2021年河南新乡中考数学真题及答案(Word版)
- 格式:doc
- 大小:1.02 MB
- 文档页数:8
河南省新乡市2021版中考数学一模考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共41分)1. (3分) (2018七上·余杭期末) 如图,AE⊥BC于点E ,AF⊥CD于点F ,则下列哪条线段的长度是表示点A到BC的距离()A . ADB . AFC . AED . AB2. (3分) (2017九上·台州月考) 下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个3. (3分)(2019·海州模拟) 下列运算错误的是()A . a8÷a4=a4B . (a2b)4=a8b4C . a2+a2=2a2D . (a3)2=a54. (2分)若四个有理数之和的是3,其中三个数是-10,+8,-6,则第四个数是()A . +8B . -8C . +20D . +115. (3分)(2015·温州) 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A .B .C .D .6. (3分)(2017·遵义) 2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A . 2.58×1011B . 2.58×1012C . 2.58×1013D . 2.58×10147. (3分)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A . 以点C为圆心,OD为半径的弧B . 以点C为圆心,DM为半径的弧C . 以点E为圆心,OD为半径的弧D . 以点E为圆心,DM为半径的弧8. (3分)(2011·苏州) 已知,则的值是()A .B . ﹣C . 2D . ﹣29. (3分) (2018八上·开平月考) 如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600 ,那么∠DAE等于()A . 45°B . 30 °C . 15°D . 60°10. (3分) (2019九下·温州竞赛) 我校七年级开展了“你好!阅读“的读书话动。
河南省中招考试数学试卷一、选取题(每小题3分,共24分)1.下列各数中,最小数是()(A). 0 (B).13(C).-13(D).-32. 据记录,河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表达为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON度数为()(A) .350 (B). 450 (C) .550(D). 6504.下列各式计算对的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,对的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)理解某种节能灯使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成几何体左视田也许是()7.如图,ABCD对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s速沿折线AC CB BA运动,最后回到A点。
设点P运动时间为x(s),线段AP长度为y (cm),则能反映y与x之间函数关系图像大体是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>所有整数解和是 .11.在△ABC中,按如下环节作图:①分别以B、C为圆心,以不不大于12BC长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB度数为 .12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A坐标为(-2,0),抛物线对称轴为直线x=2.则线段AB长为 .13.一种不进明袋子中装有仅颇色不同2个红球和2个白球,两个人依次从袋子中随机摸出一种小球不放回,到第一种人摸到红球且第二个人摸到白球概率是 .14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C运动能途径为/CC,则图中阴影某些面积为 .15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一种动点,把△ADE 沿AE 折叠,当点D 相应点D /落在∠ABC 角平分线上时,DE 长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-117.(9分)如图,CD 是⊙O 直径,且CD=2cm ,点P 为CD 延长线上一点,过点P 作⊙O 切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为理解本校男生参加课外体育锻炼状况,随机抽取本校300名男生进行了问卷调查,记录整顿并绘制了如下两幅尚不完整记录图. 请依照以上信息解答下列问题:(1)课外体育锻炼状况扇形记录图中,“经常参加”所相应圆心角度数为 ;(2)请补全条形记录图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢项目是篮球人数;(4)小明以为“全校所有男生中,课外最喜欢参加运动项目是乒乓球人数约为1200×27300=108”,请你判断这种说法与否对的,并阐明理由.19.(9分)在中俄“海上联合—”反潜演习中,我军舰A测得潜艇C俯角为300.位于军舰A正上方1000米反潜直升机B侧得潜艇C俯角为680.试依照以上数据求出潜艇C离开海平面下潜深度.(成果保存整数。
新乡市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单项选择题(本题共10个小题,每小题3分,共30分) (共10题;共30分)1. (3分)(2019·玉林模拟) 2018年泰兴国际半程马拉松全程约为21097.5米,将21097.5用科学记数法表示为()A . 21.0975×103B . 2.10975×104C . 21.0975×104D . 2.10975×1052. (3分) (2016九上·岳池期末) 下列图形中,是轴对称图形但不是中心对称图形的是()A . 平行四边形B . 菱形C . 正三角形D . 圆3. (3分)的立方根是()A . ±4B . -4C .D .4. (3分)(2019·五华模拟) 其几何体的三视图如图所示,这个几何体是()A . 三棱柱B . 四棱锥C . 四棱柱D . 圆锥5. (3分)下列因式分解正确的是()A . x2﹣7x+12=x(x﹣7)+12B . x2﹣7x+12=(x﹣3)(x+4)C . x2﹣7x+12=(x﹣3)(x﹣4)D . x2﹣7x+12=(x+3)(x+4)6. (3分)(2019·铁岭模拟) 如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()A .B .C .D .7. (3分)正八边形的中心角是()A . 45°B . 135°C . 360°D . 1080°8. (3分)如图,是测量一物体体积的过程:(2ml=1cm)步骤一:将300ml的水装进一个容量为500ml的杯子中;步骤二:将四颗相同的玻璃球放入水中,结果水没有满;步骤三:再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()A . 10cm3以上,20cm3以下B . 20cm3以上,30cm3以下C . 30cm3以上,40cm3以下D . 40cm3以上,50cm3以下9. (3分) (2019八上·大庆期末) 不等式组的解集在数轴上表示为()A .B .C .D .10. (3分) (2018八上·三河期末) 如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A . 2个B . 3个C . 4个D . 5个二、填空题(本题共11个小题,每小题3分,共33分) (共11题;共33分)11. (3分) (2020七上·自贡期末) 计算:|-2|-1=________.12. (3分) (2016八上·平阳期末) 函数y= 中,自变量x的取值范围是________.13. (3分) (2016七下·瑶海期中) 已知2x=3,2y=5,则22x﹣y﹣1的值是________.14. (3分) (2016九上·相城期末) 一组数据2, 4, 2, 3, 4的方差 =________.15. (3分)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则 ________.16. (3分)(2017·淮安模拟) 一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为________.17. (3分)如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE=________.18. (3分)如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是________ .19. (3分)(2016·济宁) 已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.20. (3分)在Rt△ABC中,∠ACB=90°,BC=1,AB=2,CD⊥AB于D,则tan∠ACD=________.21. (3分)(2017·江阴模拟) 在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为________.三、解答题(本题共8个小题,共57分) (共8题;共57分)22. (6分)如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?23. (6分)(2016·沈阳) 我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1)m=________,n=________,p=________;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.24. (6分) (2019九上·滦南期中) 如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.(1) B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?25. (6分) (2016九上·江夏期中) 已知:关于x的方程x2+(8﹣4m)x+4m2=0(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.26. (7.0分)(2013·资阳) 在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.27. (7.0分)(2017·宁夏) 为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m3)32及其以下3334353637383940414243及其以上户数(户)200160180220240210190100170120100110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?28. (9分) (2020八上·大洼期末) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD =∠BCE = 90°,点M为AN的中点,过点E与AD平行的直线交射线AM于点N。
3 2 ⎫ ⎛x x + ⎝ ⎭ 1 2= 的图象上,则 x注意事项:2020 年河南省普通高中招生考试试卷数学(备用卷)(考试时间:100 分钟 试卷满分:120 分)7.对于实数 a ,b ,定义运算“*”如下:a *b =a 2-ab ,例如:3*2=32-3×2=3,则方程(x+1)*3=-2 的根的情况是 ( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.我省某市即将跨入高铁时代,钢轨铺设任务也将完成.现还有 6 000 米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设 20 米,就能提前 15 天完成任务.设原计划每天铺设钢轨 x 米,则根据题意所 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号 填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮 列的方程是( )6 000 6 000 . - x +20=15 B .6 000 -6 000=1520 擦干净后,再选涂其他答案标号。
写在本试卷上无效。
C .6 000- 6 000 =20 D . 6 000 6 000=203.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
x x -15 -x -15 x4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.-2 020 的相反数为()9.如图,在平面直角坐标系中,四边形 OABC 是正方形,点 A 的坐标为(3,3),点 D 是边 BC 的中点,现将正方形 OABC 绕点 O 顺时针旋转,每秒旋转 45°,则第 2 019 秒时,点 D 的坐标为( )A . 1 2 020B .- 12 020⎛3 2 ⎫⎛39⎫⎛3 9⎫ C .2 020 D .-2 0202.如图,该几何体是由 4 个大小相同的正方体组成,它的左视图是()A .⎝ 2 ,-3 2⎭B .⎝-3 2,- 2⎭ C .⎝-2,-2⎭ D . , 2 2 10.如图,在▱ABCD 中,AB =3,AD =4,以点 A 为圆心,AB 长为半径画弧交 AD 于点 F ,再分别以点 B ,F 为圆心,大于1BF 的长为半径画弧,两弧交于点 P ,连接 AP 并延长交 BC 于点 E ,连接 EF ,则四边形 EC DF 的周2长为( )3.如图,∠1+∠2=180°,∠3=124°,则∠4 的度数为()A .14B .12C .8D .6第Ⅱ卷二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)11.请你写出一个大于 1,且小于 3 的无理数是 .⎧⎪3-2x >1,12.已知关于 x 的不等式组⎨ ⎪⎩x -a >0 其中实数 a 在数轴上对应的点是如图表示的点 A ,则不等式组的解集为.13.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各 自指向一个数字,用所指的两个数字作乘法运算所得的积为奇数的概率是______ _ _.A .56°B .46°C .66°D .124°4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从 54 万亿元增长至 80 万亿元,稳居世界第二,其中 80 万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×10135.在“交通安全”主题教育活动中,为了了解全省中学生对于交通安全知识的掌握情况,省教育部门计划开展 调查,对于该调查的一些建议中,较为合理的是( )A .应该采取全面调查B .随机抽取某市部分中学生进行调查C .随机抽取全省部分初一学生进行调查D .在全省范围内随机抽取部分中学生进行调查6.若点 A (-2,y ),B (1,y ),C (2,1)在反比例函数 y k( ) xA .y 1<1<y 2B .y 1<y 2<1C .1<y 2<y 1D .y 2<y 1<114.如图,有一张矩形纸片 ABC D ,AB =8,AD =6.先将矩形纸片 ABC D 折叠,使边 AD 落在边 AB 上,点 D 落在点 E 处,折痕为 AF ,再将△AEF 沿 EF 翻折,AF 与 BC 相交于点 G ,则△GCF 的周长为__________.15.如图,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC =2,把△ABC 绕点 A 按顺时针方向旋转 45° 后得到△AB ′C ′,则线段 BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 .数学试题 第 1 页(共 6 页)数学试题 第 2 页(共 6 页)… … … … …… ○ … …… … … … 外… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ………学校: ______ ____ 姓名: ___ ______ 班级:_______________考号: ___________________… … … … …… ○ … …… … … … 内… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ……A=- x三、解答题(本大题共 8 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分 9 分)如图,AB 是半圆 O 的直径,AC 是半圆内一条弦,点 D 是的中点,DB 交 AC 于点 G .过 16.(本小题满分 8 分)先化简,再求值:4a ÷⎛1+a -3⎫,其中 a =2+3.点 A 作半圆的切线与 BD 的延长线交于点 M ,连接 AD .点 E 是 AB 上的一动点,DE 与 AC 相交于点 F .a 2-9⎝ a +3⎭(1)求证:MD =GD ;(2)填空:①当∠DEA =______ 时,AF =FG ; 17.(本小题满分 9 分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配, 才能强化初中生的身体素质.某校为了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、 八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取 15 名学生,进行了体质健康测试,测试成绩(百分制)如下: 七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82 八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50 整理数据:年级 x <60 60≤x <80 80≤x <90 90≤x ≤100 七年级 0 10 4 1 八年级 1 5 8 1(说明:90 60 分以下为不及格) 分析数据:年级 平均数 中位数 众数 七年级 ___ _ 75 75 八年级 77.5 80 ___ _得出结论:(1)根据上述数据,将表格补充完整; (2)可以推断出__________年级学生的体质健康状况更好一些,并说明理由; (3)若七年级共有 300 名学生,请估计七年级体质健康成绩优秀的学生人数.18.(本小题满分 9 分)如图,海上观察哨所 B 位于观察哨所 A 正北方向,距离为 25 海里.在某时刻,哨所 A 与哨所 B 同时发现一走私船,其位置 C 位于哨所 A 北偏东 53°的方向上,位于哨所 B 南偏东 37°的方向上. (1)求观察哨所 A 与走私船所在的位置 C 的距离;(2)若观察哨所 A 发现走私船从 C 处以 16 海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东 76°的 方向前去拦截,求缉私艇的速度为多少时,恰好在 D 处成功拦截.(结果保留根号.参考数据: sin 37°= c os②若的度数为 120°,当∠DEA =______ __时,四边形 DEBC 是菱形.21.(本小题满分 10 分)如图①,在平面直角坐标系中,一次函数 y 3+3 的图象与 x 轴交于点 A ,与 y 4轴交于点 B ,抛物线 y =-x 2+bx +c 经过 A ,B 两点,在第一象限的抛物线上取一点 D ,过点 D 作 DC ⊥x 轴 于 点 C , 交 直 线 AB 于 点 E . (1)求抛物线的函数表达式; (2)是否存在点 D ,使得△BDE 和△ACE 相似?若存在,请求出点 D 的坐标;若不存在,请说明理由; (3)如图②,F 是第一象限内抛物线上的动点(不与点 D 重合),点 G 是线段 AB 上的动点.连接 DF ,FG ,当 四边形 DEGF 是平行四边形且周长最大时,请直接写出点 G 的坐标.图①图②22.(本小题满分 10 分)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 xOy ,对两点 A (x 1, y 1)和 B (x 2,y 2),用以下方式定义两点间距离:d (A ,B )=|x 1﹣x 2|+|y 1﹣y 2|.53° 3 4 3 ≈5,cos 37°=sin 53°≈5,tan 37°≈,tan 76°≈4) 419.(本小题满分 9 分)学校“科技创新”社团向市场推出一种新型电子产品.试销发现:该电子产品的销售价格 y (元/件)与销售量 x (件)之间满足一次函数关系,其图象如图所示.已知销售60 件电子产品所得利润为 1 680 元.(1)根据以上信息,填空:销售量为 60 件时的销售价格是______ __元/件,该产品的成本价格是_ _元/件;(2)求销售利润 w (元)关于销售量 x (件)的函数解析式,当销售量为多少时,销售利润最大?最大值是多少? (3)该社团继续开展科技创新,降低产品成本价格.预估当销售量在 120 件以上时,销售利润达到最大,则科技创新后该产品的成本价格应低于多少?【数学理解】(1)①已知点 A (﹣2,1),则 d (O ,A )= .②函数 y =﹣2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点 B 的坐标是 .(2)函数 y = (x >0)的图象如图②所示.则该函数的图象上 点 C (填是否存在),使 d (O ,C )=3. (3)函数 y =x 2﹣5x +7(x ≥0)的图象如图③所示,D 是图象上一点,则 d (O ,D )的最小值是 ,此时对应的点 D 的坐标是 . 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以 M 为起点,先沿 MN 方向到某处,再在该处拐数学试题 第 3 页(共 6 页)数学试题 第 4 页(共 6 页)… … … … …… ○ … …… … … … 外… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ……此卷 只 装 订不密 封… … … … …… ○ … …… … … … 内… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ……一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)23.(本小题满分 11 分)如图①,在 Rt △ABC 中,∠B =90°,AB =4,BC =2,点 D ,E 分别是边 BC ,AC的中点,连接 DE .将△CDE 绕点 C 逆时针方向旋转,记旋转角为 α. (1)问题发现①当 α=0°时,AE =____ _ _;②当 α=180°时, AE=___ _ __;BD BD(2)拓展探究试判断当 0°<α<360°时, AE的大小有无变化?请仅就图②的情形给出证明;BD(3)问题解决当△CDE 绕点 C 逆时针旋转至 A ,B ,E 三点在同一条直线上时,求线段 BD 的长.图① 图② 备用图数学试题 第 5 页(共 6 页) 数学试题 第 6 页(共 6 页)… … … … …… ○ … …… … … … 外… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ………学校: ______ ____ 姓名: ___ ______ 班级:_______________考号: ___________________… … … … …… ○ … …… … … … 内… … …… … … ○… … … …… … 装… … … …… … ○ …… … … …… 订…… … … … …○ … … …… … … 线… … … …… … ○ …… … … ……。
河南省2021年中考数学试卷一、单选题(共10题;共20分)1.实数-2的绝对值是( )A. -2B. 2C. 12D. −12 2.河南人民济困最“给力!”,据报道,2020年河南人民在济困方面捐款达到 2.94 亿元数据“ 2.94 亿”用科学记数法表示为( )A. 2.94×107B. 2.94×108C. 0.294×106D. 0.294×1093.如图是由8个相同的小正方体组成的几何体,其主视图是( )A. B. C. D.4.下列运算正确的是( )A. (−a)2=−a 2B. 2a 2−a 2=2C. a 2⋅a =a 3D. (a −1)2=a 2−15.如图, a //b , ∠1=60° ,则 ∠2 的度数为( )A. 90°B. 100°C. 110°D. 120° 6.关于菱形的性质,以下说法不正确...的是( )A. 四条边相等B. 对角线相等C. 对角线互相垂直D. 是轴对称图形7.若方程 x 2−2x +m =0 没有实数根,则 m 的值可以是( )A. -1B. 0C. 1D. √38.现有4张卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A. 16B. 18C. 110D. 1129.如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A. (2√3,0)B. (2√5,0)C. (2√3+1,0)D. (2√5+1,0)10.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A. 4B. 5C. 6D. 7二、填空题(共5题;共5分)11.若代数式1x−1有意义,则实数x的取值范围是________.12.请写出一个图象经过原点的函数的解析式________.13.某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂的产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是________.(填“甲”或“乙”)14.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在AD⌢上,∠BAC=22.5°,则BC⌢的长为________.15.小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B= 30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A′处,如图2,第二步,将纸片沿CA′折叠,点D落在D′处,如图3.当点D′恰好在原直角三角形纸片的边上时,线段A′D′的长为________.三、解答题(共8题;共83分)16.(1)计算:3−1−√19+(3−√3)0;(2)化简:(1−1x )÷2x−2x2.17. 2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行卷调查,并将调查结果用统计图描述如下.平均每天睡眠时间x(时)分为5组:① 5≤x<6;② 6≤x<7;③ 7≤x<8;④ 8≤x< 9;⑤ 9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第________(填序号)组,达到9小时的学生人数占被调查人数的百分比为________;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.18.如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.数y=kx(1)求反比例函数的解析式;(2)求图中阴影部分的面积.19.开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)20.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” AP,BP的连接点P在⊙O上,当点P在⊙O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⊙O相切时,点B恰好落在⊙O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠PAO=2∠PBO;,求BP的长.(2)若⊙O的半径为5,AP=20321.猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?×100%)(注:利润率=利润成本22.如图,抛物线y=x2+mx与直线y=−x+b交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>−x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.下面是某数学兴趣小探究用不同方法作一角的平分线的讨论片段.请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是大麻烦了,可以改进如下,如图2.(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP,射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是________.(填序号)① SSS;② SAS;③ AAS;④ ASA;⑤ HL.(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由;(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=√3+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.答案解析部分一、单选题1.【答案】B【考点】实数的绝对值【解析】【解答】解:实数-2的绝对值2.故答案为:B.【分析】利用负数的绝对值等于它的相反数,可得答案.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:因为1亿= 108,所以2.94亿=2.94× 108;故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.3.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看第一层是三个小正方形,第二层靠左边两个小正方形,第三层在左边一个小正方形,故答案为:A.【分析】根据主视图的概念可得:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形,据此判断.4.【答案】C【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、(−a)2=a2,原计算错误,不符合题意;B、2a2−a2=a2,原计算错误,不符合题意;C、a2⋅a=a3,正确,符合题意;D、(a−1)2=a2−2a+1,原计算错误,不符合题意;故答案为:C.【分析】根据幂的乘方法则判断A的正误;根据合并同类项法则判断B的正误;根据同底数幂的乘法法则判断C的正误;根据完全平方公式判断D的正误.5.【答案】D【考点】平行线的性质,邻补角【解析】【解答】解:如图,∵a∥b,∴∠1=∠3=60°,∴∠2=180°-∠3=120°,故答案为:D.【分析】首先对图形进行角标注,由平行线的性质可得∠3的度数,然后根据邻补角的性质就可求得∠2的度数.6.【答案】B【考点】菱形的性质【解析】【解答】解:A、菱形的四条边都相等,A选项正确,不符合题意;B、菱形的对角线不一定相等,B选项错误,符合题意;C、菱形的对角线互相垂直,C选项正确,不符合题意;D、菱形是轴对称图形,D选项正确,不符合题意;故答案为:B.【分析】菱形的性质:菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有两条对称轴,据此判断.7.【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】解:由题可知:“△<0”,∴(−2)2−4m<0,∴m>1,故答案为:D.【分析】根据根的判别式可得:(-2)2-4m<0,求解即可.8.【答案】A【考点】列表法与树状图法【解析】【解答】解:把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽中的恰好是B和D的结果有2种,∴所抽取的卡片正面上的图形恰好是“天问”和“九章”的概率为212=16.故答案为:A.【分析】把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画出树状图,找出总的情况数以及所抽中的恰好是B和D的情况数,然后根据概率公式进行计算.9.【答案】B【考点】勾股定理,相似三角形的判定与性质,旋转的性质【解析】【解答】如图,连接A′C,因为AD⊥y轴,△ODA绕点O顺时针旋转得到△OD′A′,所以∠CD′O=90°,OD′=OD∵∠DOA+∠D′OC=∠D′CO+∠D′OC∴∠DOA=∠D′CO∴△ADO∽△OD′C∴ADAO=OD′OC ∵A(1,2)∴AD=1,OD=2∴AO=√12+22=√5,OD′=OD=2∴OC=2√5故答案为B.【分析】连接A′C,由旋转的性质可得∠CDO=90°,OD′=OD,然后证明△ADO∽△OD′C,接下来根据相似三角形的性质以及勾股定理求解即可.10.【答案】C【考点】动点问题的函数图象【解析】【解答】解:由图2可知,当P点位于B点时,PA−PE=1,即AB−BE=1,当P点位于E点时,PA−PE=5,即AE−0=5,则AE=5,∵AB2+BE2=AE2,∴(BE+1)2+BE2=AE2,即BE2+BE−12=0,∵BE>0∴BE=3,∵点E为BC的中点,∴BC=6,故答案为:C.【分析】由图2可知,当P点位于B点时,AB-BE=1,当P点位于E点时,AE=5,由勾股定理可得BE的值,然后根据线段中点的概念进行求解.二、填空题11.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:依题意得:x-1≠0,解得x≠1,故答案为:x≠1.【分析】分式有意义时,分母不能为0,据此求得x的取值范围.12.【答案】y=x(答案不唯一)【考点】待定系数法求一次函数解析式【解析】【解答】解:因为直线y=x经过原点(0,0),故答案为:y=x(本题答案不唯一,只要函数图象经过原点即可).【分析】设y=kx+b,将(0,0)代入可得b=0,则y=kx,任意的k就构成一个函数解析式.13.【答案】甲【考点】方差【解析】【解答】解:由题可知,它们的价格相同,品质也相近,测得它们的平均质量均为200 克,而由图形可知,甲厂的红枣每盒质量相对乙厂更加稳定,因此甲厂产品更符合规格要求.故答案为:甲.【分析】由题意可得:甲、乙两个厂家出口的红枣的平均质量均为200克,然后由折线统计图判断出哪个厂家的比较集中即可.14.【答案】5π4【考点】弧长的计算⌢的圆心O,【解析】【解答】解:连接AD,作线段AB、AD的垂直平分线,交点即为AD⌢的半径为OB=5,从图中可得:AD连接OC,∵∠BAC=22.5°,∴∠BOC=2 ×22.5°=45°,BĈ的长为45×π×5180=5π4.故答案为:5π4.【分析】连接AD,作线段AB、AD的垂直平分线,交点即为AD⌢的圆心O,根据已知条件结合圆周角定理可得∠BOC的度数,然后根据弧长公式计算即可.15.【答案】12或2−√3【考点】含30°角的直角三角形,翻折变换(折叠问题)【解析】【解答】解:当D′落在AB边上时,如图(1):设DD′交AB于点E,由折叠知:∠EA′D=∠A=60°,AD=A′D=A′D′,DD′⊥A′E,A′C=AC∵∠ACB=90°,∠B=30°,AC=1∴AB=2,BC=√3设AD=x,则在Rt△A′ED中,A′E=12x在Rt△ECB中,EC=12BC=√32∵A′C=AC∴12x+√32=1即x=2−√3.当D′落在BC边上时,如图(2)因为折叠, ∠ACD =∠A ′CD =∠A ′CD ′=30°,∴ A ′D ′=12A ′C =12A ′B,A ′C =A ′B =AC =1∴AD =A ′D ′=12 . 故答案为: 12 或 2−√3【分析】当D′落在AB 边上时,设DD′交AB 于点E ,由折叠的性质得∠EA′D=∠A=60°,AD=A′D=A′D′,A′C=AC ,然后在△ABC 中可得AB 、BC 的值,设AD=x ,在Rt △A′ED 中可得A′E ,在Rt △ECB 中,表示出EC ,然后根据A′C=AC 就可求得x ;当D′落在BC 上时,由折叠的性质得∠ACD=∠A′CD=∠A′CD′=30°,然后求出A′D′、A′C ,据此可得AD.三、解答题16.【答案】 (1)解: 3−1−√19+(3−√3)0 =13−13+1=1 .(2)解: (1−1x )÷2x−2x 2 =x−1x×x 22(x−1) =x 2 .【考点】实数的运算,分式的混合运算【解析】【分析】(1)根据0次幂、负整数指数幂以及算术平方根的概念可得:原式=13-13+1,据此计算; (2)根据异分母分式减法法则以及分式的除法法则化简即可.17.【答案】(1)③;17%(2)解:该校学生睡眠情况为:该校学生极少数达到《关于进一步加强中小学生睡眠管理工作的通知》中的初中生每天睡眠时间应达到9 小时的要求,大部分学生睡眠时间都偏少,其中超过一半的学生睡眠时间达不到8小时,约4%的学生睡眠时间不到6小时.建议:①减少校外学习任务时间,将其多出来的时间补充到学生睡眠中去;②减轻校内课业负担,提高学生的学习效率,规定每晚各科作业总时间不超过90分钟等(本题答案不唯一,回答合理即可).【考点】扇形统计图,条形统计图【解析】【解答】解:(1)由于共有500人,因此中位数应为该组数据按从小到大或从大到小排列的第250和251个数据的平均数,由平均每天睡眠时间统计图可知,应位于第③组;∵达到9小时睡眠的人数为85人,∴其所占百分比为:85=17%;500故答案为:③;17%.【分析】(1)根据中位数的概念以及条形统计图可得中位数落在第几组,利用达到9小时睡眠的人数除以总人数可得所占的百分比;(2)根据条形统计图可得:大部分学生睡眠时间都偏少,其中超过一半的学生睡眠时间达不到8小时,约4%的学生睡眠时间不到6小时,据此提出建议.18.【答案】(1)解:由题意,点A(1,2)在反比例函数y= k的图象上,x∴k=1×2=2,∴反比例函数的解析式为y=2;x(2)解:点B是小正方形在第一象限的一个点,由题意知其横纵坐标相等,设B(a,a),则有k=a×a=2,∴a=√2,即B( √2,√2),∴小正方形的边长为2√2,∴小正方形的面积为(2√2)2=8,大正方形经过点A(1,2),则大正方形的边长为4,∴大正方形的面积为42=16,∴图中阴影部分的面积为16-8=8.【考点】待定系数法求反比例函数解析式【解析】【分析】(1)将点A的坐标代入反比例函数解析式中可得k的值,进而得到其解析式;(2)设B(a,a),则有k=a×a=2,据此可得点B的坐标,进而求出小正方形的边长与面积,根据点A 的坐标可得大正方形的边长,求出其面积,接下来根据面积间的和差关系进行求解.19.【答案】解:设佛像BD的高度为xm,∵∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=x,∵佛像头部BC为4m,∴CD=x-4,∵∠DAC=37.5°,∴tan∠DAC= CDAD = x−4x≈0.77,解得:x≈17.4,经检验,该方程有意义,且符合题意,因此x≈17.4是该方程的解,∴求佛像BD的高度约为17.4m.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】设佛像BD的高度为xm,易得AD=BD=x,CD=x-4,然后根据∠DAC的正切函数可得x 的值,最后进行检验即可.20.【答案】(1)证明:连接OP,取y轴正半轴与⊙O交点于点Q,如下图:∵OP=ON,∴∠OPN=∠PBO,∵∠POQ为△PON的外角,∴∠POQ=∠OPN+∠PBO=2∠PBO,∵∠POQ+∠POA=∠POA+∠PAO=90°,∴∠PAO=∠POQ,∴∠PAO=2∠PBO.(2)解:过点Q作PO的垂线,交PO与点C,如下图:由题意:在Rt△APO中,tan∠PAO=OPAP =5203=34,由(1)知:∠QOC=∠OAP,∠APO=∠OCQ,Rt△APO∽Rt△OCQ,∴tan∠COQ=CQCO =34,OQ=5,∴CO=4,CQ=3,∴PC=PO−CO=5−4=1,∴PQ=√PC2+CQ2=√1+9=√10,由圆的性质,直径所对的角为直角;在Rt△QPB中,由勾股定理得:BP=√BQ2−PQ2=√102−10=3√10,即BP=3√10.【考点】三角形的外角性质,等腰三角形的性质,圆周角定理,相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)连接OP,取y轴正半轴与○O交点于点Q,根据等腰三角形的性质以及三角形外角的性质可推出∠POQ=2∠PBO,根据同角的余角相等可得∠PAO=∠POQ,据此证明;(2)过点Q 作PO的垂线,交PO与点C,根据三角函数的概念可得tan∠PAO的值,易证△APO∽△OCQ,根据相似三角形对应角相等可求出CO、CQ的值,进而求出PC、PQ的值,接下来在Rt△QPB中,利用勾股定理求解即可.21.【答案】(1)解:设A,B两款玩偶分别为x,y个,根据题意得:{x+y=3040x+30x=1100解得:{x=20y=10答:两款玩偶,A款购进20个,B款购进10个.(2)解:设购进A款玩偶a个,则购进B款(30−a)个,设利润为y元则y=(56−40)a+(45−30)(30−a)=16a+15(30−a)=450+a(元)∵A款玩偶进货数量不得超过B款玩偶进货数量的一半∴a≤12(30−a)∴a≤10,又a≥0,∴0≤a≤10,且a为整数,∵−1<0∴当a=10时,y有最大值∴y max=460.(元)∴A款10个,B款20个,最大利润是460元.(3)解:第一次利润20×(56−40)+10×(45−30)=470(元)∴第一次利润率为:4701100×100%=42.7%第二次利润率为:46010×40+20×30×100%=46%∵42.7%<46%∴第二次的利润率大,即第二次更划算.【考点】一次函数的实际应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)设A,B两款玩偶分别为x、y个,根据题意得:{x+y=3040x+30x=1100,求解即可;(2)设购进A款玩偶a个,利润为y元,由题意可得:y=(56-40)a+(45-30)(30-a)=450+a,根据A款玩偶进货数量不得超过B款玩偶进货数量的一半可求出a的范围,然后结合一次函数的性质解答;(3)首先根据销售价以及进货价求出单个的利润,然后乘以个数求出总利润,接下来利用总利润除以1100就可求出第一次的利润率,同理求出第二次利润率,然后进行比较.22.【答案】(1)解:∵点A(2,0)同时在y=x2+mx与y=−x+b上,∴0=22+2m,0=−2+b,解得:m=−2,b=2;(2)解:由(1)得抛物线的解析式为y=x2−2x,直线的解析式为y=−x+2,解方程x2−2x=−x+2,得:x1=2,x2=−1.∴点B的横坐标为−1,纵坐标为y=−x+2=3,∴点B的坐标为(-1,3),观察图形知,当x<−1或x>2时,抛物线在直线的上方,∴不等式x2+mx> −x+b的解集为x<−1或x>2;(3)解:如图,设A、B向左移3个单位得到A1、B1,∵点A(2,0),点B(-1,3),∴点A1 (-1,0),点B1 (-4,3),∴A A1=BB1=3,且A A1∥BB1,即MN为A A1、BB1相互平行的线段,对于抛物线y=x2−2x=(x−1)2−1,∴顶点为(1,-1),如图,当点M 在线段AB 上时,线段MN 与抛物线 y =x 2−2x 只有一个公共点,此时 −1≤x M <2 ,当线段MN 经过抛物线的顶点(1,-1)时,线段MN 与抛物线 y =x 2−2x 也只有一个公共点, 此时点M 1的纵坐标为-1,则 −1=−x M +2 ,解得 x M =3 ,综上,点M 的横坐标 x M 的取值范围是: −1≤x M <2 或 x M =3 ..【考点】平移的性质,二次函数与一次函数的综合应用,二次函数图象上点的坐标特征【解析】【分析】(1)分别将点A 的坐标代入抛物线以及直线解析式中就可得到m 、b 的值; (2) 由(1)可得抛物线与直线的解析式,联立求解可得点B 的坐标,据此可得不等式的解集; (3)设A 、B 向左移3个单位得到A 1、B 1, 根据平移的性质可得A 1、B 1的坐标,求出AA 1=BB 1=3,且AA 1∥BB 1 , 然后求出抛物线的顶点坐标 ,接下来画出图象,根据图象就可得到x M 的范围.23.【答案】 (1)⑤(2)解:小军作图得到的射线 OP 是 ∠AOB 的平分线,理由为:在△EOD 和△FOC 中,{OD =OC∠EOD =∠FOC OE =OF∴△EOD ≌△FOC (SAS ),∴∠OED=∠OFC ,∵OC=OD ,OE=OF ,∴CE=DF ,在△CEP 和△DFP 中,{∠CEP =∠DFP∠EPC =∠FPD CE =DF,∴△CEP ≌△DFP (AAS ),∴PE=PF ,在△EOP 和△FOP ,{OE =OF PE =PF OP =OP,∴△EOP ≌△FOP (SSS ),∴∠EOP=∠FOP ,即射线 OP 是 ∠AOB 的平分线;(3)解:作射线OP ,由(2)可知OP 是∠AOB 的平分线,∴∠POE= 12∠AOB=30°,∵∠CPE=30°,∴∠FPE=150°∵△EOP≌△FOP,∴∠OPE=∠OPF= 12(360°﹣∠FPE)=105°,∴∠OEP=180°﹣∠POE﹣∠OPE=45°,过P作PH⊥OA于H,则HP=HE,OP=2HP=2HE,∴ PE= √2HE,OH= √OP2−HP2= √3HP= √3HE,∵OE=OH+HE=( √3+1)HE= √3+1,∴HE=1,∴PE= √2,∵∠POE=∠CPE=30°,∠OEP=∠PEC,∴△OEP∽△PEC,∴OEPE =PECE即√3+√2=√2CE,解得:CE=√31√3−1,∴OC=OE﹣CE=2.【考点】三角形全等的判定,相似三角形的判定与性质,角平分线的判定【解析】【解答】解:(1)根据小明作图所阐述的理由,他用到是HL定理证明Rt△PGO≌Rt△PHO,故答案为:⑤.【分析】(1)直接根据全等三角形的判定定理解答;(2)易证△EOD≌△FOC,得到∠OED=∠OFC,然后证明△CEP≌△DFP,得到PE=PF,进而证明△EOP≌△FOP,得到∠EOP=∠FOP,据此证明;(3)作射线OP,由(2)可知OP是∠AOB的平分线,根据△EOP≌△FOP结合等腰三角形的性质可得∠OPE=∠OPF=105°,进而求出∠OEP的度数,过P作PH⊥OA于H,则HP=HE,OP=2HP=2HE,由勾股定理可得OH的值,进而求出OE、HE、PE的值,接下来证明△OEP∽△PEC,由相似三角形的性质解答即可.。
2021年河南省中考数学试卷(解析版)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.﹣【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)河南省人民济困最“给力”!据报道,2020年河南省人民在济困方面捐款达到2.94亿元.数据“2.94亿”用科学记数法表示为()A.2.94×107B.2.94×108C.0.294×108D.0.294×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:2.94亿=294000000=2.94×108,故选:B.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.(3分)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【分析】将图形分成三层,第一层主视图有一个正方形,第二层有两个正方形,第三层有三个正方形,且左边是对齐的.【解答】解:该几何体的主视图有三层,最上面有一个正方形,中间一层有两个正方形,最下面有三个正方形,且左侧是对齐的,故选:A.【点评】本题主要考查三视图的定义,在理解三视图的基础上,还要有较强的空间想象能力.4.(3分)下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣1【分析】A.根据幂的乘方运算法则判断;B.根据合并同类项法则判断;C.根据同底数幂的乘法法则判断;D.根据完全平方公式判断.【解答】解:A.(﹣a)2=a2,故本选项不符合题意;B.2a2﹣a2=a2,故本选项不符合题意;C.a2•a=a3,故本选项符合题意;D.(a﹣1)2=a2﹣2a+1,故本选项符合题意;故选:C.【点评】本题考查了合并同类项,完全平方公式,合并同类项以及幂的乘方,掌握相关公式与运算法则是解答本题的关键.5.(3分)如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°【分析】先根据图得出∠2的补角,再由a∥b得出结论即可.【解答】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a∥b,∴∠1的同位角也是60°,∠2=180°﹣60°=120°,故选:D.【点评】本题主要考查平行线的性质,平行线的性质与判定是中考必考内容,平行线的三个性质一定要牢记.6.(3分)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形【分析】根据菱形的性质逐一推理分析即可选出正确答案.【解答】解:A.菱形的四条边相等,正确,不符合题意,B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,C.菱形的对角线互相垂直且平分,正确,不符合题意,D.菱形是轴对称图形,正确,不符合题意,故选:B.【点评】本题考查菱形的性质,熟练掌握菱形的基本性质并能正确分析推理是解题的关键.7.(3分)若方程x2﹣2x+m=0没有实数根,则m的值可以是()A.﹣1 B.0 C.1 D.【分析】根据根的判别式和已知条件得出△=(﹣2)2﹣4×1×m=4﹣4m<0,求出不等式的解集,再得出答案即可.【解答】解:∵关于x的方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m<0,解得:m>1,∴m只能为,故选:D.【点评】本题考查了根的判别式和解一元一次不等式,注意:已知一元二次方程ax2+bx+c =0(a、b、c为常数,a≠0),①当△=b2﹣4ac>0时,方程有两个不相等的实数根,②当△=b2﹣4ac=0时,方程有两个相等的实数根,③当△=b2﹣4ac<0时,方程没有实数根.8.(3分)现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是()A.B.C.D.【分析】画树状图,共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可.【解答】解:把4张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,∴两张卡片正面图案恰好是“天问”和“九章”的概率为=,故选:A.【点评】此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.9.(3分)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA 交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA 上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【分析】延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,利用点A的坐标可求得线段AD,OD,OA的长,由题意:△OA′D′≌△OAD,可得对应部分相等;利用OD′⊥A′E,OA平分∠A′OE,可得△A′OE为等腰三角形,可得OE=OA′=,ED′=A′D′=1;利用△OED′∽△CEO,得到比例式可求线段OC,则点C坐标可得.【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.【点评】本题主要考查了旋转的性质,平行四边形的性质,坐标与图形的性质,三角形相似的判定与性质,利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标是解题的关键.10.(3分)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4 B.5 C.6 D.7【分析】当x=0,即P在B点时,BA﹣BE=1;在△P AE中,根据三角形任意两边之差小于第三边得:P A﹣PE<AE,当且仅当P与E重合时有:P A一PE=AE,得y的最大值为AE=5;在Rt△ABE中,由勾股定理求出BE的长,再根据BC=2BE求出BC的长.【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.在△P AE中,∵三角形任意两边之差小于第三边,∴P A﹣PE<AE,当且仅当P与E重合时有:P A一PE=AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴t=3.∴BC=2BE=2t=2×3=6.故选:C.【点评】本题考查了动点问题的函数图象,根据勾股定理求出BE的长是解题的关键.二、填空题(每小题3分,共15分)11.(3分)若代数式有意义,则实数x的取值范围是x≠1.【分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.12.(3分)请写出一个图象经过原点的函数的解析式y=x(答案不唯一).【分析】图象经过原点,要求解析式中,当x=0时,y=0,只要一次函数解析式常数项为0即可.【解答】解:依题意,一次函数的图象经过原点,函数解析式的常数项为0,如y=x(答案不唯一).故答案为:y=x(答案不唯一).【点评】本题考查了正比例函数的性质,正比例函数的图象经过原点.13.(3分)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,他们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是甲(填“甲”或“乙”).【分析】由于平均质量相同,根据图中所示两组数据波动大小可得两组数据的方差,波动越小,方差越小越稳定.【解答】解:从图中折线可知,乙的起伏大,甲的起伏小,所以乙的方差大于甲的方差,因为方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,所以产品更符合规格要求的厂家是甲.故答案为:甲.【点评】本题考查了平均数与方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为.【分析】如图,圆心为O,连接OA,OB,OC,OD.利用弧长公式求解即可.【解答】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.【点评】本题考查弧长公式,解题的关键是正确寻找圆心O的位置,属于中考常考题型.15.(3分)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在直角三角形纸片的边上时,线段A′D′的长为或2﹣.【分析】分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1;A′C垂直平分线段DD′;利用,可求得CE,则A′E=A′C﹣CE,解直角三角形A′D′E可求线段A′D′;②点D′恰好落在直角三角形纸片的BC边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;在Rt△A′D′C中,利用30°所对的直角边等于斜边的一半可得结论.【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.【点评】本题主要考查了翻折问题,含30°角的直角三角形,直角三角形的边角关系,特殊角的三角函数值,全等三角形的性质.翻折属于全等变换,对应部分相等,这是解题的关键,当点D′恰好落在直角三角形纸片的边上时,要注意分类讨论.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.【分析】(1)直接利用负整数指数幂的性质以及算术平方根、零指数幂的性质分别化简得出答案;(2)将括号里面通分运算,再利用分式的乘除运算法则化简得出答案.【解答】解:(1)原式=﹣+1=1;(2)原式=•=.【点评】此题主要考查了分式的混合运算以及实数运算,正确掌握分式的混合运算法则是解题关键.17.(9分)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x <10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第③(填序号)组,达到9小时的学生人数占被调查人数的百分比为17%;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)求出每天睡眠时间达到9小时的学生人数,计算即可.【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.【点评】本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取正确是解题的关键.18.(9分)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【分析】(1)根据待定系数法求出k即可得到反比例函数的解析式;(2)先根据反比例函数系数k的几何意义求出小正方形的面积为4m2=8,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积为4×22=16,根据图中阴影部分的面积=大正方形的面积﹣小正方形的面积即可求出结果.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积为﹣小正方形的面积=16﹣8=8.【点评】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,正方形的性质,熟练掌握反比例函数系数k的几何意义是解决问题的关键.19.(9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).【分析】根据tan∠DAC==tan37.5°≈0.77,列出方程即可解决问题.【解答】解:根据题意可知:∠DAB=45°,∴BD=AD,在Rt△ADC中,DC=BD﹣BC=(AD﹣4)m,∠DAC=37.5°,∵tan∠DAC=,∴tan37.5°=≈0.77,解得AD≈17.4m,答:佛像的高度约为17.4 m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.20.(9分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP 的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠P AO=2∠PBO;(2)若⨀O的半径为5,AP=,求BP的长.【分析】(1)连接切点与圆心,根据角之间的互余关系及等量代换代换求解即可.(2)作出相关辅助线,构造相似三角形Rt△POD与Rt△OAP,利用相似三角形的性质求得PD=3,OD=4,最后根据直角三角形的勾股定理求解即可.【解答】(1)证明:如图1,连接OP,延长BO与圆交于点C,则OP=OB=OC,∵AP与⨀O相切于点P,∴∠APO=90°,∴∠P AO+∠AOP=90°,∵MO⊥CN,∴∠AOP+∠POC═90°,∴∠P AO=∠POC,∵OP=OB,∴∠OPB=∠PBO,∴∠POC═∠OPB=∠PBO═2∠PBO,∴∠AOP=2∠PBO,(2)解:如图2所示,连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,则有:AO==,由(1)可知∠POC=∠P AO,∴Rt△POD~Rt△OAP,∴,即,解得PD=3,OD=4,∴CD═OC﹣OD=1,在Rt△PDC中,PC ==,∵CB为圆的直径,∴∠BPC=90°,∴BP ===3,故PC长为3.【点评】本题考查切线的性质及圆周角定理,解此类型题目的关键是作出适当的辅助线,比如连接切点与圆心、将直径的两端与圆上某一点连接、过圆上某点作垂直于半径的线段等,根据辅助线构造直角三角形及相似三角形,再根据相关性质进行求解.21.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)40 30销售价(元/个)56 45 (1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)【分析】(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由用1100元购进了A,B两款玩偶建立方程求出其解即可;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,根据题意可以得到利润与A款玩偶数量的函数关系,然后根据A款玩偶进货数量不得超过B款玩偶进货数量的一半,可以求得A款玩偶数量的取值范围,再根据一次函数的性质,即可求得应如何设计进货方案才能获得最大利润,最大利润元;(3)分别求出两次进货的利润率,比较即可得出结论.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第一次的利润率=×100%≈46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.【点评】本题考查了列一元一次方程解实际问题的运用,一次函数的的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.22.(10分)如图,抛物线y=x2+mx与直线y=﹣x+b把交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得,即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵MN的距离为3,而AB的距离为3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.23.(10分)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是⑤(填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线0P是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE =30°时,直接写出线段OC的长.【分析】(1)由作图得,∠PGO=∠PHO=90°,OG=OH,OP=OP,可知Rt△PGO≌Rt△PHO的依据HL;(2)由作图得,OC=OC,OE=OF,再根据对顶角相等、公共角等条件可依次证明△DOE≌△COF、△CPE≌△DPF、△OPE≌△OPF,从而得到∠POE=∠POF,所以OP是∠AOB的平分线;(3)连接OP,由已知条件可证明∠OPC=∠OCP=75°,从而得OP=OC,再过点P作OA的垂线构造含有特殊角的直角三角形,利用其三边的特殊关系求出OC的长.【解答】解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE﹣OC=OF﹣OD,∴CE=DF,∵CG=CE,DH=DF,∴CG=DH,∴OC+DG=OD+DH,∴OG=OH,∵OP=OP,∴Rt△PGO≌Rt△PHO(HL),故答案为:⑤.(2)射线OP是∠AOB的平分线,理由如下:如图2,∵OC=OD,∠DOE=∠COF,OE=OF,∴△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠CPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,∠PEO=∠PFO,PE=PF,∴△OPE≌△OPF(SAS),∴∠POE=∠POF,即∠POA=∠POB,∴OP是∠AOB的平分线.(3)如图3,OC<OE,连接OP,作PM⊥OA,则∠PMO=∠PME=90°,由(2)得,OP平分∠AOB,∠PEC=∠PFD,∴∠PEC+30°=∠PFD+30°,∵∠AOB=60°,∴∠POE=∠POF=∠AOB=30°,∵∠CPE=30°,∴∠OCP=∠PEC+∠CPE=∠PEC+30°,∠OPC=∠PFD+∠POF=∠PFD+30°,∴∠OCP=∠OPC=(180°﹣∠POE)=×(180°﹣30°)=75°,∴OC=OP,∠OPE=75°+30°=105°,∴∠OPM=90°﹣30°=60°,∴∠MPE=105°﹣60°=45°,∴∠MEP=90°﹣45°=45°,∴MP=ME,设MP=ME=m,则OM=MP•tan60°=m,由OE=+1,得m+m=+1,解得m=1,∴MP=ME=1,∴OP=2MP=2,∴OC=OP=2;如图4,OC>OE,连接OP,作PM⊥OA,则∠PMO=∠PMC=90°,同理可得,∠POE=∠POF=∠AOB=30°,∠OEP=∠OPE=75°,∠OPM=60°,∠MPC =∠MCP=45°,∴OE=OP=+1,∵MC=MP=OP=OE=,∴OM=MP•tan60°=×=,∴OC=OM+MC=+=2+.综上所述,OC的长为2或2+.【点评】此题重点考查角平分线的作法、全等三角形的判定与性质、特殊角的三角函数值、解直角三角形、二次根式的化简等知识与方法,根据三角形全等的判定定理证明三角形全等是解题的关键,解第(3)题需作辅助线构造含特殊角的直角三角形,且需要分类讨论,求出所有符合条件的值.。
2021年河南省新乡市辉县市中考数学一调试卷一.选择题(共10小题).1.﹣的相反数是()A.2B.﹣2C.D.﹣2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.2020年10月29日,中国共产党第十九届中央委员会第五次全体会议审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》,其中提到“脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫”.请用科学记数法表示5575万为()A.5.575×109B.5.575×108C.5.575×107D.0.5575×109 4.下列运算正确的是()A.a﹣2a=a B.(﹣a2)3=﹣a6C.a6÷a2=a3D.(x+y)2=x2+y25.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有()A.1个B.2个C.3个D.4个6.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是()A.0B.1C.2D.20207.根据规定,郑州市将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四大类,现有投放这四类垃圾的垃圾桶各1个,若将两袋不同垃圾(用不透明垃圾袋分类打包)随机投进两个不同的垃圾桶,则投放正确的概率是()A .B .C .D .8.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B 为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称9.为了解高校学生对5G移动通信网络的消费意愿,从在校大学生中随机抽取了1000人进行调查,下面是大学生用户分类情况统计表和大学生愿意为5G套餐多支付的费用情况统计图(例如,早期体验用户中愿意为5G套餐多支付10元的人数占所有早期体验用户的50%).用户分类人数260人A:早期体验用户(目前已升级为5G用户)540人B:中期跟随用户(一年内将升级为5G用户)C:后期用户(一年后才200人升级为5G用户)下列推断中,不合理的是()A.早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减B.后期用户中,愿意为5G套餐多支付20元的人数最多C.愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多D.愿意为5G套餐多支付20元的用户中,后期用户人数最多10.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1的长为半径画弧,交直线y=x于点B1;过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y=x于点B3;…按如此规律进行下去,点B2021的坐标为()A.(22021,22021)B.(22021,22020)C.(22020,22021)D.(22022,22021)二、填空题(共5小题,每小题3分,满分15分)11.5的平方根是.12.如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是.13.如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于.14.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为.15.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(﹣1),其中x=﹣﹣1.17.如图,AB是⊙O的直径,C是半圆上任意一点,连接BC并延长到点D,使得CD=CB,连接AD,点E是弧的中点.(1)证明:△ABC≌△ADC.(2)①当∠E=°时,△ABD是直角三角形;②当∠D=°时,四边形OAEC是菱形.18.某学校为了解七、八年级“5•12防灾减灾”专题知识的学习情况,在七、八年级举行了知识竞赛,并从两个年级中分别随机抽取了50名学生的成绩(百分制),进行整理、描述和分析,下面给出了部分信息.a.七年级学生成绩的频数分布直方图,如图:b.七年级学生在80分~90分这一组的成绩分别是:80808181828283838586868788888989c.八年级学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:平均数中位数众数优秀率85847846%根据以上信息,回答下列问题:(1)七年级学生成绩的中位数为分;(2)七年级学生A和八年级学生B的成绩同为83分,则这两人在本年级学生中的成绩排名更靠前的是(填“A”或“B”);(3)根据上述信息,推断哪个年级学生专题知识的掌握情况更好,并请从两个不同的角度说明推断的合理性.19.如图,某小区一高层住宅楼AB高60米,附近街心花园内有一座古塔CD,小明在楼底B处测得塔顶仰角为38.5°,到楼顶A处测得塔顶仰角为22°,求住宅楼与古塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)20.如图l,Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,点D为AB边上的动点(点D不与点A,B重合),过点D作ED⊥CD交直线AC于点E.在点D由点A到点B运动的过程中,设AD=xcm,AE=ycm.根据学习函数的经验,可对函数y随x的变化而变化的情况进行了探究,请将探究过程补充完整:(1)通过取点、画图、测量或计算,得到了x与y的几组值,如下表:x/cm…123…y/cm…0.40.8 1.0 1.00 4.0…(说明:补全表格时相关数值保留一位小数)(2)在图2的平面直角坐标系xOy中,以表格中各对x,y的值为坐标描点,并画出该函数的大致图象;(3)结合(2)中画出的函数图象,解决问题:当AE=AD时,AD的长度约为cm.21.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A,B两种奖品的单价分别是多少元?(2)学校计划购买A,B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,如何设计购买方案能使费用最少,最少费用是多少?22.如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y 轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.23.(1)问题发现如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=50°,连接BD,CE交于点F.填空:①的值为;②∠BFC的度数为.(2)类比探究如图2,在矩形ABCD和△DEF中,AD=AB,∠EDF=90°,∠DEF=60°,连接AF交CE的延长线于点P.求的值及∠APC的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△DEF绕点D在平面内旋转,AF,CE所在直线交于点P,若DF =,AB=,求出当点P与点E重合时AF的长.参考答案一.选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.2B.﹣2C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.解:﹣的相反数是.故选:C.2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在视图中.解:如图所示:它的俯视图是:.故选:C.3.2020年10月29日,中国共产党第十九届中央委员会第五次全体会议审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》,其中提到“脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫”.请用科学记数法表示5575万为()A.5.575×109B.5.575×108C.5.575×107D.0.5575×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:5575万=55750000=5.575×107.故选:C.4.下列运算正确的是()A.a﹣2a=a B.(﹣a2)3=﹣a6C.a6÷a2=a3D.(x+y)2=x2+y2【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、a﹣2a=﹣a,故错误;B、正确;C、a6÷a2=a4,故错误;D、(x+y)2=x2+2xy+y2,故错误;故选:B.5.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有()A.1个B.2个C.3个D.4个【分析】根据对顶角相等、平行线的性质和互为余角的两个角的和为90°进行解得即可.解:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∠4+∠3=90°,∠4=∠5,∠5=∠6,∴与∠1互余的角有:∠4、∠5、∠6,故选:C.6.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是()A.0B.1C.2D.2020【分析】根据判别式的意义得到△=(﹣1)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣1)2﹣4m>0,解得m<.故选:A.7.根据规定,郑州市将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四大类,现有投放这四类垃圾的垃圾桶各1个,若将两袋不同垃圾(用不透明垃圾袋分类打包)随机投进两个不同的垃圾桶,则投放正确的概率是()A.B.C.D.【分析】设可回收垃圾、厨余垃圾、有害垃圾和其他垃圾分别用A、B、C、D表示,根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.解:设可回收垃圾、厨余垃圾、有害垃圾和其他垃圾分别用A、B、C、D表示,根据题意画树状图如下:共有12种等可能的情况数,其中投放正确的有1种,则投放正确的概率是.故选:C.8.如图,C、E是直线l两侧的点,以点C为圆心,CE长为半径作圆弧交l于A、B两点;再分别以A,B为圆心,大于AB的长为半径作圆弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.CD平分∠ACB D.点C,D关于直线l对称【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以C选项正确;因为AD不一定等于AC,所以D选项错误.故选:D.9.为了解高校学生对5G移动通信网络的消费意愿,从在校大学生中随机抽取了1000人进行调查,下面是大学生用户分类情况统计表和大学生愿意为5G套餐多支付的费用情况统计图(例如,早期体验用户中愿意为5G套餐多支付10元的人数占所有早期体验用户的50%).用户分类人数A:早期体验用户(目前260人已升级为5G用户)540人B:中期跟随用户(一年内将升级为5G用户)200人C:后期用户(一年后才升级为5G用户)下列推断中,不合理的是()A.早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减B.后期用户中,愿意为5G套餐多支付20元的人数最多C.愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多D.愿意为5G套餐多支付20元的用户中,后期用户人数最多【分析】分别计算出早期体验用户、中期跟随用户、后期用户中支付10元、20元、30元人数,再分析即可.解:早期体验用户:支付10元人数:260×50%=130,支付20元人数260×35%=91,支付30元人数260×15%=39,中期跟随用户:支付10元人数55%×540=297,支付20元人数540×40%=216,支付30元人数540×5%=27,后期用户:支付10元人数200×40%=80,支付20元人数200×56%=112,支付30元人数200×4%=8,A、早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减,说法正确,故此选项不合题意;B、后期用户中,愿意为5G套餐多支付20元的人数最多,说法正确,故此选项不合题意;C、愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多,说法正确,故此选项不合题意;D、愿意为5G套餐多支付20元的用户中,后期用户人数最多,说法不正确,应为中期跟随用户最多,故此选项符合题意;故选:D.10.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1的长为半径画弧,交直线y=x于点B1;过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y=x于点B3;…按如此规律进行下去,点B2021的坐标为()A.(22021,22021)B.(22021,22020)C.(22020,22021)D.(22022,22021)【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2021的坐标.解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),∵,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2021的坐标为(22021,22020),故选:B.二、填空题(共5小题,每小题3分,满分15分)11.5的平方根是±.【分析】直接根据平方根的定义解答即可.解:∵(±)2=5,∴5的平方根是±.故答案为:±.12.如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是0<x<1.【分析】根据题意列出不等式组,解之可得.解:由题意知,解得0<x<1,故答案为:0<x<1.13.如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于﹣6.【分析】由A、B两点的坐标,可得出△AOB是等腰直角三角形,再根据ABCD是矩形,进而可得出△BEC也是等腰直角三角形,由相似比为2,可求出点C的坐标,从而确定k的值即可.解:过点C作CE⊥y轴,垂足为E,∵A,B两点的坐标分别是(﹣1,0),(0,1),∴OA=OB=1,∠OAB=∠OBA=45°,∵ABCD是矩形,∴∠ABC=90°,∴∠CBE=180°﹣90°﹣45°=45°=∠BCE,∴△AOB∽△BEC,∴==,又∵BC=2AB,∴BE=CE=2,OE=OB+BE=1+2=3,∴点C(﹣2,3),代入反比例函数关系式得,k=﹣2×3=﹣6,故答案为:﹣6.14.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为2π﹣.【分析】解直角三角形求出AB和BC,求出∠ACA1=60°,可得等边△CA1A,根据面积差得阴影部分的面积.解:∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,∴AB=2AC=4,由勾股定理得:BC===2,∠A=60°,由旋转得:CA=A1C,∴△CA1A是等边三角形,∴∠ACA1=60°,∴∠A1CB=30°,∴∠B1CB=60°,∴弧BB1与点A1构成的阴影部分的面积=S△ABC+﹣S△ACB﹣=﹣=﹣=2π﹣,故答案为:2π﹣.15.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为或2.【分析】分两种情况①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM =AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE =DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得:(3﹣x)2+()2=(x+2)2,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为:或2.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(﹣1),其中x=﹣﹣1.【分析】根据分式的运算法则即可求出答案.解:原式=•=﹣x﹣1,当x=﹣﹣1时,原式=+1﹣1=17.如图,AB是⊙O的直径,C是半圆上任意一点,连接BC并延长到点D,使得CD=CB,连接AD,点E是弧的中点.(1)证明:△ABC≌△ADC.(2)①当∠E=135°时,△ABD是直角三角形;②当∠D=60°时,四边形OAEC是菱形.【分析】(1)如图1中,根据SAS证明三角形全等即可.(2)如图2中,证明∠B=45°即可解决问题.(3)如图3中,连接OE.证明△COE,△AOE都是等边三角形即可解决问题.【解答】(1)证明:如图1中,∵AB是⊙O的直径,∴∠BCA=∠DCA=90°,又∵CD=CB,AC=AC,∴△ABC≌△ADC(SAS).(2)解:①如图2中,∵△ABD是直角三角形,AB=AD∴∠B=∠D=45°,∵∠B+∠E=180°∴∠E=135°.故答案为135.②如图3中,连接OE.∵四边形OAEC是菱形,又∵OC=OE=OA,∴OC=EC=OE=AE=OA,∴△COE,△EOA均为等边三角形,∴∠COE=∠EOA=60°,∴∠COA=120°,∴∠B=AOC=60°,∵∠D=∠B,∴∠D=60°,故答案为60.18.某学校为了解七、八年级“5•12防灾减灾”专题知识的学习情况,在七、八年级举行了知识竞赛,并从两个年级中分别随机抽取了50名学生的成绩(百分制),进行整理、描述和分析,下面给出了部分信息.a.七年级学生成绩的频数分布直方图,如图:b.七年级学生在80分~90分这一组的成绩分别是:80808181828283838586868788888989c.八年级学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:平均数中位数众数优秀率85847846%根据以上信息,回答下列问题:(1)七年级学生成绩的中位数为81分;(2)七年级学生A和八年级学生B的成绩同为83分,则这两人在本年级学生中的成绩排名更靠前的是A(填“A”或“B”);(3)根据上述信息,推断哪个年级学生专题知识的掌握情况更好,并请从两个不同的角度说明推断的合理性.【分析】(1)根据中位数的定义求解即可;(2)将A、B成绩与本年级的学生成绩的中位数比较即可;(3)可从中位数、优秀率、平均数等角度分析求解(答案不唯一).解:(1)七年级学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据均为81,∴七年级学生成绩的中位数为=81(分),故答案为:81;(2)∵七年级的中位数为81分、八年级的中位数为84分,∴学生A在本年级排名位于中上,而学生B在本年级排名位于中下,∴这两人在本年级学生中的成绩排名更靠前的是A,故答案为:A;(3)根据上述信息,推断八年级学生专题知识的掌握情况更好,理由应从两方面分析,例如:因为81<84,八年级的中位数更大;因为七年级的优秀率为40%,八年级的优秀率为46%,40%<46%,乙的优秀率高;因为七年级的平均数为84,八年级的平均数为85,84<85,乙的平均数大.19.如图,某小区一高层住宅楼AB高60米,附近街心花园内有一座古塔CD,小明在楼底B处测得塔顶仰角为38.5°,到楼顶A处测得塔顶仰角为22°,求住宅楼与古塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)【分析】过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED =AB=16米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,分别在Rt△BCD 中和Rt△ACE中,用x表示出CD和CE=AE,利用CD﹣CE=DE得到有关x的方程求得x的值即可.解:过点A作AE⊥CD于点E.由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=20米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x.∵在Rt△BCD中,,∴CD=BD tan38.5°≈0.8x,∵在Rt△ACE中,,∴CE=AE tan22°≈0.4x.∵CD﹣CE=DE,∴0.8x﹣0.4x=60.∴x=150.即BD=150米.答:楼与塔之间的距离BD的长为150米.20.如图l,Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,点D为AB边上的动点(点D不与点A,B重合),过点D作ED⊥CD交直线AC于点E.在点D由点A到点B运动的过程中,设AD=xcm,AE=ycm.根据学习函数的经验,可对函数y随x的变化而变化的情况进行了探究,请将探究过程补充完整:(1)通过取点、画图、测量或计算,得到了x与y的几组值,如下表:x/cm…123…y/cm…0.40.8 1.0 1.2 1.00 4.0…(说明:补全表格时相关数值保留一位小数)(2)在图2的平面直角坐标系xOy中,以表格中各对x,y的值为坐标描点,并画出该函数的大致图象;(3)结合(2)中画出的函数图象,解决问题:当AE=AD时,AD的长度约为 2.4或3.3cm.【分析】(1)(2)根据题意测量、作图即可;(3)满足AE=AD条件,实际上可以转化为正比例函数y=x.解:根据题意,测量得1.2∴故答案为:1.2;(2)根据已知数据,作图得:(3)当AE=AD时,y=x,在(2)中图象作图,并测量两个函数图象交点得:AD=2.4或3.3故答案为:2.4或3.3.21.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A,B两种奖品的单价分别是多少元?(2)学校计划购买A,B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,如何设计购买方案能使费用最少,最少费用是多少?【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)设购买A种奖品m件,购买总费用为W元.根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.解:(1)设A种奖品的单价是x元,B种奖品的单价是y元.根据题意,得:解这个方程组,得答:A种奖品的单价是10元,B种奖品的单价是15元;(2)设购买A种奖品m件,购买总费用为W元.根据题意,得:W=10m+15(100﹣m)=﹣5m+1500.∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m).解这个不等式,得m≤75.∴当m=75时,W取得最小值,此时W=﹣5×75+1500=1125.答:当购买A种奖品75件、B种奖品25件时,费用最少,最少费用为1125元.22.如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y 轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m的值即可判断.解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍去),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置前,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2(不合题意舍去),当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.23.(1)问题发现如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=50°,连接BD,CE交于点F.填空:①的值为1;②∠BFC的度数为50°.(2)类比探究如图2,在矩形ABCD和△DEF中,AD=AB,∠EDF=90°,∠DEF=60°,连接AF交CE的延长线于点P.求的值及∠APC的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△DEF绕点D在平面内旋转,AF,CE所在直线交于点P,若DF =,AB=,求出当点P与点E重合时AF的长.【分析】(1)问题发现:由“SAS”可证△DAB≌△EAC,可得BD=CE,∠ACE=∠ABD,即可求解;(2)类比探究:通过证明△ADF∽△CDE,可得,∠FAD=DCE,即可求解;(3)拓展延伸:过点C作CM⊥DE,由勾股定理可求CE的长,即可求AF的长.解:(1)问题发现:∵∠BAC=∠DAE=50°,∴∠DAB=∠EAC,且AB=AC,AD=AE∴△DAB≌△EAC(SAS)∴BD=CE,∠ACE=∠ABD∴∵∠BAC+∠ABC+∠ACB=180°,且∠BFC+∠FBC+∠FCB=∠BFC+∠ABC+∠ABF+∠FCB=∠BFC+∠ABC+∠ACB=180°∴∠BFC=∠BAC=50°故答案为:1,50°(2)类比探究:,∠APC=90°理由如下:∵∠DEF=60°,∠FDE=90°∴DF=DE,∵四边形ABCD是矩形∴CD=AB,∠ADC=90°∴AD=DC,∠ADC=∠EDF=90°∴∠EDC=∠ADF,且∴△ADF∽△CDE∴点A,点P,点D,点C四点共圆∴∠APC=∠ADC=90°(3)拓展延伸:如图,过点C作CM⊥DE,交ED延长线于点M,∵DF=,∠DEF=60°,∠AEC=90°∴DE=1,∠CEM=30°∵∠CEM=30°,CM⊥ED∴CM=,EM=CE∵CD2=CM2+DM2,∴7=+(EM﹣1)2,∴CE=2∵,∴AF=6如图,过点C作CM⊥DE,交DE延长线于点M,∵DF=,∠DEF=60°,∠AEC=90°∴DE=1,∠CEM=30°∵∠CEM=30°,CM⊥ED∵CD2=CM2+DM2,∴7=+(EM+1)2,∴CE=∵,∴AF=3综上所述:当点P与点E重合时,AF的长为3或6.。
2021年河南省新乡市卫辉市中考数学二模试卷一、选择题(每小题3分,共30分)1.6的相反数的倒数是()A.﹣B.C.﹣6D.62.下列几何体是由4个相同的小正方体搭成的,其中左视图与其他三个不同的是()A.B.C.D.3.截至2021年3日24时,据国家有关部门通报,我国累计报告免费接种新冠疫苗74956万剂次,有效保护了人民的生命健康7495.6万用科学记数法表示为()A.7.4956×107B.7.4956×108C.74.956×106D.0.74956×1084.下列运算正确的是()A.(a2)4=a6B..a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 5.下面的图形是用数学家名字命名的,其中既不是轴对称图形又不是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线6.将分别标有“停”“课“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.7.若直线y=﹣2x﹣4与直线y=4x+b的交点在第二象限,则b的取值范围是()A.﹣4<b<8B.﹣4<b<0C.b>8D.﹣2≤b≤88.如图,在边长相同的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,AB 与CD相交于点P,则an∠APD的值为()A.2B.C.3D.9.如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.B.C.D.10.如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG则△BDF的面积为()A.B.C.2D.3二、填空题(每小题3分,共15分)11.计算:=()0+﹣2sin45°=.12.已知x=1是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根则m的值为.13.小天想要计算一组数据82,80,84,76,89,75的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去80,得到一组新数据2,0,4,﹣4,9,﹣5记这组新数据的方差为S12,则S12S02(选填“>”“=”“<”).14.已知如图,扇形AOB中,∠AOB=120°,OA=4,若以点A为圆心,AO长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为点D,则图中阴影部分的面积为.15.如图,在矩形纸片ABCD中,AB=6,BC=4,点E是AD的中点,点F是AB上一动点将△AEF沿直线EF折叠,点A落在点A处在EF上任取一点G,连接GC,GA′,CA′,则△CGA‘的周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.先化简,然后在的解集中选择一个合适的整数代入求值.17.为弘扬传统文化,某校开展了“传承优秀文化,阅读经典名著”的活动.为了了解学生的阅读效果,该校举行了知识竞赛,现从中随机抽取20名学生的试卷,他们的成绩如下:(成绩得分用x表示,单位:分)90 82 99 86 98 96 90 100 89 8387 88 87 90 93 100 100 96 92 100整理数据80≤x<8585≤x<9090≤x<9595≤x≤10034a8分析数据:平均分中位数众数92b c 根据以上信息解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)若该校有1600名学生参加了此次竞赛请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.18.小明同学借助无人机测量如意湖的宽度CD.如图所示,一架水平飞行的无人机在A处测得下方河流的左岸C处的俯角为a,无人机沿水平线AF方向继续飞行60米至B处,测得正前方河流右岸D处的俯角为30线段AM的长为无人机距地面的铅直高度,点M,C,D在同一条直线上其中tanα=2,MC=50米.(1)求无人机的飞行高度AM;(结果保留根号)(2)求河流的宽度CD(结果精确到1米参考数据:≈1.41,≈1.73.19.已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)请依据作法,说明∠ABP=2∠BAC;(3)已知AB=2,当四边形ABCP为菱形时,求CP的长度.20.某社区计划对面积为1800m2的区域进行绿化经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天设甲工程队施工x天,乙工程队施y天,刚好完成绿化任务.(1)求甲、乙两工程队每天能完成绿化的面积.(2)求y与x之间的函数解析式.(3)甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.21.在平面直角坐标系xOy中,关于x的二次函数y=x2+Px+q的图象过点A(﹣1,0),B (2,0),与y轴交于点C(1)求这个二次函数的表达式及C点的坐标;(2)求当﹣3≤x≤2时,y的最大值与最小值的差;(3)在y轴上找一点P,使△P AC为等腰三角形请直接写出点P的坐标.22.数学活动课上,张老师引导同学们进行如下探究如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A 固定在桌面上,图2是示意图活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合数学思考(1)设CD=xcm,点B到OF的距离GB=ycm①用含x的代数式表示:AD的长是cm,BD的长是cm②y与x的函数关系式是,自变量x的取值范围是.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格x/cm654 3.53 2.5210.50 y/cm00.55 1.2 1.58 2.473 4.29 5.08②描点:根据表中数值,继续描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.23.如图,△ABC和△ADE是有公共顶点A的两个等腰直角三角形,∠DAE=∠BAC=90°,AD=AE,AB=AC=6.D在线段BC上,从B到C运动,点M和点N分别是边BC,DE的中点.【问题发现】(1)若点D是BC边的中点时,=,直线BD与MN相交所成的锐角的度数为(请直接写出结果)【解决问题](2)若点D是BC边上任意一点时,上述结论是否成立,请说明理由.【拓展探究】(3)在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.。
2020-2021学年河南省新乡市中考数学⼆模试卷及答案解析河南省新乡市中考数学⼆模试卷⼀、选择题下列各⼩题均有四个答案,其中只有⼀个是正确的.1.下列各数中,最⼩的数是()A.3﹣2B.C.1﹣ D.2.以下是我市著名企事业(新飞电器、⼼连⼼化肥、新乡银⾏、格美特科技)的徽标或者商标,其中既是轴对称图形⼜是中⼼对称图形的是()A.B.C.D.3.⼀元⼆次⽅程x2=2x的解是()A.x=2 B.x=0 C.x1=﹣2,x2=0 D.x1=2,x2=04.在⼀个⼝袋中有4个完全相同的⼩球,它们的标号分别为1,2,3,4,从中随机摸出⼀个⼩球记下标号后放回,再从中随机摸出⼀个⼩球,则两次摸出的⼩球的标号之和⼤于4的概率是()A.B.C.D.5.如图,已知直线a∥b,⼩亮把三⾓板的直⾓顶点放在直线b上,则∠1与∠2的⼤⼩关系为()A.相等B.互余C.互补D.⼤⼩不确定6.春⾬⼩卖部货架上摆放着某品牌桶⾯,它们的三视图如图所⽰,则货架上的桶⾯⾄少有()A.10桶 B.9桶C.7桶D.5桶7.如图,在平⾏四边形ABCD中,过对⾓线AC与BD的交点O作AC的垂线交AD于点E,连接CE.若AB=4,BC=6,则△CDE 的周长是()A.7 B.10 C.11 D.128.⼆次函数y=ax2+bx的图象如图所⽰,若⼀元⼆次⽅程ax2+bx+m=0有两个不相等的实数根,则整数m的最⼩值为()A.﹣3 B.﹣2 C.﹣1 D.2⼆、填空题9.计算:﹣= .10.不等式组的解集是.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D.连接BD,若∠C=40°,则∠ODB的度数为.12.⼀个不透明的袋⼦中有除颜⾊外其余都相同的红、黄、蓝⾊玻璃球若⼲个,其中红⾊玻璃球有6个,黄⾊玻璃球有9个,已知从袋⼦中随机摸出⼀个球为蓝⾊玻璃球的概率为,那么,随机摸出⼀个为红⾊玻璃球的概率为.13.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆⼼⾓为60°,则图中阴影部分的⾯积是.14.如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=2BD.则实数k的值为.15.如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B落在AC 上的点B′处,⼜将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为.三、解答题(本⼤题共8个⼩题,满分75分)16.先化简,再求值:a(a+b)(a﹣b)﹣a(a2﹣3b)+(a﹣b)2﹣a(a﹣b2),其中a=﹣2,b=﹣+()﹣1.17.为推动阳光体育活动的⼴泛开展,引导学⽣积极参加体育锻炼,学校准备购买⼀批运动鞋供学⽣借⽤.现从各年级随机抽取了部分学⽣的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学⽣⼈数为⼈,图①中的m的值为,图①中“38号”所在的扇形的圆⼼⾓度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?18.如图,已知⊙0与等腰△ABD的两腰AB、AD分别相切于点E、F,连接AO并延长到点C,使OC=AO,连接CD、CB.(1)试判断四边形ABCD的形状,并说明理由;(2)若AB=4cm,填空:①当⊙O的半径为cm时,△ABD为等边三⾓形;②当⊙O的半径为cm时,四边形ABCD为正⽅形.19.图①中的铁塔位于我省开封市的铁塔公园,素有“天下第⼀塔”之称.为了测得铁塔EF的⾼度,⼩明利⽤⾃制的测⾓仪AC 在C点测得塔顶E的仰⾓为45°,从点A向正前⽅⾏进23⽶到B 赴,再⽤测⾓仪在D点测得塔顶E的仰⾓为60°.已知测⾓仪AC 和BD的⾼度均为1.5⽶,AB 所在的⽔平线AB⊥EF于点F(如图②),求铁塔EF的⾼度(结果精确到0.1⽶,≈1.73).20.甲、⼄两地相距300千⽶,⼀辆货车和⼀辆轿车先后从甲地出发驶向⼄地.如图,线段OA 和折线BCD分别表⽰货车和轿车离甲地距离y(千⽶)与车⾏驶时间x(⼩时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达⼄地后,货车距⼄地的路程还有多少千⽶?(2)求线段CD对应的函数解析式,并写出⾃变量上的取值范围;(3)轿车到达⼄地后,马上(掉头时间忽略不计)沿原路以CD段速度返回,求轿车从⼄地返回起⼜经过多少⼩时再与货车相遇.21.某公司今年四⽉份出售A、B两种型号电动⾃⾏车,已知两种型号电动⾃⾏车的销售数量相同,B型车的售价⽐A型车低400元,B型车的销售总额是A型车销售总额的.(1)A、B两种型号⾃⾏车的售价分别为多少元?(2)该公司五⽉份准备⽤不多于7.8万元的⾦额再采购这两种型号的电动车共60辆,已知A型车的进价为1400元,B型车的进价为1100元,问A型车最多能采购多少辆?(3)在(2)的条件下,公司销售完这60辆电动车能否实现总利润为3.5万元的⽬标?若能,请给出相应的采购⽅案;若不能,请说明理由(注:四、五⽉份售价保持不变,利润=售价﹣进价).22.(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂⾜为E,延长AE交BC于点F,求△ABF的⾯积.⼩明发现,过点C作AC的垂线,交AF的延长线⼦点G,构造出全等三⾓形,经过推理和计算,能够得到BF与CF的数量关系,从⽽使问题得到解决,请直接填空:= ,△ABF 的⾯积为.(2)【类⽐探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的⼀点,且满⾜CD=2AD”,其他条件不变,试求△ABF的⾯积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上⼀点,且满⾜CD=2AD,E为BD上⼀点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的⾯积.23.如图,抛物线y=x2+bx+c与直线y=x+交于A,B两点,与y轴交于点C,其中点A在x轴上,点B的纵坐标为2,点P为y轴右侧抛物线上⼀动点,过点P作x轴的垂线,交AB于点D.(1)求抛物线的解析式;(2)若点P的横坐标为m,直线AB与y轴交于点E,当m为何值时,以E,C,P,D为顶点的四边形是平⾏四边形?请说明理由;(3)在直线AB的下⽅的抛物线上存在点P,满⾜∠PBD=45°,请直接写出此时的点P的坐标.河南省新乡市中考数学⼆模试卷参考答案与试题解析⼀、选择题下列各⼩题均有四个答案,其中只有⼀个是正确的.1.下列各数中,最⼩的数是()A.3﹣2B.C.1﹣ D.【考点】实数⼤⼩⽐较.【分析】⾸先把每个选项中的数都化成⼩数,然后根据⼩数⼤⼩⽐较的⽅法,判断出最⼩的数是多少即可.【解答】解:,,1≈0.86,≈1.414,因为0.11<0.4<0.86<1.414,所以3﹣2<<1﹣<,所以最⼩的数是3﹣2.故选:A.【点评】此题主要考查了实数⼤⼩⽐较的⽅法,要熟练掌握,解答此题的关键是把每个选项中的数都化成⼩数.2.以下是我市著名企事业(新飞电器、⼼连⼼化肥、新乡银⾏、格美特科技)的徽标或者商标,其中既是轴对称图形⼜是中⼼对称图形的是()A.B.C.D.【考点】中⼼对称图形;轴对称图形.【分析】根据轴对称图形与中⼼对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中⼼对称图形.故错误;B、是轴对称图形,不是中⼼对称图形.故错误;C、不是轴对称图形,也不是中⼼对称图形.故错误;D、是轴对称图形,也是中⼼对称图形.故正确.故选D.【点评】本题考查了中⼼对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中⼼对称图形是要寻找对称中⼼,旋转180度后与原图重合.3.⼀元⼆次⽅程x2=2x的解是()A.x=2 B.x=0 C.x1=﹣2,x2=0 D.x1=2,x2=0【考点】解⼀元⼆次⽅程-因式分解法.【分析】⾸先移项,将⽅程右边2x移到左边,再提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中⾄少有⼀式值为0.”,即可求得⽅程的解.【解答】解:原⽅程移项得:x2﹣2x=0,∴x(x﹣2)=0,(提取公因式x),=0,x2=2,∴x1故选D.【点评】此题主要考查了⼀元⼆次⽅程的解法.解⼀元⼆次⽅程常⽤的⽅法有直接开平⽅法,配⽅法,公式法,因式分解法,要根据⽅程的特点灵活选⽤合适的⽅法.本题运⽤的是因式分解法.4.在⼀个⼝袋中有4个完全相同的⼩球,它们的标号分别为1,2,3,4,从中随机摸出⼀个⼩球记下标号后放回,再从中随机摸出⼀个⼩球,则两次摸出的⼩球的标号之和⼤于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】⾸先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的⼩球的标号之和⼤于4的情况,再利⽤概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的⼩球的标号之和⼤于4的有10种情况,∴两次摸出的⼩球的标号之和⼤于4的概率是:=.故选:C.【点评】本题考查的是⽤列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,⽤到的知识点为:概率=所求情况数与总情况数之⽐.5.如图,已知直线a∥b,⼩亮把三⾓板的直⾓顶点放在直线b上,则∠1与∠2的⼤⼩关系为()A.相等B.互余C.互补D.⼤⼩不确定【考点】平⾏线的性质;余⾓和补⾓.【分析】先根据平⾓等于180°求出∠3与∠1的⼤⼩关系,再利⽤两直线平⾏,同位⾓相等即可得到∠1与∠2的⼤⼩关系.【解答】解:∵∠1+∠3+90°=180°,∴∠1+∠3=180°﹣90°=90°,∵a∥b,∴∠2=∠3,∴∠1+∠2=90°,即∠1与∠2互余.故选B.【点评】本题考查了平⾓的定义及两直线平⾏,同位⾓相等的性质,熟记性质是解题的关键.6.春⾬⼩卖部货架上摆放着某品牌桶⾯,它们的三视图如图所⽰,则货架上的桶⾯⾄少有()A.10桶 B.9桶C.7桶D.5桶【考点】由三视图判断⼏何体.【分析】主视图、左视图、俯视图是分别从物体正⾯、左⾯和上⾯看,所得到的图形.【解答】解:易得第⼀层有4碗,第⼆层最少有2碗,第三层最少有1碗,所以⾄少共有7盒.故选:C.【点评】本题意在考查学⽣对三视图掌握程度和灵活运⽤能⼒,同时也体现了对空间想象能⼒⽅⾯的考查.如果掌握⼝诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.如图,在平⾏四边形ABCD中,过对⾓线AC与BD的交点O作AC的垂线交AD于点E,连接CE.若AB=4,BC=6,则△CDE 的周长是()A.7 B.10 C.11 D.12【考点】平⾏四边形的性质;线段垂直平分线的性质.【分析】由平⾏四边形ABCD的对⾓线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,⼜由平⾏四边形ABCD的AB+BC=AD+CD=10,继⽽可得△CDE的周长等于AD+CD.【解答】解:∵四边形ABCD是平⾏四边形,∴OA=OC,AB=CD,AD=BC,∵AB=4,BC=6,∴AD+CD=10,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=10.故选B.【点评】此题考查了平⾏四边形的性质,关键是根据线段垂直平分线的性质进⾏分析.此题难度不⼤,注意掌握数形结合思想的应⽤.8.⼆次函数y=ax2+bx的图象如图所⽰,若⼀元⼆次⽅程ax2+bx+m=0有两个不相等的实数根,则整数m的最⼩值为()A.﹣3 B.﹣2 C.﹣1 D.2【考点】抛物线与x轴的交点.【分析】⼀元⼆次⽅程ax2+bx+m=0有实数根,则可转化为ax2+bx=﹣m,即可以理解为y=ax2+bx 和y=﹣m有交点,即可求出m的最⼩值.【解答】解:⼀元⼆次⽅程ax2+bx+m=0有两个不相等的实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见,﹣m<2,∴m>﹣2,∴m的最⼩值为﹣1.故选:C.【点评】本题考查的是抛物线与x轴的交点,把元⼆次⽅程ax2+bx+m=0有实数根,则可转化为ax2+bx=﹣m,即可以理解为y=ax2+bx和y=﹣m有交点是解题的关键.⼆、填空题9.计算:﹣= .【考点】分式的加减法.【专题】计算题.【分析】原式两项通分并利⽤同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==.故答案为:.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.不等式组的解集是﹣1<x≤3 .【考点】解⼀元⼀次不等式组.【专题】计算题.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了⼀元⼀次不等式组解集的求法,其简便求法就是⽤⼝诀求解.求不等式组解集的⼝诀:同⼤取⼤,同⼩取⼩,⼤⼩⼩⼤中间找,⼤⼤⼩⼩找不到(⽆解).11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D.连接BD,若∠C=40°,则∠ODB的度数为25°.【考点】切线的性质.【分析】先根据切线的性质得∠OAC=90°,再利⽤互余计算出∠AOC=90°﹣∠C=50°,由于∠OBD=∠ODB,利⽤三⾓形的外⾓性质得∠ODB=∠AOC=25°.【解答】解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°﹣∠C=90°﹣40°=50°,∵OB=OD,∴∠OBD=∠ODB,⽽∠AOC=∠OBD+∠ODB,∴∠ODB=∠AOC=25°,故答案为:25°【点评】本题考查了切线的性质,三⾓形外⾓性质,三⾓形内⾓和定理,等腰三⾓形性质的应⽤,解此题的关键是求出∠AOC 的度数.12.⼀个不透明的袋⼦中有除颜⾊外其余都相同的红、黄、蓝⾊玻璃球若⼲个,其中红⾊玻璃球有6个,黄⾊玻璃球有9个,已知从袋⼦中随机摸出⼀个球为蓝⾊玻璃球的概率为,那么,随机摸出⼀个为红⾊玻璃球的概率为.【考点】概率公式.【分析】⾸先设袋⼦中篮球x个,由概率公式即可求得⽅程:=,继⽽求得篮球的个数,然后利⽤概率公式求解即可求得答案.【解答】解:设袋⼦中篮球x个,根据题意得:=,解得:x=9,经检验:x=9是原分式⽅程的解;∴随机摸出⼀个为红⾊玻璃球的概率为:=.故答案为:.【点评】此题考查了概率公式的应⽤.⽤到的知识点为:概率=所求情况数与总情况数之⽐.13.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆⼼⾓为60°,则图中阴影部分的⾯积是.【考点】扇形⾯积的计算;全等三⾓形的判定与性质;菱形的性质.【专题】⼏何图形问题.【分析】根据菱形的性质得出△DAB是等边三⾓形,进⽽利⽤全等三⾓形的判定得出△ABG≌△DBH,得出四边形GBHD的⾯积等于△ABD的⾯积,进⽽求出即可.【解答】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三⾓形,∵AB=2,∴△ABD的⾼为,。
新乡市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·通辽) 的相反数是()A . 2019B .C . ﹣2019D .2. (2分) (2018九下·江阴期中) 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .3. (2分)(a2)3等于()A . 3a2B . a5D . a84. (2分) (2016八上·平谷期末) 京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019七下·宿豫期中) 年月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为米,这个数据用科学记数法表示为()A .B .C .D .6. (2分)某商店选用28元/千克的A型糖3千克,20元/千克的B型糖2千克,12元/千克的C型糖5千克混合成杂拌糖后出售,这种杂拌糖平均每千克的售价应为()A . 20元B . 18元C . 19.6元D . 18.4元7. (2分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A . 5﹕3B . 4﹕1C . 3﹕18. (2分)直角三角形斜边上的中线与连结两直角边中点的线段的关系是()A . 相等且平分B . 相等且垂直C . 垂直平分D . 垂直平分且相等9. (2分) (2017八上·武城开学考) 若A(2x-5,6-2x)在第四象限,则X的取值范围是()A . x>3B . x>-3C . x<-3D . x<310. (2分)(2017·茂县模拟) 已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共7分)11. (1分)(2012·阜新) 函数中自变量x的取值范围是________.12. (1分) (2019七上·江阴期中) 若则的值是________.13. (1分) (2017八下·宜兴期中) 小芳抛一枚硬币10次,有6次正面朝上,当她抛第11次时,正面朝上的概率为________.14. (1分)(2018·河源模拟) 如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D ,若AC∶BC=4∶3,AB= 10cm,则OD的长为________ __cm.15. (1分)若x=2是关于x的方程的一个根,则a 的值为________.16. (2分)(2018·青海) 如图,下列图案是由火柴棒按某种规律搭成的,第个图案中有2个正方形,第个图案中有5个正方形,第个图案中有8个正方形,则第个图案中有________个正方形,第n个图案中有________个正方形.三、解答题 (共8题;共83分)17. (10分) (2020八上·襄城期末) 先化简,再求值.(1),其中x=0.5(2),其中x=-3.218. (8分)(2017·襄城模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是________;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是________;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为________;(3)请补全频数分布直方图.19. (10分)(2018·拱墅模拟) 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(),反比例函数对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x (min)之间的函数关系().根据图象解答下列问题:(1)求危险检测表在气体泄漏之初显示的数据是多少;(2)求反比例函数的表达式,并确定车间内危险检测表恢复到气体泄漏之初时对应x的值.20. (15分) (2017八下·简阳期中) 4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型甲地(元/辆)乙地(元/辆)运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.21. (10分)(2017·衡阳模拟) 如图,直线l1:y=x与双曲线y= 相交于点A(a,2),将直线l1向上平移3个单位得到l2 ,直线l2与双曲线相交于B、C两点(点B在第一象限),交y轴于D点.(1)求双曲线y= 的解析式;(2)求tan∠DOB的值.22. (10分)(2018·青岛模拟) 如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)23. (10分) (2019八下·闽侯期中) 如图(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF=45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2 ,∠MAN=45°,求AM 的长度.24. (10分) (2016九上·济源期中) 某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共83分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-2、24-1、24-2、。
2021年河南新乡中考数学真题及答案
(总分值120分,考试时间100分钟〕
一、选择题〔每题3分,共30分〕
1. -2的绝对值是〔〕
A. 2
B. -2
C.
D.
2. 河南省人民济困最“给力〞“〞用科学记数法表示为〔〕
A. B. C. D.
3. 如图是由8个相同的小正方体组成的几何体,其主视图是〔〕
A. B. C. D.
4.以下运算正确的选项是〔〕
A. B. C. D.
5. 如图,=60°,,那么2的度数为〔〕
°00°
°°
6. 关于菱形的性质,以下说法不正确的选项是
.......〔〕
A.四条边相等
7. 假设方程没有实数根,那么m的值可以是〔〕
A. -1
B. 0
C. 1
D.
8. 现有4张卡片,正面图案如下图,它们除此之外完全相同,把这4张卡片反面朝上洗匀,从中随机抽
取两张,那么这两张卡片正面图案恰好是“天问〞和“九章〞的概率是〔〕
A. B. C. D.
9. 如图,的顶点0(0,0), A(1,2),点C在轴的正半轴上,延长BA交轴于点D。
将ODA 绕点0顺时针旋转得到△,当点D的对应点落在OA上时,的延长线恰好经过点C,
那么点C的坐标为〔〕
A.(20)
B. (2,0)
C.(2 + 1,0)
D. (2 + 1,0)
10. 如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为,
,图2是点P运动时y随x变化的关系图象,那么BC的长为〔〕
A. 4
B. 5
C. 6
D. 7
二、填空题〔每题3分,共15分〕
11. 假设代数式有意义,那么实数的取值范围是_____________.
12. 请写出一个图象经过原点的函数的解析式_________________.
13. 某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,他们的价格相同,
品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如下图,那么产品更符合规格要求的厂家是(填“甲〞或“乙〞〕.
14. 如下图的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,
0,那么的长为.
15.小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,ACB=900,=300,AC=1.第一步,在
AB边上找一点D,将纸片沿CD折叠,点A落在处,如图2;第二步,将纸片沿折叠,点D落在恰好落在直角三角形纸片的边上时,线段的长为.
三、解答题〔本大题共8个小题,共75分〕
16.(10 分〕〔1)计算:;〔2)化简:
17.(9分〕2021年4月,教育部印发?关于进一步加强中小学生睡眠管理工作的通知?,明确要求初中生每
天睡眠时间应到达9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.
调查问卷
小时.
如果你平均每天睡眠时间缺乏9小时,请答复第2个问题
(单项选择〕.
A.校内课业负担重
C.学习效率低
平均每天睡眠时间 (时〕分为5组:①
.
根据以上信息,解答以下问题:
(1)本次调查中,平均每天睡眠时间的中位数落在第(填序号〕组,到达9小时的学生人数占被
调查人数的百分比为;
(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.
18. (9分〕如图,大、小两个正方形的中心均与平面直角坐标系的原点0重合,
边分别与坐标轴平行,反比例函数y = 的图象与大正方形的一边交于点
A(1,2),且经过小正方形的顶点B
(1)求反比例函数的解析式;
(2)求图中阴影局部的面积.
19. (9分〕开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某
数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D 在同一水平线上.佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°°°°°=0.77).
20. (9分〕在古代,智慧的劳动人民己经会使用“石磨〞,其原理为在磨盘的边缘连接一个固定长度的“连
杆〞,推动“连杆〞带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构〞.
小明受此启发设计了一个“双连杆机构〞,设计图如图1,两个固定长度的“连杆〞 AP,BP的连接点P在O上,当点P在O上转动时,带动点A,B分别在射线0M,0N上滑动,0M丄0N.当AP与O 相切时,点B恰好落在O上,如图2.
请仅就图2的情形解答以下问题.
(1)求证:;
⑵假设O的半径为5,AP=,求BP的长.
21. (9分〕猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A, B两款猕猴玩偶,
决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:
A款玩偶B款玩偶
类别
价格
进货价〔元/个〕40 30
销售价〔元/个〕56 45
(1)第一次小李用1100元购进了 A,B两款玩偶共30个,求两款玩偶各购进多少个.
(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李方案购进
两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?
(3)小李第二次进货时采取了〔2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分
析,对于小李来说哪一次更合算?
(注:利润率=%)
22.(10分〕如图,抛物线与直线把交于点A(2,0)和点B
(1)求m和b的值;
(2)求点B的坐标,并结合图象写出不等式>的解集;
(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,假设线段MN与抛物线只有一
个公共点,直接写出点M的横坐标x M的取值范围.
23. (10分〕下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成
相应的任务.
小明:如图1,〔1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合〕;〔2)分别作线
段CE,DF的垂直平分线,,交点为P,垂足分别为点G,H;〔3)作射线OP,射线即为的
平分线.
简述理由如下:
由作图知,所以,那么
,即射线OP是的平分线.
小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改良如下,如图2,〔1)分别在射
线0A,0B上截取0C=0D,0E=0F (点C,E不重合〕〔2)连接DE的平分线.
……
任务:
(1) 小明得出的依据是(填序号〕.
①SSS ②SAS ③AAS ④ASA ⑤HL
(2)小军作图得到的射线0P 是的平分线吗?请判断并说明理由.
(3) 如图3,己知,点E,F分别在射线0A,0B上,且0E=0F= + 1.点C,D分别为射线0A ,0B上的动点,且0C=0D,连接DE,CF,交点为P,当=30°时,直接写出线段OC的长.
【参考答案】
―、选择题
题号 1 2 3 4 5 6 7 8 9 10 答案 A B A C D B D A B C 二、填空题
11.
12. (答案不唯一〕
13. 甲
14.
15. 或 2-
三、解答题
16. (1) 1;
(2)
17. (1)③,17%;
(2)答案不唯一,言之有理即可.
例如:该校大局部学生睡眠时间没有到达通知要求;
建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;
建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.
18. (1)反比例函数的解析式为y = ;
(2)图中阴影局部的面积为8.
19. 佛像的高度约为17.4 m
20. (1)证明略;
(2) BP=3 .
21. (1) A款玩偶购进20个,B款玩偶购进10个;
(2) 按照购进A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460
元;
(3) 从利润率的角度分析,对于小李来说第二次的进货方案更合算.
22. (1) m=2, b=2;
(2) B(-1,3),不等式>的解集为;
(3) -1<2 或=3.
23. (1)⑤;
(2)射线OP是的平分线,理由如下:〔方法不唯一〕
连接EF
∵OC=OD,OE=OF
∴
又∵EF=FE
∴. (SAS)
∴
∴PE=PF
∴OP是EF的垂直平分线
∴OP EF
又∵OE=OF
∴OP平分 (三线合一〕
(3) 0C=2 或 OC=2+.。