【点评】本题考查频率、频数、总数的关系:频率=频数÷数据总个数.24.下列说法错误的是()A.在频数分布直方图中,频数之和为数据个数B.频率等于频数与组距的比值C.在频数分布表中,频率之和为1D.频率等于频数与样本容量的比值【分析】根据频数、频率的定义即可判断.【解答】解:A、在频数分布直方图中,频数之和为数据个数,命题正确;B、频率等于频数与总数的比值,故命题错误;C、在频数分布表中,频率之和为1,命题正确;D、频率等于频数与样本容量的比值,命题正确.故选:B.【点评】本题考查了频率、频数的定义,注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.25.下面的调查,适合用实验方法的是()A.推荐班长候选人B.调查同学们的生日C.你在10秒内能跑多少米D.世界上发生的“禽流感”的情况【分析】实验方法适用于不易直接操作掌控情况,只有实地测量才能得出结果的。