15.遥感动态监测
- 格式:pptx
- 大小:2.23 MB
- 文档页数:15
遥感动态监测的应用原理1. 什么是遥感动态监测遥感动态监测是一种利用遥感技术对地球表面进行实时或定期观测和监测的方法。
通过采集、分析和解释遥感数据,可以获取大范围空间上的地球表面信息,并监测地表的变化情况。
2. 遥感动态监测的原理遥感动态监测主要利用遥感技术和传感器获取地球表面的影像数据,并通过图像处理和分析技术来监测地物的变化。
2.1 传感器获取遥感数据遥感传感器是通过感知地球表面的辐射能量,将其转化为电磁信号的设备。
常见的遥感传感器包括光学传感器、雷达传感器和红外传感器等。
2.2 图像处理与分析图像处理与分析技术是对获取的遥感影像数据进行处理和解析,提取出地表的信息和特征。
常用的图像处理和分析方法包括影像增强、分类与识别、变化检测等。
2.3 地物变化监测遥感动态监测的关键在于对地物变化的监测和分析。
地物变化可以包括自然灾害、土地利用变化、气候变化等。
通过对遥感影像的比对和分析,可以及时发现和监测地表的变化情况。
3. 遥感动态监测的应用3.1 自然灾害监测遥感动态监测可以用于自然灾害的监测和预警。
例如,通过对洪水、地震、火灾等自然灾害区域的遥感影像进行分析,可以实时掌握灾害的发展趋势和程度,为灾害救援和紧急反应提供支持。
3.2 土地利用变化监测通过遥感动态监测,可以及时监测和分析土地利用的变化情况。
例如,城市扩张、农田变化和森林砍伐等。
这些信息对于土地规划和资源管理具有重要意义。
3.3 环境保护监测遥感动态监测可以用于环境监测和保护。
例如,监测水体的污染情况、监测空气质量、监测森林覆盖率等。
这些信息对于环境保护和资源管理具有重要意义。
3.4 气候变化研究遥感动态监测可以用于研究气候变化和环境变化趋势。
通过监测大气温度、云量、海洋表面温度等指标的变化,可以了解气候变化的趋势和对生态环境的影响。
4. 遥感动态监测的优势和挑战4.1 优势•广覆盖性:遥感动态监测可以覆盖广大地域,获取大范围的地表信息。
1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。
2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。
3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。
常用方法是按照行政区划边界或自然区划边界进行图像裁剪。
在基础数据生产中,还经常要进行标准分幅裁剪。
按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。
4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。
5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。
6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。
7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
8.立体像对:从两个不同位置对同一地区所摄取的一对相片。
9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。
10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。
11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。
12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。
铁路安全遥感新技术动态监测随着城市化的不断推进和交通运输的蓬勃发展,铁路交通系统承载着越来越多的人和货物。
然而,在这个庞大的系统中,铁路安全问题仍然时有发生,给人们的生命财产安全带来巨大威胁。
为了及时探测、监测和预警铁路安全隐患,铁路部门引入了遥感技术,实现铁路安全的动态监测。
一、遥感技术概述1.1 遥感技术定义和原理遥感技术是利用航空器、卫星等远距离获取地球表面信息的技术。
通过遥感技术,可以获取到铁路线路、桥梁、隧道等设施的图像、空间信息及相关数据,实现对铁路安全的全方位监测。
1.2 遥感技术在铁路安全监测中的应用遥感技术在铁路安全监测中有着广泛的应用,主要包括:- 铁路线路动态监测:通过遥感技术获取铁路线路的高分辨率图像,并分析图像中的线路状况,检测出可能存在的裂缝、塌方等隐患。
- 桥梁安全监测:利用遥感技术获取桥梁的形变信息,实时监测桥梁的结构变化,以及桥梁地基的沉降情况等。
- 隧道安全监测:通过遥感技术获取隧道内部的图像,并分析图像中的状况,及时发现可能存在的渗水、龟裂等问题。
二、铁路安全遥感新技术2.1 高分辨率遥感高分辨率遥感技术可以获取到更为细致的铁路线路、桥梁、隧道等设施信息,对于隐患的探测更加精确。
目前,高分辨率卫星影像可以提供米级或亚米级尺度的空间分辨率,大大提升了铁路安全监测的精度和效率。
2.2 激光雷达技术激光雷达技术利用激光束扫描地面,可以获取地形表面的高程信息,对铁路线路的起伏和变化进行监测。
它能够高精度、高效率地获取大范围地形数据,为铁路安全监测提供可靠的技术支持。
2.3 红外热成像技术红外热成像技术可以反映物体表面的温度分布情况,对于隐蔽的热源和热量异常进行探测具有独特优势。
通过红外热成像技术,可以有效检测到铁路线路上可能存在的短路、电器设备过热等问题,及时采取措施避免事故发生。
2.4 遥感数据处理与分析遥感数据的处理与分析是铁路安全遥感监测的关键环节。
利用计算机技术和图像处理算法,可以对获取到的遥感影像进行自动提取、分类和监测分析,实现对铁路安全隐患的预警和预测。
利用遥感监测城市绿地动态变化在现代城市的发展进程中,城市绿地扮演着至关重要的角色。
它不仅为居民提供了休闲娱乐的空间,还在改善城市生态环境、调节气候、减少噪音等方面发挥着不可或缺的作用。
然而,随着城市的不断扩张和人口的增长,城市绿地的状况也在不断发生变化。
为了更好地规划和管理城市绿地,及时准确地掌握其动态变化信息显得尤为重要。
而遥感技术的出现,为我们提供了一种高效、准确且全面的监测手段。
遥感,简单来说,就是不直接接触目标物,通过传感器接收来自目标物的电磁波信息,并对其进行处理和分析,以获取有关目标物的特征和状态的技术。
在监测城市绿地动态变化方面,遥感技术具有许多独特的优势。
首先,遥感技术能够实现大面积同步观测。
相比传统的实地调查方法,遥感可以在短时间内获取整个城市甚至更大范围的绿地信息,大大提高了工作效率。
而且,遥感数据具有周期性和连续性,通过对不同时期的遥感影像进行对比分析,我们能够清晰地看到城市绿地的变化趋势。
其次,遥感技术能够提供多光谱信息。
不同的地物在不同的光谱波段上会有不同的反射特性,城市绿地也不例外。
通过对这些光谱信息的分析,我们可以准确地识别出绿地的类型、分布以及生长状况等。
例如,植被在近红外波段的反射率较高,而在可见光波段的反射率较低,利用这一特性,我们可以很容易地将植被与其他地物区分开来。
再者,遥感技术具有较高的空间分辨率。
随着遥感技术的不断发展,如今的遥感影像可以清晰地分辨出城市中的小块绿地、行道树等细节,为我们进行精细化的绿地监测提供了可能。
那么,如何利用遥感技术来监测城市绿地的动态变化呢?一般来说,主要包括以下几个步骤:数据获取是第一步。
我们需要选择合适的遥感数据源,常见的有卫星遥感影像(如 Landsat 系列、Sentinel 系列等)和航空遥感影像。
卫星遥感影像覆盖范围广、周期长,但空间分辨率相对较低;航空遥感影像空间分辨率高,但成本较高且覆盖范围有限。
在实际应用中,需要根据具体的监测需求和条件来选择合适的数据源。
第一章遥感概述1.简述遥感的基本概念2.与传统对地观测手段比较,遥感有什么特点?举例说明.3.简述遥感卫星地面站,其生产运行系统的构成及各自的主要任务。
4.遥感有哪几种分类?分类依据是什么?5.试述当前遥感发展的现状及趋势。
6.举例说明“3S”集成系统中各子系统的作用GIS:在“3S”技术中具有采集、存储、管理、分析和描述整个或部分地球上与空间和地理分布有关的数据的作用。
GPS:精确的定位能力、准确定时及测速能力、提供实时定位技术RS:GIS数据库的数据源第二章遥感电磁辐射基础1.已知由太阳常数推算出太阳表面的总辐射出射度M=6.284×107 W/㎡,求太阳的有效温度和太阳光谱中辐射最强波长。
2.电磁波波谱区间主要分为哪几段?其中遥感探测利用最多的是什么波段?仔细分析原因。
3.阐述太阳辐射和地球辐射的特点,当这些电磁辐射经过大气时产生哪些物理过程?4.为什么地物光谱的测量十分重要?理解书中介绍的垂直测量和非垂直测量的方法。
5.你能说出几种主要地物的光谱特点吗?6.你能说出地面接受的辐射有哪几个来源,到达传感器时电磁波辐射又含有几部分吗?7.对照卫星传感器所涉及波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。
第三章传感器与遥感图像特点1.传感器主要由哪些部件组成?2.摄影类型传感器与扫描类型传感器的工作原理有何差异?3.简述光谱分辨率与空间分辨率的关系。
4.何谓高光谱遥感?5.成像光谱仪的特点及结构是什么?6.按摄影机主光轴与铅垂线的关系,航空摄影可分为哪几类?7.影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺?8.比较航空像片光学特性的因素主要有哪些?9.比较航空摄影像片与地形图的投影性质有什么差别?10.什么是像点位移?引起像点位移的主要原因是什么?11.在垂直摄影的航空像片上像点位移有什么规律?12.目前国际上有哪些比较流行的航空成像光谱仪?13.航天遥感与航空遥感相比有什么特点?14.遥感卫星轨道参数有哪些?15.遥感卫星的轨道分类是怎样的?16.航天遥感平台主要有哪些?各有什么特点?17.扫描成像的基本原理是什么?扫描图像与摄影图像有何区别?18.AVHRR的光谱段是怎样划分的?为什么?19.地球资源卫星主要有哪些?常用的产品有哪几类?20.海洋卫星有什么用途?21.未来的航天遥感有哪些发展方向?22.ETM+与TM的区别是什么?Mss、TM影像与SPOT的HRV影像的异同?23.微波波段在电磁波谱中的什么位置?微波接其波长或频率又可分为什么波段?24.与可风光和近红外遥感相比,微波遥感有什么优缺点?近年来对其不足有什么改进?25.微波传感器主要分为哪两种?举例说明/26.为什么合成孔径雷达可以提高分辨率?27.简述雷达图像的距离分辨率和方位分辨率与什么有关?它们在图像上的变化规律是什么?28.画图解释透视收缩,叠掩和阴影的产生条件,理解这些几何变形对影像解译的影响。
生态系统动态监测的遥感技术在当今的科技时代,遥感技术如同一位神奇的“千里眼”,为我们洞察生态系统的动态变化提供了强大的工具。
生态系统是地球上生命存在和发展的基础,其状态和变化对于人类的生存和可持续发展具有至关重要的意义。
而遥感技术的出现,让我们能够更全面、更准确、更及时地了解生态系统的种种情况。
那么,什么是遥感技术呢?简单来说,遥感技术就是一种不直接接触目标物体,通过传感器接收来自目标物体的电磁波信息,并对这些信息进行处理和分析,从而获取有关目标物体的特征和状况的技术。
在生态系统动态监测中,遥感技术主要依靠卫星、飞机等平台搭载的各种传感器,来收集大量的生态数据。
遥感技术在生态系统动态监测中的应用范围十分广泛。
它可以用于监测森林生态系统。
通过遥感影像,我们能够清晰地看到森林的覆盖范围、树木的生长状况以及森林遭受病虫害、火灾等灾害的情况。
比如,通过对不同时期遥感影像的对比分析,可以发现森林面积的增减变化,从而为森林资源的管理和保护提供重要的依据。
在监测湿地生态系统方面,遥感技术也发挥着重要作用。
湿地是地球上重要的生态系统之一,具有蓄水、调节气候、净化水质等多种生态功能。
遥感技术可以帮助我们了解湿地的分布范围、水位变化、植被类型和覆盖度等信息。
这对于保护湿地生态系统的完整性,维护其生态功能具有重要意义。
草原生态系统的监测同样离不开遥感技术。
它能够帮助我们掌握草原的植被覆盖度、草产量、草原退化和沙化的程度等情况。
这对于合理规划草原的利用,防止草原生态恶化,保障畜牧业的可持续发展具有重要的指导作用。
除了上述生态系统,遥感技术还在农田生态系统、城市生态系统等的监测中有着广泛的应用。
遥感技术之所以能够在生态系统动态监测中大展身手,主要得益于它具有许多独特的优势。
首先,遥感技术具有大面积同步观测的能力。
一次遥感观测就可以覆盖很大的区域,这是传统地面观测方法无法比拟的。
它能够在短时间内获取大量的生态数据,为我们快速了解生态系统的整体状况提供了可能。
12-遥感动态监测第12章遥感动态监测本章主要介绍以下内容:(1)遥感动态监测技术(2)图像直接比较法工具(3)分类后比较法工具(4)林冠状态遥感状态监测实例(5)农业用地变化监测实例12.1 遥感动态监测技术遥感动态监测过程一般可分为三个步骤,1.数据预处理(1)在进行变化信息检测前,需要考虑以下因素对不同时相图像产生的差异信息。
●传感器类型的差异:●采集日期和时间的差异:●图像像元单位的差异:●像素分辨率的差异:●大气条件的差异:●图像配准的精度:2.变化信息检测根据处理过程可分为以下三类:(1)图像直接比较法(2)分类后比较法(3)直接分类法3.变化信息提取变化信息提取可以归纳为从图像上提取信息,有以下方法供选择:●手工数字化法●图像自动分类●监督分类●非监督分类●基于专家知识的决策树分类●面向对象的特征提取法●图像分割12.2 图像直接比较法工具ENVI中的图像直接比较法工具包括Compute Different Map工具和Image Difference工具。
12.2.1 Compute Different Map工具Compute Different Map工具对两个时相的图像作波段相减或者相除,设定的阈值对相减或相除的结果进行分类。
这个工具的详细操作过程如下:在ENVI主菜单中,选择Basic Tools→Change Detection-→Compute Difference Map。
在Select the Initial State Image文件选择对话框中,从前一时相图像中选择一个波段,单击OK按钮;在Select the Final State Image文件选择对话框中,从后一时相图像中选择一个与前面相同的波段,单击OK按钮,打开Compute Difference Map Input Parameters对话框。
图12.1 Compute Difference Map Input Parameters对话框12.2.2 Image Different工具Image Different工具可以检测两个时相图像中增加和减少两种变化信息,适合获取地表绝对变化信息。
试述遥感土地利用动态监测方法和技术流程遥感土地利用动态监测是指通过利用遥感技术手段对特定区域内的土地利用情况进行定期采集、分析和监测,以实现对土地利用及其变化的高效、精确、全面的监测和管理,为地方政府及决策者提供科学的政策建议和决策参考。
那么,我们应该如何实现遥感土地利用动态监测呢?1. 遥感数据的获取:遥感数据的获取是进行遥感土地利用动态监测的第一步,可以采用激光雷达、卫星遥感、无人机等多种方式进行获取。
其中,卫星遥感是目前应用最广泛的一种方式,可以获得大范围的遥感数据,但由于其分辨率普遍较低,需要结合其他数据源进行分析。
而无人机和激光雷达可以获得更高分辨率和更精准的数据,但适用范围较小,多适用于小范围内的土地利用监测。
2. 遥感图像的预处理:由于遥感数据来源多样、结构复杂,需要进行图像预处理,以提高图像的可用性和可读性。
主要包括图像去噪、增强、图像配准等一系列的处理操作。
3. 遥感图像的分类:遥感图像的分类是指对遥感图像中的像元按照给定的类别分别分配到不同的类别中,从而得到不同类别的土地利用信息。
常见的分类方法有基于像素的分类和基于目标的分类。
4. 土地利用变化的检测:通过对不同时间段的遥感图像进行比对和分析,可以发现土地利用的变化情况。
地物的变化检测主要采用基于像元的变化检测方法和基于目标的变化检测方法。
5. 土地利用监测与评价:通过对遥感图像的分析和比对,结合地勘和统计数据等多种因素,可以对土地利用情况进行监测和评价,操作流程主要包括可视化展示、数据处理与挖掘、统计分析等等。
以上就是遥感土地利用动态监测所需要的主要步骤。
需要注意,目前遥感土地利用动态监测的技术和方法不断发展和更新,必须结合新技术、新方法、新数据源等因素,进一步提升监测的准确性和效率,更好的服务于土地利用规划和管理工作。
土地利用动态遥感监测名词解释土地利用动态遥感监测是一项技术手段,用以实现对全球土地利用和覆盖格局的变化的定期监测。
它利用遥感影像的可见光和近红外波段获取有关土地覆盖变化的有价值的影像信息,以及植被指数等其他卫星数据源。
该技术可以精确地提取出多年来土地利用和覆盖变化的要素,有助于各级政府做出科学的、客观的分析和做出明智的决定,从而确保更具可持续性的土地利用及其管理。
土地利用动态遥感监测的步骤分为几个部分,第一步是土地覆盖分类,即使用合适的影像处理技术,以及可见光、近红外波段和植被指数等多种数据,将土地覆盖格局分解为不同的类别,例如农田、森林、草地等。
第二步是土地变化检测,也就是使用多种遥感图像历史数据,对土地利用和覆盖格局的变化进行监测和分析,发现长期土地利用变化的趋势和特征。
最后,根据获取的变化数据,划分不同的土地利用类型,为后续的决策提供依据。
土地利用动态遥感监测技术的应用可以极大地改善现有的土地管理工作。
它可以帮助政府和管理部门对土地利用的当前状况和变化趋势做出更好的了解,从而制定更有效的土地利用管理策略。
它还可以帮助科研人员和管理者更容易地分析和识别土地利用变化的潜在影响因素,从而有效地控制和预防土地利用变化所带来的负面影响。
此外,土地利用动态遥感监测还可以帮助实现对全球变化的更好理解,有助于研究森林覆盖变化、农业种植模式的变化、水资源的短缺问题的发展等等。
例如,它可以帮助社会更好地认识全球变暖问题,从而采取积极的应对措施抑制气候变化。
因此,土地利用动态遥感监测技术发挥了重要作用,对土地利用和覆盖格局的变化,及其对全球变化的影响,起着非常重要的作用。
它提供了一种可靠的方法,有助于各级政府和管理部门更好地了解土地利用的变化,以及确定更加有效地保护土地利用的策略,从而提高土地管理的效率和可持续性。
动态监测综述全球变化涉及到岩石圈、大气圈、水圈和生物圈,是地表及地表上各种因子间的相互作用造成的环境变化。
其动态监测则需要宏观、适时的数据源和高效合理的分析,因此遥感技术(RS)和地理信息系统技术(GIS)成为研究全球变化与对地观测研究的重要技术支撑。
其中RS技术具有大面积同步观测、经济性、时效性等特点,丰富的遥感卫星影像数据源为地球上环境与资源动态变化信息提供数据支持;同时GIS技术因为其丰富而完备的数据分析能力,在全球变化动态监测的研究中主要负责海量数据的查询、检索和管理,以及复杂的空间分析。
目前结合RS和GIS的动态监测研究,主要集中在以下几个方面:土地利用情况动态监测、生态环境动态监测、自然资源动态监测以及自然灾害动态监测。
土地利用/土地覆被变化是全球环境变化研究中十分重要的一个方面[1]。
因为首先,土地利用/土地覆被变化在全球环境变化和可持续发展中占有重要的地位。
其次,地球系统科学、全球环境变化及可持续发展设计到自然和人文多方面的问题。
人们借助3S(RS、GPS、GIS)集成技术,发展出一套土地利用动态检测方法:首先解译不同时期资源卫星影像或与以前土地利用图等进行比较;在发现变化区域后运用后处理差分GPS技术实地获取该地区空间位置,与此同时认为记录当地土地利用/土地覆被情况以备属性数据处理;然后利用GIS 进行空间数据组织、管理、分析与可视化[2]。
基于此,刘正军等[3]以论述江苏省南京市江宁县为研究区进行的卫星遥感与GIS动态监测土地利用状况变化的方法,阐述了系统的总体框架、系统功能、实现方法等,RS、GIS技术的集成为有效地进行土地利用监测和快速决策提供了科学的保证。
潘竟虎等[4]基于TM/ETM卫星遥感数据,运用GIS方法,对江河源区1986-2000年土地利用类型的时空变化特征进行了研究,结果表明气候变化和人类经济活动是导致研究区土地利用变化的主要因素。
刘慧平等[5]在归纳遥感动态监测研究方法的基础上对应用高空间分辨率卫星遥感数据进行土地利用/土地覆被变化的监测方法、目前的水平及与其相关的遥感图像分类的发展方向进行了初步分析。
土地利用动态遥感监测技术规程引言土地利用动态遥感监测是一种通过遥感技术对土地利用状况进行实时监测和分析的方法。
它可以帮助监测土地利用变化,评估土地资源的合理利用程度,为土地规划和管理提供科学依据。
本技术规程旨在规范土地利用动态遥感监测的操作流程,确保数据的准确性和可靠性。
1. 监测数据获取1.1 遥感影像数据采集遥感影像数据是土地利用动态监测的基本数据源。
在采集过程中,应遵循以下原则:1.选择合适的遥感影像,包括分辨率适中、时间分辨率高、空间分辨率高的数据。
2.定期采集遥感影像数据,以保证监测的连续性和精度。
3.获取高质量的遥感数据,排除云、阴影等影响因素。
1.2 地面调查数据采集地面调查数据对于验证和修正遥感数据非常重要。
在采集过程中,应注意以下事项:1.根据监测需求制定调查方案,明确调查内容和目标。
2.选择典型样点进行调查,以保证数据的代表性。
3.采用合适的调查方法,例如实地测量、问卷调查等。
4.采集的地面调查数据应与遥感数据相匹配,具备一定的时空一致性。
2. 数据预处理2.1 遥感数据预处理遥感影像数据需要进行一系列预处理步骤,以提高数据质量和准确性:1.影像大气校正:根据遥感影像中的大气染色效应,进行大气校正,消除大气影响。
2.影像几何校正:对遥感影像进行几何校正,去除因传感器位置和姿态变化引起的影像变形。
3.影像配准:将多个遥感影像进行配准,消除不同影像之间的平差误差。
4.影像融合:将多个遥感影像融合为一幅影像,提供更全面的信息。
2.2 地面调查数据预处理地面调查数据也需要进行预处理操作,以保证数据的一致性和可靠性:1.样点筛选:根据监测要求和目标,对地面调查数据进行筛选,保留优质样点。
2.数据配准:将地面调查数据与遥感数据进行配准,保证数据的时空一致性。
3.数据处理:对地面调查数据进行加工处理,如插值、统计等,以提取合适的监测指标。
3. 动态监测与分析3.1 土地利用动态监测土地利用动态监测是基于时间序列遥感数据进行的,可以通过分析不同时期的遥感影像,获取土地利用变化的信息。
遥感动态监测的常用方法
遥感技术在现代社会发挥着越来越重要的作用,而遥感动态监测则是其中的重要应用领域之一。
在进行遥感动态监测时,常用的方法有:
一、遥感影像对比法
这是一种利用遥感影像进行监测的方法,其原理是将两个时间段内的遥感影像进行对比,从而得出地表覆盖变化情况。
这种方法具有易操作、低成本等优点,能够有效监测城市、农田等地表覆盖变化情况。
二、遥感图像分类法
遥感图像分类法是指对遥感影像进行分类处理,以区分出不同类型的地表覆盖。
通过比较两个时间点之间地表覆盖类别的变化,可以判断出该区域内的变化情况。
传统的分类方法包括最大似然法、聚类法、神经网络法等。
三、遥感影像光谱变化法
该方法是利用遥感影像光谱信息进行监测的方法。
光谱变化法能够检测出地物的光谱反射率变化,从而判断出地表覆盖变化情况。
此外,光谱变化法还可通过观测遥感影像的光谱曲线,从中获取地表覆盖信息。
四、遥感影像纹理分析法
该方法是一种基于遥感影像纹理特征进行监测的方法。
通过分析遥感影像中的纹理特征,可以判断地表覆盖的变化情况。
例如,在城市变化监测中,利用建筑物的纹理特征进行监测。
综上所述,遥感动态监测的方法较为丰富,其中包括了遥感影像对比法、遥感图像分类法、遥感影像光谱变化法、遥感影像纹理分析法等多种方法。
在实际应用过程中,应根据监测对象和需求选择适合的方法,以达到最佳效果。
遥感影像具有周期性特点,利用这一特性就可以用于监测一个地区的地表变化情况。
本小节介绍这种信息提取技术,包括的内容:●动态监测概述●动态检测的关键技术●基于ENVI的动态检测1、动态监测概述很多人对动态监测和动态检测两个名词有疑惑。
个人理解,动态监测是一个广义的名词,泛指数据预处理、变化信息发现与提取、变化信息挖掘与应用等,以对整个流程的叙述。
动态检测是一个狭义的名词,主要指部分数据预处理、变化信息发现与提取。
在一定的意义和场合上讲,两个词的意思是一样的。
当然很多地方把这两个词说成变化监测和变化检测。
遥感动态检测就是从不同时期的遥感数据中,定量地分析和确定地表变化的特征与过程。
它涉及到变化的类型、分布状况与变化量,即需要确定变化前后的地面类型、界线及变化趋势,能提供地物的空间分布及其变化的定性和定量信息。
目前,遥感变化检测技术大多是针对两个时相的遥感影像进行操作。
根据处理过程来分,遥感变化检测方法可分为三类:●图像直接比较法图像直接比较法是最为常见的方法,它是对经过配准的两个时相遥感影像中像元值直接进行运算和变换处理,找出变化的区域。
目前常用的光谱数据直接比较法包括图像差值法、图像比值法、植被指数比较法、主成分分析法、光谱特征变异法、假彩色合成法、波段替换法、变化矢量分析法、波段交叉相关分析以及混合检测法等。
•图像差值法图像差值法就是将两个时相的遥感图像相减。
其原理是:图像中未发生变化的地类在两个时相的遥感图像上一般具有相等或相近的灰度值,而当地类发生变化时,对应位置的灰度值将有较大差别。
因此在差值图像上发生地类变化区域的灰度值会与背景值有较大差别,从而使变化信息从背景影像中显现出来。
•光谱特征变异法同一地物反映在一时相影像上的信息与其反映在另外时相影像上的光谱信息是一一对应的。
当将不同时相的影像进行融合时,如同一地物在两者上的信息表现不一致时,那么融合后的影像中此地物的光谱就表现得与正常地物的光谱有所差别,此时称地物发生了光谱特征变异,我们就可以根据发生变异的光谱特征确定变化信息。
遥感动态监测的常用方法
遥感动态监测是指利用遥感技术和方法,对某一区域的环境、自然资源、经济发展等进行实时、定期、周期性的监测和评估。
常用的遥感动态监测方法包括:
1.基于时间序列分析的监测方法。
该方法通过对遥感影像进行时间序列分析,分析不同时间段内的变化趋势,从而推断未来的发展趋势,为决策提供科学依据。
2.基于遥感图像变化检测的监测方法。
该方法通过比对不同时间的遥感图像,检测目标区域内的变化,如土地利用、植被覆盖等变化,以及建筑物、道路等新增物体的出现,为决策提供及时反馈。
3.基于GIS空间分析的监测方法。
该方法将遥感影像与地理信息系统(GIS)相结合,通过对空间数据的分析和处理,研究地区内的空间分布状况、环境影响等,为决策提供精准的空间信息。
4.基于模型模拟的监测方法。
该方法利用遥感影像、气象数据、地形数据等,建立模型,模拟地区内的气候变化、水文循环等情况,为决策提供科学依据。
综上所述,遥感动态监测是一种重要的环境监测手段,不同的监测方法可以互相结合,为决策提供更加全面、准确的信息支持。
- 1 -。