高中数学必修一重点题型和分析
- 格式:docx
- 大小:36.57 KB
- 文档页数:2
必修一数学必考题型及答题方法全文共四篇示例,供读者参考第一篇示例:数学作为一门理科必修课程,对于学生来说是一个必考的科目。
必修一数学主要包括函数、导数、微分、积分等内容,其中考试题型也比较多样化。
在备考必修一数学考试时,掌握各种题型及答题方法是非常重要的。
本文将针对必修一数学的必考题型及相应的答题方法进行分析与总结。
1. 函数与极限函数与极限是必修一数学中一个非常重要的题型,通常考察的内容包括函数的性质、极限的计算以及极限存在性的判断。
在应对这类题型时,需要注意以下几点答题方法:- 对于函数的性质,需要掌握函数的定义域、值域、奇偶性等基本概念,并能够应用这些概念解决实际问题。
- 在计算极限时,需要掌握常见极限的计算方法,如利用洛必达法则、泰勒展开等方法,同时要注意极限存在性的判断。
- 针对极限存在性的判断,需要掌握夹逼定理、单调有界准则等方法,以判断函数在某点的极限是否存在。
2. 导数与微分导数与微分是必修一数学中另一个重点考察的内容,通常考察的内容包括导数的计算、导数的应用、微分的计算等。
在应对这类题型时,需要注意以下几点答题方法:- 计算导数时,要掌握基本函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算公式。
- 在导数的应用中,需要注意应用题的建模、解题过程,并掌握利用导数分析函数的单调性、凹凸性以及求取最值等问题。
- 对于微分的计算,要掌握微分的定义及微分运算规则,并能够熟练应用微分进行问题的求解。
3. 积分与定积分积分与定积分是必修一数学中另一个重要的考察内容,通常考察的内容包括积分的计算、定积分的应用、面积计算等。
在应对这类题型时,需要注意以下几点答题方法:- 对于积分的计算,要掌握不定积分的计算方法,如基本积分法、换元积分法、分部积分法等,同时要注意积分的性质和常见积分的计算结果。
- 在应用题中,要能够熟练应用定积分计算曲线下面积、旋转体的体积、物理问题中的积分应用等内容。
人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性〔1〕元素确实定性;〔2〕元素的互异性;〔3〕元素的无序性2、“属于〞的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作 a∈A,如果a不属于集合A 记作 a A3、常用数集及其记法非负整数集〔即自然数集〕记作:N;正整数集记作:N*或 N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法〔1〕列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
〔2〕描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}〔3〕图示法〔Venn图〕【重点】集合的根本概念和表示方法【难点】运用集合的三种常用表示方法正确表示一些简单的集合【知识要点】1、“包含〞关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等〞关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.【重点】子集与空集的概念;用Venn图表达集合间的关系【难点】弄清元素与子集、属于与包含之间的区别【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A交B〞),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
新高一数学必修一知识点一、知识概述《集合》①基本定义:集合就像是一个装东西的袋子,这个袋子里装的东西可以是各种各样的,比如一些数字、一些人、一些图形之类的。
这些东西都具有某种共同的属性,我们就把这些东西放在一块,起个名字就叫集合。
通常用大写字母表示集合,比如A、B等。
集合里的每个东西就叫元素,用小写字母表示,像a、b等。
②重要程度:在数学里超级重要。
就像盖房子要先打地基一样,集合是很多高级数学知识的基础。
很多其他的概念都是在集合的基础上衍生出来的。
③前置知识:没什么特别强的前置知识,不过一些基本的分类概念多少要有一点。
比如能区分不同的数字类型。
④应用价值:在实际生活中,假设你整理自己的藏书,可以按照不同的类别,比如科幻类、历史类等建立集合。
在计算机数据处理的时候也经常用到集合概念,把相似数据归到一个集合里。
二、知识体系①知识图谱:集合是高中数学里非常基础的部分,为函数、数列等知识做铺垫。
②关联知识:和函数相关,因为函数的定义域和值域都可以看作集合;数列也是一种特殊的数集。
③重难点分析:- 掌握难度:对于刚上高一的同学来说,理解集合的概念不难,但是当涉及集合间的关系、运算时就容易搞混。
- 关键点:明确集合中元素的特性(确定性、互异性、无序性)。
④考点分析:- 在考试中相当重要。
- 考查方式:有直接考查集合的表示法,比如列举法、描述法;还有考查集合间关系,如子集、真子集;集合的运算像交集、并集、补集等。
三、详细讲解【理论概念类】①概念辨析:- 确定性:就是说一个东西要么属于这个集合,要么不属于,很确定的。
比如“所有的好人”就不能构成一个集合,因为“好人”的标准不明确。
- 互异性:一个集合里的元素不能重复。
比如说集合{1, 2, 2}这样是不行的,正确应该是{1, 2}。
- 无序性:集合里元素的顺序不重要。
{1, 2, 3}和{3, 1, 2}是同一个集合。
②特征分析:- 封闭性:集合一旦确定,元素是固定的,不会轻易改变。
高一数学必修一函数题型与解法
函数是数学中一个重要概念,它可以把一组数字的变化规律表示出来,并且可以把不同的变量之间的关系表示出来。
高一数学必修一中的函数题是高中数学教学中一个重要部分,它涉及到函数的概念,定义,性质,图像,求导,上下函数,函数的增减性等内容。
函数是一种数学概念,可以表示某种变化规律,并可以把不同变量之间的关系表示出来。
高一数学必修一中的函数题,要求学生整体理解函数的概念,理解函数的定义,函数的定义域和值域,函数的性质和图像,求导,上下函数,函数的增减性等内容。
针对高一数学必修一中的函数题,学生在解题时要注意以下几点:
1、理解函数的概念,理解函数的定义,定义域和值域,性质和图像,求导,上下函数,函数的增减性等内容;
2、根据函数的定义,用数学公式表示出函数,全部推导出函数的性质;
3、根据函数的性质,用图像、表格或计算机绘制出函数的图像;
4、根据函数的性质,求出函数的导数,判断函数的增减性;
5、根据函数的定义,求出函数的上下函数;
6、完成函数的综合应用,求出函数的最值、极值点,以及函数的上下函数对应的最值、极值点等。
函数的奇偶性知识提要》》》 1. 奇、偶函数的概念【注意】(1)函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.一个函数只有定义域关于原点对称,这个函数才有可能是奇函数(或偶函数),如果定义域不关于原点对称,一定不具有奇偶性。
反之,如果一个函数具有奇偶性,那么它的定义域一定关于原点对称.。
(2)是为奇函数的既不充分也不必要条件,但如果奇函数在处有定义,必有 (3)偶函数不一定与y 轴相交(4)函数既是奇函数也是偶函数; 常函数为偶函数.奇偶性定义图像特征定义域特点表达式的常见变形偶函数设函数定义域为D,如果,都有且,那么函数是偶函数图像关于 轴对称定义域关于原点对称;奇函数设函数定义域为D,如果,都有且,那么函数是奇函数图像关于 原点对称定义域关于原点对称;0)0(=f )(x f )(x f 0=x 0)0(=f 0)(=x f )0()(≠=c c x f )(x f D x ∈∀D x ∈-)()(x f x f =-)(x f y |)(|)()(x f x f x f =-=)(x f D x ∈∀D x ∈-)()(x f x f -=-)(x f 0)()(=-+x f x f2. 奇、偶函数的性质(1)若奇函数在处有定义,即有意义,则;(2)奇函数的图象关于原点对称,偶函数的图象关于轴对称,反之也成立.(3)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)在公共定义域内:①奇+奇=奇;②偶+偶=偶;③奇×奇=偶;④偶×偶=偶;⑤奇×偶=奇.方法提炼》》》》1.函数奇偶性的判断方法方法解读适合题型定义法确定定义域,判断是否关于原点对称。
若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断与的关系函数解析式较简单,抽象函数等图像法奇(偶)函数的充要条件是它的图象关于原点(或轴)对称.函数图像容易确定、分段函数等性质法在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.组合函数、复合函数温馨提示(1)判断函数的奇偶性应树立“定义域优先的原则”;(2)对于较复杂的函数解析式,可先对其进行化简,在进行判断.)(xf0=x)0(f0)0(=fy)(xf)(xf-y2.函数奇偶性的应用技巧技巧解读求函数解析式中参数的值利用待定系数法求解,根据得到待求参数的恒等式,由系数的对等性得到系数的值或者方程(组),进而得出参数的值.求函数解析式抓住奇偶性,讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而求得的解析式.巧妙构造造奇偶函数求函数值若题设条件给出的函数不具备奇偶性,但通过变形转化为一个新的函数,进而能够确定奇偶性,便可利用此性质求解复杂式子的值,充分体现转化思想和构造技巧的应用.温馨提示(1)利用奇函数的性质求解函数的解析式需注意当时的情况,不能丢掉.(2)利用奇函数的性质求值可利用在定义域R上为奇函数,得到,或者是等特殊值,从而求得参数值.常考题型:题型一、函数奇偶性概念理解题型二、函数奇偶性的判定题型三、函数奇偶性求函数值题型四、函数奇偶性求参数题型五、函数奇偶性与单调性结合——比较大小题型六、函数奇偶性与单调性结合——解不等式题型七、利用函数奇偶性求对称区间上的函数解析式题型八、利用奇偶性构造方程组求解析式题型九、与函数奇偶性、单调性相关的综合解答题)()(=-±xfxf)(xf)(xf=x)(xf)0(=f0)1()1(=+-ff题型一、函数奇偶性概念理解 下列命题:①偶函数的图像一定与轴相交;②奇函数的图像一定通过原点; ③既是奇函数又是偶函数的函数只能是; ④偶函数的图像关于轴对称.⑤奇函数的图像关于原点对称 其中正确的是_______________ 题型二、函数奇偶性的判定 【例1】判断下列函数的奇偶性(1) (2)(3) (4)(5);(6)(7) (8);(9)【练习1】(1) ; (2)(3); (4) (5)(6)y ()()0R f x x =∈y 4)(x x f =5)(x x f =xx x f 1)(+=21)(x x f =122)(2++=x x x x f 232)(x x x f -=2211)(x x x f -+-=()2f x x =-⎩⎨⎧>+-<+=00)(22x x x x x x x f ,,2432)(xx x f +=y =()1xf x x =-()1,0,1,0.x x f x x x +>⎧=⎨-<⎩2532)(x x x f +=4212)(xx x f +=【例2】(1)(多选)下列函数是奇函数的是 ( )A .,()B .C .D . (2)下列函数是奇函数,且在定义域内单调递增是 ( ) A .B .C .D .(3)(多选)下列函数中,既是偶函数又在上单调递增的函数是 ( ) A . B . C . D .【练习2】(1)(多选)下列函数中,既是偶函数又在区间单调递增的是 ( )A . B. C . D . (2)(多选)下列函数是偶函数,且在上单调递增的是 ( )A .. C . D .【例3】设是R 上的任意函数,则下列叙述正确的是 ( )A.是奇函数B.C.是偶函数D.是偶函数【练习3】(1)(2014课标Ⅰ,理3)设函数的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是 ( )A )是偶函数 B.是奇函数 C.是奇函数 D.是奇函数(2)已知奇函数与偶函数的定义域、值域均为R ,则 ( ) A .是奇函数 B .是奇函数 C .是奇函数D .是偶函数题型y x =[0,1]x ∈23y x =3y x=||y x x =y =3y x x =-1y x=-y =(0,)+∞y x =||1y x =+2y x =21y x =-(0,)+∞22y x =+2y x =-1y x x=+1||-=x y ()0,x ∈+∞()f x =()f x x =()2f x x x =+()2(1)f x x =+)(x f )()(x f x f -|)(|)(x f x f -)()(x f x f --)()(x f x f -+)()(x g x f ,)(x f )(x g )()(x g x f )(|)(|x g x f |)(|)(x g x f |)()(|x g x f ()f x ()g x ()()f x g x +()()f x g x ()()f x g x ()f g x ⎡⎤⎣⎦题型三、函数奇偶性求函数值【例1】已知是上的奇函数,且时,,则. 【例2】若是定义在上的奇函数,当时,,则.【例3】已知,且,则 【例4】已知函数是上的偶函数,若,则_________ 【例5】已知为奇函数,则___________ 【练习】1.已知函数是定义域为的奇函数,当时,,则_____2.已知为定义在R 上的奇函数,当时,,则____________3.已知,(是常数),且,则的值为.4.已知是定义在上的奇函数,若 ,则___________ 题型四、函数奇偶性求参数 【例题剖析】1.已知奇函数的定义域为,则实数__________.2.已知函数是偶函数,则__________.3.已知是定义在上的偶函数,那么的值是______4.设是定义在上的奇函数,则_______5.已知函数是偶函数,则______.6.若函数奇函数,则=_________7.已知函数是奇函数,且,则_________ )(x f R 0>x 142)(2++-=x x x f _____)1(=-f ()f x R 0x >()258f x x x=+-()()05f f +-=2)(35++-=bx ax x x f 17)5(=-f ______)5(=f ()2y xf x =+R ()32f -=()3f =(1)1y f x =++()()02f f +=()f x R 0x >()231=-+f x x x ()3f -=)(x f 0<x 12)(2+-=x x x f =+)0()2(f f 5)(35+++=cx bx ax x f c b a ,,9)5(=f )5-(f ___3)2(-+=x f y R 4)1(=f =)3(f ()y f x =()2,1a a -a =()()21f x x a =++a =bx ax x f +=2)(]21[a a ,-b a +()()322f x x a x x =---+2,3b b b ⎡⎤---⎣⎦()f b =()()322x xx a f x -=⋅-=a ))(12()(a x x xx f -+=a 1)(2++=x b ax x f ()225f =12f ⎛⎫= ⎪⎝⎭8.已知函数的图象关于原点中心对称,则23)1()(x a x x f ++=______=a【练习】 1.已知定义在上的函数是奇函数,则实数的值为______. 2.若为偶函数,则实数3.已知函数是偶函数,定义域为,则. 5.已知定义在上的函数满足,且当时,,,则________6.若为奇函数,则__________7.若函数是定义在上的偶函数,则_________题型五、函数奇偶性与单调性结合——比较大小 【例题剖析】1.已知偶函数在上单调递减,则下列结论正确的是( )A .B .C .D .2.已知是奇函数,且在区间上单调递增,则,,的大小关系是( )A .B .C .D .【练习】1.设函数的定义域为R ,对于任意实数x 总有,当时,单调递增,则,,的大小关系是( )22,a a -⎡⎤⎣⎦()y f x =a )4)(()(-+=x a x x f ______=a b a bx ax x f +++=3)(2]21[a a ,-____)0(=f R ()f x ()()0f x f x -+=0x ≤()22xaf x bx =-+()10f =()3f =()()()211f x x a x a =+++-=a ()21f x x ax =++(,22)b b --2b f ⎛⎫= ⎪⎝⎭()f x (],0∞-()()()152f f f ->>()()()215f f f >->()()()125f f f ->>()()()521f f f >>-()f x [0,)+∞()0.5f -()1f -()0f ()()()0.501f f f -<<-()()()10.50f f f -<-<()()()00.51f f f <-<-()()()100.5f f f -<<-()f x ()()f x f x -=[)0,x ∈+∞()f x ()2f -()πf ()3f -A . B . C .D .()()()π32f f f >->-()()()2π3f f f ->->()()()3π2f f f -<-<()()()2π3f f f -<-<2.若偶函数在上单调递增,则,,的大小关系是( )A .B .C .D .3.若奇函数在上是减函数,则下列关系式中成立的是( )A .B .C .D .题型六、函数奇偶性与单调性结合——解不等式【例1】(1)设函数y =f (x )为上的偶函数,且对任意的均,则满足的实数的范围是____________(2)已知定义在上的偶函数在上为减函数,且,则实数的取值范围是__________(3)已知定义在上的奇函数在区间上是减函数,若,则实数的取值范围为__________.(4)定义在上的奇函数,当时,单调递增,则不等式的解集是__________(5)已知函数是定义在上的偶函数,当时,,则使得成立的的取值范围是__________]2,2[-)(x f ]2,0[)()1(m f m f <-m ()f x (0,)+∞(a f =π2b f ⎛⎫= ⎪⎝⎭23c f ⎛⎫= ⎪⎝⎭b ac <<b c a <<a c b <<c a b <<()y f x =(),0-∞523634f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352463f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R (]()1212,,0x x x x ∞∈-≠()()()21210f x f x x x ⎡⎤--<⎣⎦()()121f x f x +<-x [4,4]-()f x [0,4](1)(2)f x f +>-x R ()f x [0,)x ∈+∞()f x ()()2110f x f ++≥()f x R 0x ≥()221f x x x =-+()()21f f x ->+x (6)已知函数是定义域为的奇函数,当时,.若,则的取值范围为__________()f x R 0x ≥()()2f x x x =+()()3370f m f m ++->m【练习1】(1)已知是定义在上的偶函数,且在区间单调递减,则不等式的解集为__________(2)定义在上的奇函数是减函数,若,实数的取值范围为__________.(3)奇函数在上单调递增,且,则满足的x的取值范围__________(4)已知函数,且,则实数的取值范围是_________(5)已知函数是定义在上的偶函数;且在上单调递增,若对于任意的,不等式恒成立,则的取值范围________________【例2】(1)已知是奇函数,且在内是减函数,又,则的解集______(2)定义在上的奇函数在上单调递减,且,则满足的x 的取值范围是________【练习2】(1)已知函数是偶函数,若在上单调递增,,则的解集为______(2)定义在上的奇函数满足对任意的,有,且,则不等式的解集为____________(3)定义在上的奇函数在上单调递增,且,则不等式的解集为____________()f x R [)0,+∞()()121f x f x ->+)1,1(-)(x f 0)31()1(<-+-a f a f a()f x [)0,+∞()23f =()313f x -≤-≤()()4f x x x =+()()2230f a f a +-<a ()y f x =R (],0-∞x ∈R ()()21f ax f x >+a ()f x (0,)+∞(1)0f =()0x f x ⋅<R ()f x (),0-∞()30f =()()10x f x +≥()f x ()0,∞+()10f =()0f x x<R ()f x ()()1212,0,x x x x ∈+∞≠()()12120f x f x x x ->-()20f =()()10x f x -≤R ()f x ()0,∞+103f ⎛⎫= ⎪⎝⎭()202f x x ≤-题型七、利用函数奇偶性求对称区间上的函数解析式 【例1】(1)已知函数是定义在上的奇函数,当时,.则当时,的解析式为________(2)函数是定义在上的奇函数,已知当时,,求函数的解析式________(3)已知函数是定义在上的偶函数,当时,,则函数在上的表达式为________.(4)已知函数是定义在上的偶函数,当时,,则当x ∈(0,+∞)时,_____________【练习1】(1)已知是定义在上的奇函数,当时,,求时,函数的解析式___________(2)已知函数是定义在上的奇函数,当时,,求的解析式.(3)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x (x ―4),则函数f (x )解析式为__________(4)是定义在R 上的奇函数,当时,,则的表达式为_____题型八、利用奇偶性构造方程组求解析式【例1】是奇函数,是偶函数,且,求,的解析式.【练习1】已知函数为奇函数,函数为偶函数,,则_______()f x R 0x ≥()()1f x x x =+0x <()f x ()f x R 0x >2()23f x x x =--()f x ()f x R 0x ≥()()24f x x x =+()f x R ()f x (),∞∞-+(),0x ∞∈-()2f x x x =-()f x =()y f x =R 0x ≥2()2f x x x =-+0x <()f x ()f x R 0x <()22f x x x=-()f x ()f x 0x ≥()22f x x x =-+()f x ()f x ()g x ()()11f xg x x +=-()f x ()g x ()f x ()g x 2()()1f x g x x x +=-+(2)f =题型九、与函数奇偶性、单调性相关的综合解答题 【例1】已知函数,且其定义域为. (1)判定函数的奇偶性;(2)利用单调性的定义证明:在上单调递减;(3)解不等式.【例2】已知函数是定义在上的奇函数,且. (1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明;(3)解不等式.【例3】已知函数f(x)=x 2―1x. (1)判断函数f (x )的奇偶性,并证明;(2)证明f (x )在区间(0,+∞)上是增函数;(3)求函数f (x )在区间[―4,―2]上的最大值和最小值.【例4】已知函数是上的偶函数,当,,(1)求函数的解析式;(2)若,求实数的取值范围.2()1x f x x =-(1,1)-()f x ()f x (0,1)()2(1)10f m f m -+-<()21ax b f x x -=+[]1,1-()11f =-()f x ()f x []1,1-()()210f t f t +->()f x R 0x ≤2()43f x x x =-+-()f x (21)(1)f m f m -<+m【练习1】已知函数f (x )=ax +b 1+x 2是定义在(―1,1)上的奇函数,且f (12)=25. (1)求函数f (x )的解析式;(2)用定义法证明函数f (x )的单调性;(3)若f (m )+f (2m ―1)>0,求实数m 的取值范围.【练习2】已知函数是定义在上的奇函数,且. (1)求的值;(2)判断的单调性,并用定义法证明你的结论;(3)求使成立的实数a 的取值范围.()21mx n f x x +=+[]1,1-()11f =,m n ()f x ()2(1)10f a f a -+-<。
目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。
高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。
构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。
不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可以分为有限集和无限集。
有限集包含有限个元素,无限集包含无限个元素。
知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。
列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。
描述法是用集合所含元素的共同属性来表示集合的方法。
知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。
如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。
空集是任何集合的子集,任何集合都是其本身的子集。
如果A是B的子集,B是C的子集,则A是C的子集。
如果A是B的真子集,B是C的真子集,则A是C的真子集。
集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。
知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。
并集是指两个集合中所有元素构成的集合,记作A∪B。
1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。
2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。
高中数学必修一常考题型总结# 一、集合的基本概念与运算。
常考题型1:集合元素的性质。
题目:已知集合A = {x, xy, x y},B = {0, |x|, y},且A = B,求x,y的值。
解析:因为0∈ B,且A = B,所以0∈ A。
若x = 0,则xy = 0,不满足集合中元素的互异性,舍去。
若xy = 0,因为x≠0,所以y = 0,此时|x| = x,集合B不满足元素的互异性,舍去。
若x y = 0,即x = y,则A={x,x^2,0},B={0,|x|,x},所以x^2=|x|,解得x = 1或x = -1。
当x = 1时,不满足集合中元素的互异性,舍去。
当x = -1时,y = -1,此时A = {-1, 1, 0},B = {0, 1, -1},满足条件。
综上,x = -1,y = -1。
常考题型2:集合间的关系。
题目:已知集合A={xmid -2≤slant x≤slant 5},B={xmid m + 1≤slant x≤slant 2m 1},若B⊆ A,求实数m的取值范围。
解析:当B = varnothing时,满足B⊆ A,此时m + 1>2m 1,解得m<2。
当B≠varnothing时,要使B⊆ A,则有m + 1≤slant 2m 1 m + 1≥slant 2 2m 1≤slant 5,解m + 1≤slant 2m 1得m≥slant 2;解m + 1≥slant 2得m≥slant 3;解2m 1≤slant 5得m≤slant 3;综上,2≤slant m≤slant 3。
综合两种情况,实数m的取值范围是m≤slant 3。
常考题型3:集合的交、并、补运算。
题目:设全集U = R,集合A={xmid x^2-3x 4>0},B={xmid 2^x<8},求(∁_UA)∩ B。
解析:先求集合A:解不等式x^2-3x 4>0,即(x 4)(x + 1)>0,解得x>4或x<-1,所以A={xmid x>4或x<-1}。
高中必修一数学划重点电子版高中必修一数学划重点:I. 数列1、定义:数列是由一组有限个数组成并且遵守某种规律的有序数列。
2、公差:等差数列是一种极其重要的类型,在此类序列中,凡是相邻两项的差均相等,即为公差。
3、等比数列:又称对数数列,是一种特殊的数列,它成立的充分必要条件就是所有项均是正数,且数列中任两项相邻的比之恒定不变。
II. 数分析1、分数的加减运算:分子和分母分别进行相加或相减的运算,结果的分母均为相加或相减的操作数的分母之积。
2、水仙花数:也叫艳叶子数、阿姆斯特朗数,指一个 3 位数等于其各位数字的立方和,即一个3位数满足 a=x^3+y^3+z^3。
3、一次函数:指函数形式 y=ax+b 的一元一次函数,其中 a,b 均为常数,x 为自变量,y 为因变量。
III. 图形1、定义:图形是构成地理空间现象的基本图象,以实线、虚线等来表示地表微细的土地形状及地理空间现象的空间变化规律的符号。
2、线段:它是由两点确定一条直线的有限长度,所以把这条直线用一对坐标表示就是一个线段。
它比一个直线简单,它也是两点间最短的距离。
3、圆:一般情况下,圆由一个圆心和圆弧构成,圆是最完美的形状,它的弧长不断变,没有明确的起点和终点,更多的是延续的。
IV. 几何1、定义:几何学,又称解析几何学,是数学的一个分支,是一种以空间几何图形为研究对象的运算学科。
2、三角形:它是由三条端点相连构成的一种图形,有直角三角形、锐角三角形、三角形、等腰三角形等,三角形的概念有很多。
3、几何图形的旋转:几何图形的旋转是将几何图形以原点为中心,在二维坐标系中进行一定角度的旋转,可以使得一个有色形状以不同的角度进行旋转、变换、生成。
V. 数论1、平方数:又称完全平方数,指一个正整数的平方是另一个正整数,即满足 n^2=m (m>0, m为整数)的正整数。
2、立方数:又称完全立方数,指一个数是另一个数的立方,即满足a^3=b (b>0, b为整数)的数。
(每日一练)人教版高中数学必修一函数及其性质题型总结及解题方法单选题1、函数y =sin2x ln |2x |的图象大致是( ) A .B .C .D .答案:A解析: 先求出函数定义域,由函数奇偶性的概念,得到y =sin2x ln |2x |是奇函数,排除CD 选项,再根据0<x <12时,函数的正负,即可得出结果.由y =sin2x ln |2x |得|2x |≠1,即x ≠±12,所以函数y =sin2x ln |2x |的定义域为(−∞,−12)∪(−12,12)∪(12,+∞),关于原点对称,又sin (−2x )ln |−2x |=−sin2x ln |2x |,所以函数y =sin2x ln |2x |是奇函数,图像关于原点对称,排除CD ,又当0<x <12时,0<2x <1,所以sin2x >0,ln2x <0,因此y =sin2x ln |2x |<0,图像应在x 轴下方,故B 错,A正确.故选:A小提示:本题主要考查函数图像的识别,熟记函数的奇偶性,以及对数函数的性质即可,属于常考题型.2、已知函数f(2x)的定义域是[0,2],则函数y =f(x −1)+f(x +1)的定义域是( )A .{1}B .[1,2]C .[1,3]D .[2,3]答案:C解析:由复合函数的定义域可得函数f(x)的定义域,再解不等式组即可得解.因为函数f(2x)的定义域是[0,2],所以函数f(x)的定义域为[0,4],若要使y =f(x −1)+f(x +1)有意义,则{0≤x −1≤40≤x +1≤4,解得x ∈[1,3]. 所以函数y =f(x −1)+f(x +1)的定义域是[1,3].故选:C.3、已知f (x )是一次函数,2f (2)−3f (1)=5,2f (0)−f (−1)=1,则f (x )=( )A .3x +2B .3x −2C .2x +3D .2x −3答案:B解析:设函数f (x )=kx +b(k ≠0),根据题意列出方程组,求得k,b 的值,即可求解.由题意,设函数f (x )=kx +b(k ≠0),因为2f (2)−3f (1)=5,2f (0)−f (−1)=1,可得{k −b =5k +b =1,解得k =3,b =−2, 所以f (x )=3x −2.故选:B. 填空题4、若f(x)={(7−a)x−3,x≤7x2−(a+9)x+15a,x>7是R上的增函数,则实数a的取值范围是__________.答案:[4,5]解析:根据分段函数的单调性,得到不等式组,解得即可;因为f(x)={(7−a)x−3,x≤7x2−(a+9)x+15a,x>7是定义在R上的增函数,所以{7−a>0 a+92≤77(7−a)−3≤49−7(a+9)+15a ,即{a<7a≤5a≥4,解得4≤a≤5,所以答案是:[4,5]5、函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=a x(a>1).若对任意的x∈[0,2t+1],均有f(x+t)≥[f(x)]3,则实数t的取值范围是________.答案:[−12,−49].解析:根据函数f(x)为偶函数,且在[0,+∞)单调递增,转化为|x+t|≥|3x|对任意x∈[0,2t+1]恒成立,进而可得结果.∵f(x)是定义在R上的偶函数,且当x≥0时,f(x)=a x(a>1),∴f(x)=a|x| (a>1),则[f(x)]3=(a|x|)3=a|3x|=f(3x),则f(x+t)≥[f(x)]3等价于f(x+t)≥f(3x),当x≥0时f(x)为增函数,则|x+t|≥|3x|,即8x2−2tx−t2≤0对任意x∈[0,2t+1]恒成立,设g(x)=8x2−2tx−t2,则{g(0)≤0g(2t+1)≤0⇔{−t2≤027t2+30t+8≤0,解得−23≤t≤−49,又2t+1≥0,所以−12≤t≤−49.所以答案是:[−12,−49].小提示:关键点点睛:本题的关键点是:依题意将问题转化为|x+t|≥|3x|对任意x∈[0,2t+1]恒成立.。
高中数学必修一重点题型和分析高中数学必修一,其重点题型有:
一、函数的定义与特点
1. 描述函数的定义及基本性质;
2. 对函数特点的总结分析,例如:一元函数的奇偶性、连续性等;
3. 求函数的递推公式及其解析表示。
二、一元函数的图像性质
1. 对一元函数曲线的性质进行图上表示;
2. 分析函数曲线上的关键点以及图像变化;
3. 分析函数极限性质及图样特征。
三、一元函数的分析
1. 求函数的单调性,增加减少和极值;
2. 分析函数的奇偶性、循环性、封闭性及一阶和二阶导数的性质;
3. 对函数的凹凸性和拐点进行分析;
4. 解决利用函数表达式求函数极限等问题。
四、实数的性质
1. 熟练体会和掌握实数的性质;
2. 描述实数的层次关系,包括闭包性、对称性及自反性;
3. 求解实数的基本运算,例如关系运算、交集运算等。
五、代数式和方程
1. 熟悉代数式的概念和表示,以及它与模型的关系;
2. 了解方程的定义和性质,以及解出方程的方法;
3. 掌握解一元方程及一般多项式方程的定理;
4. 理解简单应用函数方程的概念及性质。