生态环境状况遥感动态监测
- 格式:docx
- 大小:13.33 KB
- 文档页数:7
生态环境变化的遥感监测技术在当今时代,随着人类活动的不断扩展和深化,生态环境面临着前所未有的挑战。
气候变化、土地利用变化、生物多样性减少等问题日益凸显,对人类的生存和发展构成了严重威胁。
为了更好地了解和保护我们的生态环境,遥感监测技术应运而生,并在生态环境变化的监测和研究中发挥着越来越重要的作用。
遥感技术,简单来说,就是一种不直接接触目标物体,通过传感器接收来自目标物体的电磁波信息,并对这些信息进行处理和分析,从而获取目标物体的特征和状态的技术。
遥感技术具有大面积同步观测、时效性强、数据综合性和可比性好等优点,能够为生态环境变化的监测提供丰富而准确的信息。
在生态环境变化的监测中,遥感技术可以用于多个方面。
例如,在土地利用和土地覆盖变化的监测中,遥感技术可以通过获取不同时期的遥感影像,对土地利用类型的变化进行监测和分析。
通过对影像的解译和分类,可以了解城市扩张、森林砍伐、农田开垦等土地利用变化的情况,为土地资源的合理规划和管理提供依据。
在植被变化的监测方面,遥感技术也具有独特的优势。
植被的生长状况、覆盖度、生物量等信息都可以通过遥感影像进行提取。
例如,通过植被指数(如归一化植被指数 NDVI)的计算,可以反映植被的生长活力和覆盖程度。
多时相的遥感影像还可以用于监测植被的季节变化、年际变化以及受到自然灾害和人类活动影响的情况,为生态系统的健康评估和生态保护措施的制定提供重要参考。
此外,遥感技术在水体监测方面也发挥着重要作用。
水体的水质、水位、面积等参数都可以通过遥感手段进行监测。
例如,通过对遥感影像中水体光谱特征的分析,可以反演水体的叶绿素浓度、悬浮物含量、透明度等水质参数,从而了解水体的污染状况。
同时,利用遥感技术还可以监测湖泊、河流、海洋等水体的水位变化和水域面积的变化,为水资源的管理和水生态的保护提供支持。
在大气环境监测中,遥感技术同样不可或缺。
通过遥感手段可以获取大气中的气溶胶、臭氧、二氧化硫、氮氧化物等污染物的分布和浓度信息。
遥感技术在生态环境监测与管理中的应用遥感技术是利用卫星、飞机等无人飞行器对地球表面进行观测并获取信息的一种技术手段。
通过遥感技术,可以获得大量的地理空间数据,这些数据对生态环境监测与管理具有重要意义。
以下将从遥感在地表覆盖变化、生态系统动态监测、环境影响评估以及资源调查等方面介绍遥感技术在生态环境监测与管理中的应用。
遥感技术能够监测和分析地表覆盖的变化情况。
地表覆盖是指地球表面不同形态的地物类型,如森林、湿地和城市等。
遥感技术可以利用卫星图像和航空影像获取不同时期的地表图像数据,并通过图像处理和分类算法将不同的地表覆盖类型进行分类和分析。
这种监测和分析可以帮助了解和评估土地利用变化对生态系统的影响,指导合理的生态保护和土地规划。
遥感技术可以实现对生态系统的动态监测。
生态系统是指一定区域内的生物群落和它们与环境的相互作用。
遥感技术通过获取地表温度、植被指数、地表湿度等信息,可以监测生态系统的生物量、物种组成、植被生长状态等变化情况。
这些监测数据可以提供生态系统的动态变化趋势,有助于评估生态系统的健康状况和生物多样性水平,为生态环境保护和管理提供科学依据。
遥感技术可以应用于环境影响评估。
环境影响评估是对开发项目等人类活动可能对环境造成的影响进行预测、评估和管理的过程。
遥感技术可以通过获取大规模、高分辨率的地表图像数据,实现对环境敏感区域的监测和评估。
如利用遥感技术可以对工业污染、水体污染、土地沙漠化等问题进行监测和分析,为环境管理部门提供重要的数据支持,指导环境保护和治理。
遥感技术在生态环境的资源调查中有着重要应用。
资源调查包括对水资源、森林资源、土地资源等进行调查和管理。
遥感技术可以通过获取大范围、连续的地表数据,实现对各类资源的快速、准确的调查和监测。
利用遥感技术可以监测森林覆盖率和类型分布,评估森林资源的可持续利用和保护状况;利用遥感技术可以监测湖泊、河流和地下水的时空变化,为水资源管理提供数据支持。
基于遥感的生态环境变化监测研究在当今时代,随着人类活动的不断加剧和全球气候变化的影响,生态环境面临着前所未有的挑战。
为了更好地了解生态环境的变化趋势,采取有效的保护和修复措施,基于遥感的生态环境变化监测技术应运而生。
遥感技术作为一种非接触式、大面积、快速获取地表信息的手段,为生态环境监测提供了强大的支持。
遥感技术的原理其实并不复杂,它就像是我们从高空用一双特殊的“眼睛”来观察地球。
通过传感器接收来自地表物体反射或发射的电磁波信号,然后将这些信号转化为图像或数据,从而让我们能够了解到地表的各种信息,比如土地利用类型、植被覆盖度、水体状况等等。
在生态环境变化监测中,遥感技术有着广泛的应用。
首先,它可以用于监测土地利用和土地覆盖的变化。
比如说,我们可以通过不同时期的遥感影像,清晰地看到城市的扩张是如何占用农田和绿地的,或者森林是如何被砍伐变成了荒地。
这对于研究城市化进程对生态环境的影响以及制定合理的土地利用规划具有重要意义。
其次,遥感技术在植被监测方面也发挥着关键作用。
植被是生态系统的重要组成部分,它的生长状况和分布情况直接反映了生态环境的质量。
通过遥感数据,我们能够计算出植被覆盖度、植被指数等参数,从而了解植被的健康状况和生长趋势。
而且,还可以监测植被的季节性变化,以及在遭受自然灾害(如火灾、干旱等)后的恢复情况。
对于水体的监测,遥感同样表现出色。
它可以帮助我们监测水体的面积、水质、水深等信息。
例如,通过对遥感影像的分析,可以判断出湖泊、河流的水位变化,发现水体的污染区域,为水资源的管理和保护提供科学依据。
另外,遥感技术还能够用于监测大气环境。
虽然直接监测大气成分相对较难,但可以通过间接的方法,如监测气溶胶的分布、云的类型和特征等,来了解大气的污染状况和气候变化的影响。
然而,基于遥感的生态环境变化监测也并非一帆风顺,存在着一些挑战和限制。
首先,遥感数据的质量和分辨率会对监测结果产生影响。
有时候,较低分辨率的影像可能无法准确识别出细小的地物变化,或者受到云层、阴影等因素的干扰,导致数据不准确。
关于遥感技术在生态环境监测中的应用研究随着人类社会的发展和城市化进程的加速,生态环境问题日益突出,对于保护和维护地球生态环境提出了更加迫切的需求。
在这样的背景下,遥感技术的应用在生态环境监测中具有重要的意义。
本文将探讨关于遥感技术在生态环境监测中的应用研究。
一、遥感技术在生态环境监测中的意义1.1 生态环境监测的重要性生态环境是指地球上自然环境和人类生态系统的总和,包括大气环境、水环境、土壤环境和生物环境。
当前,由于人类活动的加剧,生态环境面临着严重的破坏和污染。
对生态环境进行监测和评估具有重要的意义。
通过监测能够及时了解生态环境的变化状况,为生态环境的保护和修复提供科学依据。
遥感技术是通过卫星、飞机等载体获取地面和大气等信息的一种技术手段。
它能够实现对地表、植被、土壤、水体等环境要素进行快速、高效、大范围的监测,并能够获取环境信息的时空分布特征。
遥感技术在生态环境监测中具有重要的应用价值。
2.1 土地利用/覆盖变化监测土地利用/覆盖变化是生态环境变化的重要指标之一。
遥感技术可以获取土地利用/覆盖的信息,并通过遥感图像的比较分析,可以得到不同时间段的土地利用/覆盖变化情况。
通过土地利用/覆盖变化监测,可以及时掌握土地利用的动态变化,为生态环境保护和土地管理提供科学依据。
2.2 植被覆盖监测植被是生态系统中最为重要的组成部分之一,对于维护生态平衡和保护生态环境具有重要作用。
遥感技术能够获取植被覆盖的信息,包括植被覆盖度、植被类型、植被高度等信息。
利用遥感技术进行植被覆盖监测,可以实现对植被的动态监测和评估,为生态环境保护和生态恢复提供信息支持。
2.3 水体监测水体是生态环境中不可或缺的重要组成部分,对于保护水体环境具有重要的意义。
遥感技术可以获取水体的时空分布信息,包括水体的面积、水质、水流方向等信息。
通过遥感技术进行水体监测,可以实现对水体环境的全面监测和评估,为水体环境保护和水资源管理提供科学依据。
利用遥感技术和地理信息系统进行生态环境监测和保护随着人们对自然环境的关注度不断提高,利用遥感技术和地理信息系统(GIS)进行生态环境监测和保护成为了一种重要的手段。
遥感技术通过获取和分析地球表面的信息,可以提供大范围、高时空分辨率的数据,为生态环境监测提供了重要的数据支撑。
而地理信息系统则能够对这些数据进行整合、分析和可视化,为决策提供科学依据。
本文将从遥感技术和地理信息系统的基本原理、应用以及挑战等方面探讨利用它们进行生态环境监测和保护的重要性。
一、遥感技术在生态环境监测中的应用遥感技术采用卫星、航空器等载体获取地球表面的电磁辐射信息,并通过图像处理和解译,提取出有关地物类型、分布、变化等信息。
在生态环境监测中,遥感技术广泛应用于植被覆盖度、土地利用变化、水资源监测等方面。
首先,在植被覆盖度监测中,遥感技术能够获取大范围的植被信息,并通过NDVI指数等方法,评估植被的状况及其动态变化。
植被是生态系统的重要组成部分,植被覆盖度的监测可以反映生态系统的健康状况,为生态环境保护提供科学依据。
其次,在土地利用变化监测中,遥感技术可以获取土地利用类型和变化的信息。
通过对不同时间的遥感影像进行比较和分析,可以揭示土地利用变化的趋势和原因,为土地资源的合理利用和生态环境的保护提供参考。
另外,遥感技术在水资源监测中也发挥着重要作用。
利用遥感技术可以获取水体的空间分布、变化和水质状况等信息。
通过对遥感数据的处理和分析,可以实现对水体的定量化监测,并对水资源的管理和保护提供支持。
二、地理信息系统在生态环境保护中的应用地理信息系统是一种将地理数据与空间关系进行综合分析和处理的技术体系。
在生态环境保护中,地理信息系统广泛应用于生态环境评估、生态风险评估、生态规划等方面。
首先,地理信息系统可以对生态环境进行评估,通过整合遥感数据、地理数据以及相关环境因子,对生态环境的状况进行评估和分析,为生态保护和修复提供科学指导。
其次,地理信息系统可以进行生态风险评估。
利用遥感监测城市绿地动态变化在现代城市的发展进程中,城市绿地扮演着至关重要的角色。
它不仅为居民提供了休闲娱乐的空间,还在改善城市生态环境、调节气候、减少噪音等方面发挥着不可或缺的作用。
然而,随着城市的不断扩张和人口的增长,城市绿地的状况也在不断发生变化。
为了更好地规划和管理城市绿地,及时准确地掌握其动态变化信息显得尤为重要。
而遥感技术的出现,为我们提供了一种高效、准确且全面的监测手段。
遥感,简单来说,就是不直接接触目标物,通过传感器接收来自目标物的电磁波信息,并对其进行处理和分析,以获取有关目标物的特征和状态的技术。
在监测城市绿地动态变化方面,遥感技术具有许多独特的优势。
首先,遥感技术能够实现大面积同步观测。
相比传统的实地调查方法,遥感可以在短时间内获取整个城市甚至更大范围的绿地信息,大大提高了工作效率。
而且,遥感数据具有周期性和连续性,通过对不同时期的遥感影像进行对比分析,我们能够清晰地看到城市绿地的变化趋势。
其次,遥感技术能够提供多光谱信息。
不同的地物在不同的光谱波段上会有不同的反射特性,城市绿地也不例外。
通过对这些光谱信息的分析,我们可以准确地识别出绿地的类型、分布以及生长状况等。
例如,植被在近红外波段的反射率较高,而在可见光波段的反射率较低,利用这一特性,我们可以很容易地将植被与其他地物区分开来。
再者,遥感技术具有较高的空间分辨率。
随着遥感技术的不断发展,如今的遥感影像可以清晰地分辨出城市中的小块绿地、行道树等细节,为我们进行精细化的绿地监测提供了可能。
那么,如何利用遥感技术来监测城市绿地的动态变化呢?一般来说,主要包括以下几个步骤:数据获取是第一步。
我们需要选择合适的遥感数据源,常见的有卫星遥感影像(如 Landsat 系列、Sentinel 系列等)和航空遥感影像。
卫星遥感影像覆盖范围广、周期长,但空间分辨率相对较低;航空遥感影像空间分辨率高,但成本较高且覆盖范围有限。
在实际应用中,需要根据具体的监测需求和条件来选择合适的数据源。
生态系统动态监测的遥感技术在当今的科技时代,遥感技术如同一位神奇的“千里眼”,为我们洞察生态系统的动态变化提供了强大的工具。
生态系统是地球上生命存在和发展的基础,其状态和变化对于人类的生存和可持续发展具有至关重要的意义。
而遥感技术的出现,让我们能够更全面、更准确、更及时地了解生态系统的种种情况。
那么,什么是遥感技术呢?简单来说,遥感技术就是一种不直接接触目标物体,通过传感器接收来自目标物体的电磁波信息,并对这些信息进行处理和分析,从而获取有关目标物体的特征和状况的技术。
在生态系统动态监测中,遥感技术主要依靠卫星、飞机等平台搭载的各种传感器,来收集大量的生态数据。
遥感技术在生态系统动态监测中的应用范围十分广泛。
它可以用于监测森林生态系统。
通过遥感影像,我们能够清晰地看到森林的覆盖范围、树木的生长状况以及森林遭受病虫害、火灾等灾害的情况。
比如,通过对不同时期遥感影像的对比分析,可以发现森林面积的增减变化,从而为森林资源的管理和保护提供重要的依据。
在监测湿地生态系统方面,遥感技术也发挥着重要作用。
湿地是地球上重要的生态系统之一,具有蓄水、调节气候、净化水质等多种生态功能。
遥感技术可以帮助我们了解湿地的分布范围、水位变化、植被类型和覆盖度等信息。
这对于保护湿地生态系统的完整性,维护其生态功能具有重要意义。
草原生态系统的监测同样离不开遥感技术。
它能够帮助我们掌握草原的植被覆盖度、草产量、草原退化和沙化的程度等情况。
这对于合理规划草原的利用,防止草原生态恶化,保障畜牧业的可持续发展具有重要的指导作用。
除了上述生态系统,遥感技术还在农田生态系统、城市生态系统等的监测中有着广泛的应用。
遥感技术之所以能够在生态系统动态监测中大展身手,主要得益于它具有许多独特的优势。
首先,遥感技术具有大面积同步观测的能力。
一次遥感观测就可以覆盖很大的区域,这是传统地面观测方法无法比拟的。
它能够在短时间内获取大量的生态数据,为我们快速了解生态系统的整体状况提供了可能。
生态遥感技术在环境监测中的应用随着城市化进程的推进和科技的快速发展,环境污染问题越来越严重。
因此,环境监测成为了现代城市管理的重要环节。
在环境监测过程中,生态遥感技术的应用逐渐得到了越来越多的重视。
一、生态遥感技术的概念生态遥感技术是利用遥感卫星、无人机等高科技手段实现对生态环境的动态监测、分析、评价和预测的一种技术手段。
它主要通过获取地球表面上的各种信息,如影像、地形、温度等,进行信息处理,并最终提供产品和服务。
二、生态遥感技术在环境监测中的应用1.减少了人力成本在传统的环境监测中,往往需要大量的人力和物力成本。
而生态遥感技术的应用可以大大减少这些成本,因为它能够高效地实现对大面积生态环境的监测。
这对于国家和地方政府来说非常有益,因为它们可以节约管理成本,同时也能够更好地保护环境。
2.提高了监测的准确性生态遥感技术能够高精度地获取地球表面的各种信息,降低了由于误差导致的监测数据不准确的问题。
这对于环境保护来说非常重要,因为准确的数据能够帮助政府更好地了解环境状况,然后采取切实有效的措施。
3.更好地实现了区域全面监测生态遥感技术不受时间、空间限制,因此它可以实现对特定区域环境的全面监测,包括空气、水、土壤和生态系统。
而传统的环境监测大多只能够针对特定的环节进行监测,难以全面掌握对环境问题的全貌。
4.加强了数据共享和合作生态遥感技术的应用能够实现对监测数据的共享,因此政府、企业、学术机构等可以更好地互相了解监测结果,共同探讨解决环境问题的策略。
这有助于推动多元化合作,加强环境监测的全局性和协调性。
三、生态遥感技术的应用案例1. 空气污染监测近年来,随着城市化进程的加快和尾气排放量的不断增加,空气质量成为了一个热门的话题。
利用卫星、无人机等遥感设备,我们可以实时地对空气进行监测,了解空气质量变化情况。
同时,我们可以将这些监测数据分析、处理,推动政府更好地制定措施,改善城市的空气质量。
2. 水质污染监测在工业化进程中,水质污染问题也逐渐引起了人们的关注。
生态系统动态监测的遥感方法生态系统是地球上生命存在和发展的基础,对其进行动态监测对于了解地球的生态状况、预测环境变化的影响以及制定有效的保护策略至关重要。
遥感技术作为一种强大的工具,为生态系统的动态监测提供了高效、全面和准确的手段。
遥感技术的原理其实并不复杂,它就像是我们从高空用特殊的“眼睛”去观察地球表面。
这些“眼睛”可以感知不同波长的电磁波,包括可见光、红外线和微波等。
通过接收和分析这些电磁波的信息,我们能够获取关于地表特征、植被状况、土壤湿度、水体分布等大量有价值的数据。
在生态系统动态监测中,常用的遥感数据类型有很多。
比如光学遥感数据,它能够清晰地反映出地表物体的颜色和形状,帮助我们区分不同的植被类型和土地利用方式。
而雷达遥感数据则具有穿透云层和在夜间工作的能力,不受天气和光照条件的限制,能够提供连续的监测信息。
热红外遥感数据则可以测量地表的温度,对于研究生态系统的能量平衡和水分循环非常有用。
那么,具体是如何运用遥感技术来监测生态系统的动态变化呢?首先是植被监测。
植被是生态系统的重要组成部分,通过遥感技术可以获取植被的覆盖度、生长状况、生物量等信息。
例如,利用植被指数(如归一化植被指数 NDVI),可以直观地反映出植被的生长状态和季节变化。
当植被生长茂盛时,NDVI 值较高;而在植被枯萎或受到破坏时,NDVI 值会降低。
除了植被,土地利用和土地覆盖变化也是生态系统监测的重要方面。
通过对比不同时期的遥感影像,可以清晰地看到土地利用方式的转变,比如从农田变为城市建设用地,或者从森林变为草地。
这对于评估人类活动对生态系统的影响以及制定合理的土地规划政策具有重要意义。
在监测水体方面,遥感技术也大显身手。
它可以测量水体的面积、深度、水质等参数。
通过分析水体反射的电磁波特征,可以判断水体的浑浊度、叶绿素含量等,从而了解水体的富营养化程度和生态健康状况。
另外,生态系统中的土壤湿度也是一个关键因素。
遥感技术能够通过微波遥感或者热红外遥感的方法来估算土壤湿度,这对于农业生产、水资源管理以及干旱监测都有着重要的作用。
利用遥感技术检测湿地动态变化及监测方法探析湿地作为一种独特的生态系统,对维持地球生态平衡具有重要作用。
然而,由于人类活动的不断干扰和环境变化的影响,湿地的动态变化已成为一个全球性的关注焦点。
为了科学有效地监测湿地动态变化,遥感技术被广泛应用于湿地研究中。
本文将对利用遥感技术检测湿地动态变化及监测方法进行探析。
首先,遥感技术是一种通过获取和解译地面上的多光谱或高光谱图像来获取地物信息的方法。
利用遥感技术可以获取到湿地的空间分布、植被覆盖度、湿地类型等重要信息,从而准确检测湿地的动态变化。
在湿地动态变化监测中,常用的遥感技术包括光学遥感和微波遥感。
光学遥感所获取的图像可以用于提取湿地植被信息、水体分布和湿地边界等。
通过监测湿地植被的NDVI指数变化,可以判断湿地的植被覆盖度和植被类型的变化趋势。
此外,通过遥感图像中水体的反射信息,可以检测湿地水体面积和水位变化。
微波遥感则可以用于反演湿地地表高度和水体含水量等参数,进一步监测湿地的动态变化情况。
另外,利用遥感技术监测湿地动态变化还可以结合地理信息系统(GIS)进行空间分析和多期遥感影像的比较。
通过对多期遥感影像的对比,可以确定湿地的变化趋势,评估湿地受到的压力和干扰程度。
同时,GIS可以对遥感数据进行空间分析和统计,生成湿地动态变化的空间分布图和统计报告。
此外,利用遥感技术监测湿地动态变化还需要考虑数据准确性和时间分辨率。
遥感数据的准确性对于监测湿地动态变化非常重要。
因此,遥感图像的获取需要选择高质量的数据源,并且要进行精确的校正和配准。
同时,湿地动态变化的监测通常需要多期遥感影像的对比,因此需要选择具有一定时间分辨率的遥感数据源。
总结起来,利用遥感技术检测湿地动态变化可以提供湿地空间分布、植被覆盖度、水体分布等重要信息。
通过光学遥感和微波遥感相结合的方法,可以实现对湿地动态变化的全面监测。
同时,结合地理信息系统的空间分析和多期遥感影像的比较,可以进一步量化湿地动态变化的程度和趋势。
遥感技术运用于生态环境监测的分析摘要:在环境污染控制与治理中,环境监测的重要性是不言而喻的。
在生态环境的监测与管理,遥感技术在生态环境监测中能够发挥非常重要的作用。
遥感技术以卫星、航空遥感技术为基础,能够对环境进行动态化地监测,对环境质量进行监督,从而避免生态环境污染加重。
本文首先针对遥感技术进行了概述,并分析了遥感技术在生态环境监测中应用的优越性,最后探讨遥感技术在生态环境监测中的具体应用及其应用流程。
关键词:遥感技术;生态环境监测;应用引言近年来,人们生态环保意识不断加强,开始积极研究环境监测技术,用以解决森林和草地生态功能退化、生态系统失调、土地荒漠化、生物多样性骤减、水土流失严重等问题。
但是,我国幅员辽阔,地形多样,地面环境监测和保护网点分布不均衡、不集中,传统环境监测站和检测技术作用有限,无法及时准确就环境污染和质量作出预报,难以满足人们日益高涨的环境监测需求。
由此,遥感技术逐渐被应用在现代环境监测中,以便准确监测环境问题,协助做好环境保护工作。
1遥感技术基本概述生态环境监测和管理工作涉及面比较广,是一个动态、长期、大规模的工作,其管理工作有很多种,比如地方生态环境保护部门自查,或是上级生态环境主管部门检查以及社会监督。
环境管理部门如果继续采用常规的实地考察方法,不仅工作量大且时间短,很难获得相关资料,还要花费巨资进行升级,尤其在边远地区,由于地域和装备等原因,很难进行有效的监督和管理。
随着经济的快速发展,进一步促进了科学技术的飞速发展,其中遥感技术在环境生态建设中的应用范围在逐渐扩大。
遥感技术的工作原理是借助改变目标的反射和辐射波探测与识别待测物体,准确获取一些地球表面地理空间数据信息的一种技术。
遥感技术是基于现代物理学、空间学、地理科学以及计算机等多种技术共同发展的一项技术,实用性与探测性能较高,在人造地球卫星成功发射后,为遥感技术的发展与应用奠定了重要基础。
在当前现代化遥感技术中已经涉及到对物体数据信息的获取、传输保存及处理等多个环节,通过利用遥感技术可以准确对图像进行定量和定性分析,准确掌握待测物体的实际情况,具有动态、宏观等综合性特点,可以帮助工作人员快速准确了解地理环境信息,因此在生态环境监测中发挥出显著的作用。
基于遥感的森林覆盖变化动态监测森林作为地球上重要的生态系统之一,对于维持生态平衡、调节气候、提供生态服务以及保障生物多样性等方面都具有不可替代的作用。
而森林覆盖的变化不仅反映了自然生态系统的演变,也受到人类活动的显著影响。
因此,对森林覆盖变化进行动态监测具有极其重要的意义。
遥感技术的出现,为我们实现这一目标提供了强大而有效的手段。
遥感,简单来说,就是不直接接触目标物体,通过传感器获取其信息的技术。
在森林覆盖变化监测中,常用的遥感数据包括卫星影像、航空摄影等。
这些数据具有大面积同步观测、周期性获取以及多波段信息等优势,使得我们能够从宏观尺度上对森林的分布和变化进行监测。
通过遥感技术监测森林覆盖变化,首先需要获取高质量的遥感影像。
这些影像可以来自不同的卫星,如 Landsat 系列、Sentinel 系列等。
不同的卫星具有不同的空间分辨率、光谱分辨率和时间分辨率,根据监测的需求和目标选择合适的遥感数据源至关重要。
例如,如果需要监测较大范围的森林变化,可能会选择空间分辨率相对较低但覆盖范围广的卫星影像;而对于小范围的精细监测,则可能会选择空间分辨率较高的影像。
获取到遥感影像后,接下来就是对影像进行预处理。
这包括辐射校正、几何校正、大气校正等步骤。
辐射校正用于消除传感器本身以及大气等因素对影像辐射亮度的影响,使得影像能够真实反映地物的反射特性。
几何校正则是将影像的几何形状纠正到准确的地理坐标上,以便与其他地理数据进行匹配和分析。
大气校正则是消除大气对影像的干扰,提高影像的质量和准确性。
在完成影像预处理后,就可以进行森林覆盖信息的提取。
这通常基于地物的光谱特征、纹理特征、形状特征等。
例如,森林在可见光和近红外波段具有独特的光谱反射特征,可以通过设置阈值或者利用分类算法将森林与其他地物区分开来。
常用的分类算法包括监督分类(如最大似然分类、支持向量机分类等)和非监督分类(如 ISODATA 分类等)。
此外,还可以结合纹理特征和形状特征,进一步提高森林覆盖信息提取的准确性。
生态环境监测手段及数据分析方法随着社会经济的发展和人类活动的日益增加,全球范围内的生态环境问题日益严重,对人类健康和地球的可持续发展产生了巨大的影响。
因此,生态环境监测成为我们保护环境和实现可持续发展的重要手段。
生态环境监测手段可以分为现场监测和遥感监测两大类。
现场监测主要是指在实地采集样品,并通过实验室分析等手段获取数据。
而遥感监测则是利用航空无人机、卫星等遥感技术,获取区域范围内的环境数据。
这两种监测手段有着各自的优势和适用范围。
现场监测是较为常见和传统的生态环境监测手段,通过采集样品并进行实验室分析,可以得到较为准确和详细的数据。
在现场监测中,我们常使用的手段包括水质监测、大气监测、土壤质量监测等。
水质监测主要是通过采集水样进行金属元素、有机物质等检测,以评估水体质量。
大气监测则是通过采集空气样品,分析其中的气体成分、颗粒物等指标,以判断大气污染程度。
而土壤质量监测则是对土壤样品进行分析,包括土壤酸碱度、养分含量等,以了解土壤的健康状况。
遥感监测则是利用遥感技术获取大范围的环境数据,具有覆盖面广、实时性强的优势。
遥感监测可以通过航空无人机、卫星等设备获取图像和数据,对地表植被、土地利用、湿地变化、水质等进行监测和评估。
遥感监测数据的处理和分析方法主要包括图像解译、特征提取、分类与监测等。
通过遥感监测,可以实现对较大范围的生态环境进行动态监测,为环境保护与管理提供科学依据。
除了生态环境监测手段外,数据分析方法在生态环境保护中也发挥着重要作用。
数据分析可以帮助我们更好地理解监测数据,获取隐藏的信息和规律。
在生态环境监测中,常用的数据分析方法包括趋势分析、空间插值、相关性分析等。
趋势分析是通过对监测数据的长期变化进行统计和分析,判断某项环境指标的变化趋势。
通过趋势分析,我们可以了解环境问题的发展方向和严重程度,为环境保护策略的制定提供科学依据。
例如,通过对水质监测数据的趋势分析,可以判断某一水域的水质是否逐渐恶化,并采取相应的保护措施。
基于遥感的生态环境质量监测在当今时代,随着人类活动的不断加剧,生态环境面临着前所未有的压力和挑战。
为了更好地保护和管理生态环境,我们需要一种高效、全面且准确的监测手段。
遥感技术的出现,为生态环境质量监测带来了革命性的变化。
遥感,顾名思义,就是遥远的感知。
它通过传感器接收来自地面物体反射或发射的电磁波信息,从而获取目标物体的特征和状态。
这种技术具有大面积同步观测、时效性强、数据综合性高等优点,能够为我们提供关于生态环境的丰富信息。
在生态环境质量监测中,遥感技术可以用于多个方面。
首先是土地利用和土地覆盖的监测。
通过遥感影像,我们能够清晰地分辨出不同的土地类型,如耕地、林地、草地、建设用地等,还能及时发现土地利用的变化情况,比如森林砍伐、城市扩张等。
这对于合理规划土地资源、保护生态平衡具有重要意义。
其次,遥感技术在植被监测方面发挥着关键作用。
它可以测量植被的覆盖度、生长状况、生物量等指标。
通过对植被指数的计算和分析,我们能够了解植被的健康状况和生态功能。
例如,在干旱地区,遥感可以帮助我们监测植被的受旱程度,为农业生产和水资源管理提供依据。
水资源的监测也是遥感技术的重要应用领域之一。
它可以监测水体的范围、水质、水位变化等。
对于大面积的湖泊、河流和海洋,遥感能够快速获取其整体状况,及时发现水污染、水华等问题。
同时,结合气象数据,还能对水资源的时空分布和变化趋势进行预测。
此外,遥感在大气环境监测中也有出色的表现。
它可以监测大气中的颗粒物浓度、气态污染物分布、气溶胶光学厚度等参数。
在雾霾天气频繁出现的当下,遥感技术能够为空气质量的评估和治理提供有力支持。
然而,要实现基于遥感的生态环境质量监测的有效应用,并不是一件简单的事情。
其中面临着诸多技术和非技术的挑战。
在技术方面,遥感数据的获取和处理存在一定的难度。
不同的遥感传感器具有不同的波段设置、空间分辨率和时间分辨率,如何选择合适的数据源来满足监测需求是一个关键问题。
遥感技术在生态环境监测中的应用研究1. 对生态系统进行全方位监测生态系统的构成非常复杂,包括生物、土壤、水体等多个要素。
传统的生态环境监测方式往往需要耗费大量的人力物力,而且监测结果也难以及时反映生态系统变化。
而遥感技术可以通过航空遥感、卫星遥感等手段,实现对生态系统进行全方位、连续性的监测,不仅可以监测到大面积的地区,还可以实现对微观细节的监测,为生态环境的评估与管理提供了重要的数据支持。
2. 针对性强,结果准确遥感技术可以通过对地表反射、吸收、辐射等特征的探测,对生态环境中的植被覆盖、土壤湿度、水体质量等进行定量分析。
这种方法可以大大提高监测结果的准确性,避免了人为因素对监测结果的影响,为环境保护决策提供了更加可靠的数据支持。
3. 实现大范围动态监测生态环境是一个动态系统,其变化往往是在长时间尺度上进行的。
而遥感技术可以实现对大范围地区的动态监测,从而及时掌握环境变化的情况,为环境风险评估、环境修复规划等提供科学依据。
1. 植被覆盖监测植被覆盖是生态系统的重要组成部分,对环境的稳定和生态平衡起着至关重要的作用。
遥感技术可以通过对多光谱遥感影像的分析,实现对植被覆盖的定量监测,掌握植被分布、覆盖面积、叶面积指数等信息,从而对生态系统的健康状况进行评估。
2. 水体质量监测水质问题是当前生态环境中的一个重要难题,而遥感技术可以通过对水体反射特征的探测,实现对水体的监测。
可以利用多光谱遥感影像对水体中的蓝藻、悬浮物等进行监测,实现对水质的定量评估,为水质改善提供科学依据。
3. 土壤湿度监测土壤湿度是农业生产、生态系统健康等方面的重要指标,遥感技术可以通过对热红外遥感影像的分析,实现对土壤湿度的监测。
利用这种方法,可以及时了解土壤湿度的变化情况,为农业生产的合理安排、生态系统的健康评估提供重要数据支持。
4. 环境变化监测遥感技术还可以通过对多期遥感影像的比对,实现对环境变化的监测。
可以利用遥感技术对城市扩张、森林砍伐、湿地退化等情况进行监测,为环境保护决策提供科学依据。
生态环境监测中的遥感技术在当今时代,生态环境的保护和监测已经成为全球范围内的重要议题。
随着科技的不断进步,遥感技术作为一种强大的工具,正逐渐在生态环境监测领域发挥着不可或缺的作用。
遥感技术,简单来说,就是不直接接触被观测的目标物体,而是通过传感器接收来自目标物体反射或发射的电磁波信息,从而对其进行分析和研究的技术。
这项技术就像是给我们装上了一双能够“透视”地球的眼睛,让我们可以从宏观的角度去了解生态环境的变化。
在生态环境监测中,遥感技术的应用范围非常广泛。
它可以用于监测土地利用和土地覆盖的变化。
通过不同时间段的遥感图像对比,我们能够清晰地看到森林的砍伐、城市的扩张以及农田的增减等情况。
这对于合理规划土地资源、保护生态平衡具有重要的意义。
遥感技术在水资源监测方面也表现出色。
它能够监测河流、湖泊和海洋的水位、水质以及水的流动情况。
例如,通过遥感影像可以观察到水体的颜色变化,从而推断出水质的污染程度。
同时,对于大面积的水域,遥感技术能够快速、全面地获取信息,为水资源的管理和保护提供有力的支持。
在大气环境监测中,遥感技术同样有着重要的地位。
它可以监测大气中的污染物分布、气溶胶浓度以及温室气体的含量等。
借助卫星遥感,我们能够对大范围的区域进行连续监测,及时掌握大气环境的变化趋势,为制定有效的污染防治措施提供依据。
除了上述方面,遥感技术在生物多样性监测中也发挥着独特的作用。
通过高分辨率的遥感图像,可以识别不同类型的植被和栖息地,了解物种的分布和生存状况。
这有助于保护珍稀物种和生态系统的完整性。
遥感技术之所以能够在生态环境监测中取得如此显著的成果,主要得益于其具有一系列的优势。
首先,遥感技术能够实现大面积的同步观测。
相比传统的地面监测方法,它可以在短时间内获取大量的空间信息,从而大大提高了监测的效率和覆盖范围。
其次,遥感技术具有多时相的特点。
这意味着我们可以通过不同时间的遥感数据对比,分析生态环境的动态变化过程。
生态环境评估的遥感方法在当今社会,生态环境的保护和评估日益受到重视。
随着科技的不断进步,遥感技术凭借其独特的优势,成为了生态环境评估的重要手段。
遥感,简单来说,就是不直接接触目标物体,通过传感器获取其相关信息的技术。
在生态环境评估中,它就像一双“千里眼”,能够从宏观的角度,快速、大面积地获取各种生态环境数据。
遥感技术在生态环境评估中的应用非常广泛。
比如说,在土地利用和土地覆盖变化的监测方面,它大显身手。
通过不同时间段的遥感影像对比,我们可以清晰地看到土地的用途是如何改变的,是从森林变成了农田,还是从荒地变成了城市建设用地。
这对于了解生态系统的结构和功能变化至关重要。
在植被监测方面,遥感也发挥着不可替代的作用。
它可以测量植被的覆盖度、生长状况以及生物量等指标。
植被的生长状况往往能反映出当地的生态环境质量。
比如,如果一片区域的植被生长茂盛,颜色鲜艳,通常意味着这里的土壤肥沃、水分充足,生态环境相对较好;反之,如果植被稀疏、枯黄,可能暗示着存在土壤退化、水资源短缺等问题。
水资源的评估也是生态环境评估的重要组成部分。
遥感技术能够监测水体的面积、水位、水质等。
通过特定的光谱波段,我们可以判断水体是否受到污染,以及污染的程度。
例如,某些污染物会使水体在遥感影像中呈现出特殊的颜色和光谱特征,从而为我们的评估提供依据。
此外,遥感还能用于监测大气环境。
它可以获取大气中的颗粒物浓度、气态污染物的分布等信息。
这对于了解大气污染的扩散规律、评估空气质量具有重要意义。
那么,遥感技术是如何实现这些生态环境评估的呢?这就涉及到一系列的原理和方法。
首先,光谱分析是遥感技术的核心之一。
不同的地物在电磁波谱上具有不同的反射和辐射特征。
例如,植被在可见光和近红外波段的反射率有明显的差异,而水体在红外波段的反射率较低。
通过分析这些光谱特征,我们可以识别出不同的地物类型,并对其状态进行评估。
其次,多源数据融合也是常用的方法。
除了光学遥感数据,还有雷达遥感、热红外遥感等多种数据源。
2024年3月灌溉排水学报第43卷第3期Mar. 2024 Journal of Irrigation and Drainage No.3 Vol.43文章编号:1672 - 3317(2024)03 - 0080 - 07黄河流域中原城市群生态环境质量遥感动态监测与分析陈永贵,戴晓琴*,朱玉香(河南测绘职业学院,郑州451464)摘要:【目的】分析1985—2021年黄河流域中原城市群生态环境质量。
【方法】以1985—2021年陆地卫星Landsat-5 TM和Landsat-8 OLI遥感影像作为数据源,基于谷歌地球引擎,利用改进型遥感生态指数(ERSEI)对黄河流域中原城市群生态环境质量进行遥感动态监测与分析。
利用Theil-Sen趋势分析和Mann-Kendall检验分析ERSEI变化趋势的方向和显著性。
【结果】1985—2021年,黄河流域中原城市群ERSEI的平均值介于0.48~0.62,增速为0.024/10 a。
ERSEI在空间上呈四周区域高、中部区域低的分布模式,中原城市群的西部、中部和西南部地区的ERSEI较低,而南部和东北部地区的ERSEI较高。
大部分地区的ERSEI表现出增加趋势,其中显著增加趋势的面积比例为11.48%,仅有5.76%的区域表现出显著下降趋势,33.16%区域的ERSEI相对稳定。
【结论】研究区城镇建设用地不断增加,导致耕地面积持续减少,在中原城市群核心城区,受城市扩张、热岛效应的影响,生态环境质量变差,出现了显著退化趋势。
关键词:遥感生态指数;谷歌地球引擎;时空变化;中原城市群中图分类号:P962 文献标志码:A doi:10.13522/ki.ggps.2023398 OSID:陈永贵, 戴晓琴, 朱玉香. 黄河流域中原城市群生态环境质量遥感动态监测与分析[J]. 灌溉排水学报, 2024, 43(3): 80-86.CHEN Yonggui, DAI Xiaoqin, ZHU Yuxiang. Using remote sensing to analyse variation in ecological environment quality in urban region clustered by metropolitan cities in middle reach of the Yellow River[J]. Journal of Irrigation and Drainage, 2024, 43(3): 80-86.0 引言【研究意义】人类活动对生态环境质量和自然景观产生了严重的干扰[1],大规模的生态系统扰动对全球碳循环造成影响,从而进一步加剧全球气候变化[2-3]。
基于遥感的城市绿地变化动态监测随着城市化进程的加速,城市绿地对于改善城市生态环境、提高居民生活质量的作用日益凸显。
准确、及时地监测城市绿地的变化情况,对于城市规划、生态保护和可持续发展具有重要意义。
遥感技术凭借其大面积同步观测、时效性强、数据客观准确等优势,成为城市绿地变化动态监测的重要手段。
遥感技术的原理及数据来源遥感是指非接触的、远距离的探测技术。
通过传感器接收来自地表物体反射或发射的电磁波信息,并对这些信息进行处理和分析,从而获取地表物体的特征和状态。
在城市绿地监测中,常用的遥感数据源包括卫星影像(如 Landsat 系列、Sentinel 系列等)和航空影像。
这些影像包含了丰富的光谱信息,能够反映出绿地的植被覆盖度、类型等特征。
基于遥感的城市绿地信息提取方法在获取遥感影像后,需要采用适当的方法提取城市绿地信息。
常用的方法有基于光谱特征的分类法和基于指数的计算法。
基于光谱特征的分类法是根据绿地在不同波段的反射特性,将其与其他地物区分开来。
例如,植被在近红外波段具有高反射率,而在可见光波段反射率较低。
通过建立合适的分类模型,可以将影像中的绿地提取出来。
基于指数的计算法则是利用一些专门设计的植被指数来定量地描述绿地的状况。
常见的植被指数如归一化植被指数(NDVI)、增强型植被指数(EVI)等。
这些指数能够有效地突出植被信息,从而方便绿地的识别和监测。
城市绿地变化动态监测的流程首先是数据预处理,包括辐射校正、几何校正、图像融合等操作,以提高影像的质量和可用性。
然后进行绿地信息提取,如前文所述,运用合适的方法从影像中获取绿地的分布和特征。
接下来是变化检测。
通过对比不同时期的绿地信息,确定绿地的增加或减少区域。
这可以通过图像差值法、分类后比较法等多种方法实现。
在变化检测的基础上,进行变化分析。
分析绿地变化的空间分布、面积大小、变化速率等特征,并探讨其背后的原因,如城市扩张、规划政策、人类活动等。
最后,将监测结果以直观的形式展示出来,如制作专题地图、统计图表等,为城市规划和管理部门提供决策支持。
遥感技术在城市生态系统动态监测中的应用随着城市化进程的加速,城市生态系统面临着越来越多的挑战,如环境污染、资源短缺、生态失衡等。
为了实现城市的可持续发展,对城市生态系统进行动态监测变得至关重要。
遥感技术作为一种先进的对地观测手段,具有大面积、快速、周期性、多尺度等特点,为城市生态系统的监测提供了有力的支持。
一、遥感技术概述遥感技术是指从远距离、高空,甚至外层空间的平台上,利用可见光、红外、微波等电磁波探测仪器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物体的性质和运动状态的现代化技术。
遥感技术主要由遥感平台、传感器、数据传输与接收系统以及数据处理与分析系统等部分组成。
遥感平台可以是卫星、飞机、无人机等;传感器则负责收集地物反射或发射的电磁波信息;数据传输与接收系统将收集到的数据传输回地面;数据处理与分析系统则对这些数据进行处理、分析和解释,以提取有用的信息。
二、城市生态系统动态监测的需求城市生态系统是一个复杂的人工与自然复合的生态系统,包括城市中的生物群落、非生物环境以及人类活动等多个要素。
为了有效地管理和保护城市生态系统,需要对其进行动态监测,以了解生态系统的结构和功能变化、生态过程的演变以及人类活动对生态系统的影响。
具体来说,城市生态系统动态监测的需求包括以下几个方面:1、土地利用与土地覆盖变化监测城市的发展导致土地利用和土地覆盖发生快速变化,如城市扩张、耕地减少、建设用地增加等。
通过遥感技术可以及时、准确地监测这些变化,为城市规划和土地管理提供依据。
2、植被覆盖监测植被是城市生态系统的重要组成部分,对调节气候、净化空气、保持水土等具有重要作用。
遥感技术可以监测城市植被的分布、覆盖度和生长状况,评估植被的生态服务功能。
3、水体监测城市中的水体质量和分布对生态系统和居民生活有着重要影响。
遥感技术可以监测水体的范围、水质参数(如浊度、叶绿素含量等),及时发现水体污染和富营养化等问题。
4、大气环境监测城市大气污染是一个严重的问题,遥感技术可以监测大气中的污染物浓度、分布和传输,为大气污染防治提供支持。
生态环境状况遥感动态监测人口的增长和社会工业化程度的提高,使得区域人口、资源与环境的矛盾不断加剧,荒漠化、水土流失等生态环境问题更加突出,正确认识和评价区域生态环境状况成为区域生态环境预测和预警的基础.黄土高原因脆弱的生态环境、严重的水土流失成为我国生态环境建设的重点区域,中央和地方在政策和资金方面大力支持黄土高原地区生态环境建设.富县是陕北黄土高原沟壑区向黄土丘陵沟壑区的过渡带,是子午岭国家级水土流失重点防治区水土保持重点县之一.了解该地区生态环境现状及其变化,不仅能检验封山禁牧、退耕还林草工程建设的成效,也可为黄土高原沟壑区生态环境的保护及管理提供理论方法与科学依据.区域生态环境质量评价的方法有很多种,但目前尚没有一个规范的评价体系.随着卫星遥感技术的发展,越来越多基于遥感反演的生态环境指标参与到生态环境监测和质量评价中,为宏观区域生态环境质量评价提供了科学数据.2006年国家环境保护部规范了基于生物丰度指数、植被覆盖指数、水网密度指数、土地退化指数和环境质量指数的生态环境状况指数(EI),在我国多个省、市、自治区、县域及流域范围内得到广泛应用.但在实际应用中,学者们对规范中的指标和权重均作了不同程度的调整,这是因为规范中还存在诸多问题,如大部分评价指标是基于土地利用来确定的,同质性较高;环境质量指标是以县为单位的统计数据,难以在空间上对生态环境状况作出响应;在地形地貌复杂的县域范围内,土地利用信息提取精度受限,EI 的各项指标提取都存在精度挑战.因此,完全基于遥感信息技术的、与EI具有可比性的新型遥感生态指数(RSEI)受到青睐,可用来定量评价区域生态环境状况.本文采用主成分分析的方法,耦合基于遥感反演的植被指数、裸土指数、湿度指数和地表温度指标,利用RSEI对黄土高原沟壑区陕西省富县1995—2014年的生态环境状况进行评价,分析研究区生态环境状况的空间分布及其变化,探讨生态环境变化的影响因素,以期为生态环境建设提供理论方法和科学依据.1研究地区与研究方法1.1研究区概况陕西省富县(35°44'6〃一36° 23'23〃N, 108° 29'30〃一109° 42'54〃E)东与宜川、洛川相邻,西与甘肃省合水县、宁县相连,南与黄陵相靠,北与志丹、甘泉、延安相连(图1), 海拔856〜1680m,全县辖8镇5乡.该区地形地貌包括以洛河和葫芦河为主的河流阶地,中部高塬沟壑区,塬区北部为丘陵沟壑,东部和西部为土石低山.全县土壤以分布于丘陵沟壑和低山林草地带的灰褐土为主,耕地土壤类型以黄绵土为主.属中纬度半干旱地区,年均气温7. 1〜9.0℃,年日照时数2032〜2428h,年无霜期平均130d,年均降水量500〜600mm,多呈高强度的阵性降水过程.1.2数据源与数据预处理遥感数据为美国地质调查局网站提供的1995 年11月13日的Landsat5TM影像和2014年11月3日获取的Landsat8OLI 和TIRS影像.非遥感数据包括富县1X5万地形图、行政区划图、土地利用现状图、土壤图和富县统计文本资料.在ENVI5. 0 下对两个时期的遥感影像进行辐射定标,将像元灰度值(DN)转换为辐射亮度值.采用FLAASH 大气校正工具和中纬度冬季标准大气模型对两期影像的可见光-近红外波段进行大气校正.校正后的可见光-近红外反射率波段和热波段的辐射亮度影像通过波段组合(layerstacking)生成多波段图像文件.基于1:5万地形图,采用二次多项式和最近邻法对多波段图像进行配准,均方根误差(RMS)控制在0. 5个像元以内,同时利用富县行政区划矢量数据提取研究区内多波段遥感图像.1.3生态质量遥感评价指标在反映生态质量的诸多自然因素中,绿度、湿度、热度、干度与人类的生存息息相关,是人类直观感觉生态条件优劣的最重要指标,遥感生态指数(RSEI)采用植被指数、裸土指数、湿度指数、地表温度分别代表绿度、干度、湿度和热度作为生态指数的评价指标.1.3.1湿度指标土壤湿度是进行土壤退化等生态环境研究的重要指标.遥感缨帽变换所获取的湿度分量反映了地表水体、植被和土壤的湿度状况,在生态环境监测中得到广泛应用.基于TM和OLI反射率数据的湿度分量(Wet)提取公式。
1.3.2绿度指标植被是对区域生态环境状况最为敏感的指示因子.归一化植被指数(NDVI)利用植物叶面在红光波段强的吸收和近红外波段强的反射特性组合而成,是遥感监测植被覆盖度、生物量、叶面积指数等生理参数的重要指标.1.3.3热度指标地表温度(LST)与植被的生长与分布、农作物产量、地表水资源蒸发循环等许多自然、人文现象和过程密切相关,是反映地表环境的一个重要参数.对于Landsat5TM6波段,利用热红外波段辐射定标参数将像元灰度值(DN)转换为传感器处的辐射亮度值(L6),通过Planck辐射函数求出包含了大气影响的像元亮度温度(Tb),进而通过比辐射率(£ 6)转换为地表温度(Ts),基于TM6的地表温度提取公式如下。
1.3.4干度指标裸土和建筑用地均会造成地表“干化”,因此,干度指标由裸土指数(SI)和建筑指数(IBI)合成,记为裸土指数(NDSI)。
1.3.5指标标准化为了消除量纲以及不同指标数值大小对遥感生态指数结果的影响,采用下式将4个指标数值标准化为[0, 1]之间的无量纲.1.4遥感生态指数生态环境评价的关键是将由遥感调查获得的湿度指数、植被指数、地表温度和裸土指数转化为综合评价指标.本研究对标准化后的评价指标进行主成分分析,以主成分的方差贡献率为权重,富县遥感生态指数(RSEI)可以表示为:代表绿度的NDVI和代表湿度的Wet变量系数为正值,它们共同对生态起正面的贡献;而代表热度和干度的LST、NDSI变量系数为负值,说明它们协同对生态起负面影响.利用式(12)对两个时期的遥感生态指数进行标准化,标准化后的RSEI值越接近于1,说明生态环境越好.在ArcGIS中利用重分类函数,采用自然断点法,按照数值由小到大将遥感生态指数RSEI划分为差、较差、中等、良和优5个生态等级,分别量化为1、2、3、4、5 等级数值.1.5生态环境质量综合指数为定量表达两个时期生态环境的整体状况,客观分析生态环境的动态变化,定义生态环境质量综合指数(ESI)的公式如下。
2结果与分析2.1研究区的生态质量总体评价1995年,富县遥感生态指数(RSEI)值在0. 09-0. 99,平均值为0. 55, 45. 8%的地区RSEI在0. 4〜 0.6;2014 年,其RSEI 值介于 0. 03-0. 99,平均值为 0.57,较 1995 年略有增加,63. 8%的地区RSEI在0.4-0. 6(表1).根据《生态环境状况评价技术规范》,富县生态环境整体属于良好级别,植被覆盖度较高,生物多样性较丰富,与卓静[24]的研究结果一致.1995—2014年间,研究区生态等级为差和较差所占的面积比例明显下降,从 33. 8%下降到16. 3%;中等级别和良好级别的面积比例分别由1995年的23. 5%和23. 0%上升到2014年的30. 5%和34. 6%;而优等级所占的比例从20. 8%下降到18. 7%. 2014年生态环境质量综合指数ESI由 1995年的3.17上升到3. 53,表明研究期间富县生态环境得到了较大改善.2014年,富县生态环境质量差的面积为114. 2km2,占全县总面积的2. 8%,主要分布于县城和富城镇洛阳村,土地利用为城镇和工矿建设用地,少量分布在中部塬面,零星分布在洛河、葫芦河、川子河、余渠沟以及青兰高速以北的埝沟等川道地.生态环境较差的地区主要分布在各大塬面和河谷川道地以及部分沟坡地上,土地利用以农耕地为主,易受城镇乡村建设和农事活动的干扰.中等级别占到富县总面积的30. 5%,广泛分布在塬面边缘、塬间沟壑区、低山丘陵、梁峁缓坡和半阳向沟坡地,土地利用以天然草地和灌木林地为主.塬面和川道以外的地区生态环境以良和优等级为主,优等级主要分布在县西北部、东北部和葫芦河南岸的丘陵沟壑区.2.2富县生态质量动态监测在生态质量指数5个等级的基础上,对富县的生态变化进行差值变化检测(图2).从变化检测的结果来看(表2 和表3), 1995—2014年间,该区生态环境质量等级下降的面积为688. 26km2,生态转好的面积则达1763. 14km2,生态环境质量维持不变的面积有1674. 79km2,约占富县总面积的41%.研究区生态环境等级为差的地区环境质量明显提高,其中,45. 2%的生态质量差的地区增加1个等级,40.3%的地区增加2个等级,但是另有40. 3%的生态质量为优的地区下降1个等级,总体上等级上升的幅度和比例高于下降的幅度和比例,生态质量明显得到改善.从空间上看,相对于1995年,生态环境得到改善的地区主要分布在县域中部的高塬和丘陵沟壑地,县东北部的土石低山区和西南的子午岭自然保护区.生态质量变差的地区主要是县西北部的丘陵沟壑区、川子河沿岸和洛河河流阶地,其中,川子河和葫芦河沿岸主要是生态环境质量为优等级的面积下降.2.3富县乡镇生态环境质量评价生态环境质量综合指数(ESI值)越大,说明生态环境越好;其值越小,说明生态环境越脆弱.2014年各乡镇 ESI值(表4)由大到小依次为牛武镇、张村驿镇、寺仙乡、张家湾乡、茶坊镇、直罗镇、北道德乡、交道镇、南道德乡、吉子现乡、富城镇、羊泉镇,表明当前牛武镇的生态环境质量整体状况最好,最差的是羊泉镇.研究期间,全县13个乡镇中,只有张家湾乡生态环境质量综合指数略微下降,由3. 62下降到3.57,但整体生态环境质量综合指数在全县仍然靠前.其他12乡镇的综合指数都呈现不同幅度的上升,说明近20年来富县各乡镇的生态环境质量均得到了一定程度的改善.从空间上看,由西北到东南方向,生态环境质量改变的幅度逐渐递增,变化最大的是交道镇和南道德乡,ESI分别提升0. 87和0. 83,其次是钳二乡、羊泉镇和吉子现乡,变化最小的是张家湾乡.乡镇生态环境质量等级的变化差异较大,羊泉镇和钳二乡差等级的比例减少最多,分别减少了各自乡镇面积的32. 5%和31. 2%.寺仙乡较差等级的下降比例和良等级增加的比例最高,分别占寺仙乡面积的23. 4%和16. 9%.张村驿镇、张家湾乡和直罗镇生态质量优等级的比例下降,牛武镇优等级的增加幅度最大,占牛武镇面积的9. 7%,而牛武镇差、较差和中等级的比例都有所下降,成为全县生态环境质量最优的乡镇.2.4生态环境变化成因植被覆盖度因受人类活动干扰的影响,对生态环境质量的等级有明显影响.县域范围内地形、水热条件和土壤类型相对稳定,土地植被覆盖度增加,土壤侵蚀等级明显下降,生态环境质量显著提高.自国家退耕还林还草政策实施以来,全县不仅保质保量完成了 1999—2010年15773hm2退耕还林工程的检验,此后每年就天然林保护工程飞播造林、天保工程人工造林、“三北”防护林造林、“三北”防护林封山育林、退耕还林进行补植.基于像元二分模型 [25]遥感估算植被覆盖度的结果表明(图2B), 1995年研究区67. 7% 的植被覆盖度在20%〜40%,仅1%的植被覆盖度在60%〜80%,全县平均植被覆盖度为31.7%;2014年全县平均植被覆盖度为62%, 50. 1%的地区植被覆盖度在60%〜80%.植被覆盖度较高的石泓寺至直罗镇段、葫芦河南岸、张家湾乡海拔1370m以上丘陵梁脊地区、茶坊镇西北部和县城东北部牛武镇也是生态环境质量最优的地区.退耕还林还草工程的实施和集雨工程的推广运用对生态环境质量的改善成效显著.富县已经成为陕北地区土壤侵蚀等级比例下降最快的地区匚研究区生态环境质量与海拔、坡度无明显相关,不同坡向、地貌形态和土地利用方式下的生态环境差异显著.高塬沟壑区海拔在1000〜1390m,塬面地形平坦,土壤为黑垆土,土层深厚,理化性能良好,全县60%以上的耕地和农业人口分布在水源欠缺、水利条件差的塬区,社会经济的发展和土地人口承载压力的加大,使土地利用类型急剧变化,直接造成地表形态与植被的破坏.塬周沟壑发育,沟谷深切,坡度较大的塬边耕地和以灌草覆盖为主的塬间沟壑地容易发生面蚀,生态环境较为脆弱,生态环境质量以差等级为主.河谷川道占地242km2,水利资源丰富,侵蚀轻微,是富县主要的灌溉农业区.该区人类活动强度相对剧烈,如新修基本农田、新建田间配套设施、大面积发展蔬菜大弓棚和日光温室等,随着城镇化的进程和川道地区产业开发的推进,差等级和优等级的面积下降,生态环境质量以中等为主.丘陵沟壑区生态环境以良为主,该区植被为保存较好的次生林区,以灌木林地占优,现代侵蚀缓慢,水土流失较轻.次生林边缘地带,因植被稀疏而水土流失较为严重.县西部子午岭和东缘黄龙山为不连续薄层黄土覆盖的低山土石地貌区.洛河东侧黄龙山山系的北端,地形起伏大,土体厚度和腐殖质层厚度低,但随着人工造林和退耕还林的开展,植被覆盖度大幅增加,局部小气候环境优越,生态环境优等级别所占的面积比例较大,但此区坡耕地由于表层土壤质地疏松,易漏肥和产生水土流失,因此沟底河道生态环境相对较差.县西南部子午岭国家级自然保护区生态环境质量以良为主,植被属暖温带半湿润落叶阔叶林带的北部西段,是森林草原向草原植被的过渡地带,土壤深厚肥沃的阴坡、半阳向沟坡地和梁峁缓坡,森林植被生长良好;阳坡陡壁,基质裸露,坡度较大,有机质含量较少,因此林木稀疏,生长较差.保护区人为活动较为频繁,加之受传统耕作观念的影响,林缘地带仍有非法占用林地和毁林开荒等现象.3结论生态环境状况遥感动态监测。