放大器反馈分析
- 格式:docx
- 大小:41.65 KB
- 文档页数:4
反馈放大电路特性分析反馈放大电路是现代电子领域中常见的一种电路形式,它通过引入反馈来提高放大器的性能和稳定性。
本文将对反馈放大电路的特性进行分析和探讨,以帮助读者更好地理解和应用这一电路结构。
一、反馈放大电路的基本原理反馈放大电路由放大器和反馈网络组成。
放大器负责将输入信号放大到所需的幅度,而反馈网络将放大器的输出信号重新引入到输入端,实现信号的反馈。
反馈的作用可以分为正反馈和负反馈两种,而负反馈是最常见的形式。
二、负反馈的基本特点1. 改善放大器的线性度:负反馈可以降低放大器的非线性失真,使其输出更加接近输入信号的形状,提高信号的准确度和保真度。
2. 提高频率响应:负反馈可以通过减小放大器的增益来消除高频段的干扰和失真,从而实现更宽的频率响应范围。
3. 增加输入和输出阻抗:负反馈可以降低放大器的输入和输出阻抗,使其更好地适应不同的信号源和负载要求。
4. 提高放大器的稳定性:负反馈可以降低放大器的灵敏度,减少因元器件参数变化或温度变化而引起的放大器性能波动。
三、反馈放大电路的类型1. 电压串联反馈:将反馈信号以电压的形式串联到放大器的输入端。
这种反馈方式常用于放大器的增益控制和频率响应改善。
2. 电流并联反馈:将反馈信号以电流的形式并联到放大器的输入端。
这种反馈方式可以提高放大器的输入阻抗和线性度。
3. 变压器反馈:通过变压器将输出信号部分作为反馈信号输入到放大器的输入端。
这种反馈方式常用于功率放大器和音频放大器等场合。
4. 共模反馈:将共模信号作为反馈信号用于抑制共模干扰。
这种反馈方式常用于差分放大器等电路中。
四、反馈放大电路的实际应用反馈放大电路广泛应用于各种电子设备和系统中,如音频放大器、射频放大器、运算放大器、电源管理以及通信系统中的前端放大器等。
在这些应用中,反馈放大电路能够提供稳定的放大倍数、低失真的信号放大和抗干扰能力,满足不同应用场景的实际需求。
总结:反馈放大电路是一种常见且重要的电路结构,通过引入负反馈可以改善放大器的性能和稳定性。
放大电路中反馈判断的技巧放大电路中反馈技巧一直是电子工程师们必备的技能之一。
反馈电路的作用是为了限制放大电路中的干扰和误差,确保输出信号的精确度和稳定性。
在反馈电路中,判断反馈是否正常是非常重要的。
本文介绍一些判断反馈电路是否正常的技巧,帮助电子工程师更快更准确地解决问题。
1.检测反馈电路中的信号方向在反馈电路中,放大器的输出信号被送回到输入端。
通过对比反馈电路的输入信号与输出信号的相位关系来判断反馈是否正常。
一般情况下,若反馈电路中的信号方向相同,则反馈电路为正反馈电路,即信号会越来越大,若方向相反则为负反馈电路。
只要检测出反馈信号传输的方向就可以初步判断反馈电路是否正常。
2.测量电平和幅度当反馈电路正常工作时,反馈信号幅度不变,并且在某个具体区间范围内平稳工作。
因此,通过测量反馈电路中的电平和幅度来判断反馈电路是否正常是可行的。
通常通过示波器、多用表等工具辅助完成。
3.检测反馈电路中的过载保护过载保护是现代放大电路中的一个重要功能,用来防止反馈电路中的放大器过载而导致损坏或故障。
所以通过检测反馈电路中是否有过载保护来判断反馈电路是否正常也是可行的。
4.检测放大器本身如果反馈电路检测结果显示反馈电路正常,那么问题有可能出现在放大器本身,可以通过检测放大器的本身是否正常来进一步判断反馈电路是否正常工作。
如果放大器本身有故障或损坏,则会导致反馈电路不正常。
判断反馈电路是否正常是电子工程师们最常见的问题之一。
除了上述技巧之外,工程师们还可以通过模拟仿真、电路调试等多种方式来解决问题。
总之,在实践中,教科书中介绍的技巧并不一定能够完全解决所有问题。
在实际的工作中,电子工程师们需要耐心地尝试,并根据具体情况进行调整和判断。
放大电路中的反馈工作原理放大电路是指通过放大器将输入信号放大为更大的输出信号的电路。
而反馈是指将输出信号的一部分返回到放大器的输入端,以实现特定的放大效果或调节放大器的性能。
下面是对放大电路中反馈工作原理的详细解释。
放大电路中的反馈可以分为正反馈和负反馈两种情况。
正反馈是指将放大器输出信号的一部分经过反馈回路返回到放大器的输入端,而负反馈则是指将放大器输出信号的一部分经过反馈回路返回到放大器的输入端,但反相。
首先,我们来看负反馈。
在负反馈中,输入信号经过放大器放大后的输出信号被引导回到放大器的输入端。
这样做的目的是为了抑制放大器的非线性失真、提高放大器的稳定性、扩展放大器的频率响应范围以及减小输出阻抗等。
在负反馈中,反馈信号的相位与输入信号的相位相反,使得输出信号与输入信号间的相位差减小,这有助于提高放大器的线性度。
此外,负反馈还可以使得放大器的增益更稳定,减小放大器对元器件参数变化的敏感度,从而提高整个电路的性能。
负反馈可以分为电压型负反馈和电流型负反馈。
电压型负反馈中,放大器的输入为电压信号,反馈信号也为电压信号;而电流型负反馈中,放大器的输入为电流信号,反馈信号也为电流信号。
不同类型的负反馈在实际应用中有不同的使用方式和效果。
比如,电压型负反馈可以改变放大器的放大倍数,而电流型负反馈可以改变放大器的输出阻抗。
而正反馈则是将部分输出信号回馈到输入端,与负反馈相比,正反馈会增强放大器的非线性特点,使得放大器的输出更容易失真。
实际应用中,正反馈常用于振荡器、比较器等电路中。
正反馈可以增大放大器的增益,提高放大器的灵敏度,但也容易产生自激振荡等不稳定问题。
总之,反馈在放大电路中具有重要的作用。
通过反馈,可以有效地改善放大器的线性度、稳定性和频率响应,使得输出信号更加稳定、准确和可靠。
负反馈是应用最广泛的一种反馈方式,可以提高系统的稳定性和性能,但也要注意适度使用,避免带来不必要的问题。
而正反馈虽然在某些特定的应用中有重要的作用,但也要注意控制好反馈系数,避免引起不稳定性和失真等问题。
放大器正反馈和负反馈概念放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。
①反馈方框图如图1所示是反馈方框图。
从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。
图1 反馈方框图②反馈种类反馈电路有两种:正反馈电路和负反馈电路。
这两种反馈的结果(指对输出信号的影响)完全相反。
③正反馈概念正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。
如图2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,•这两个信号混合后是相加的关系,所以净输入放大器的信号UI•比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。
图2 正反馈方框图在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。
正反馈电路在放大器电路中通常不用,它只是用于振荡器中。
④负反馈概念负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。
如图3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI 比输入信号Ui要小,•使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。
图3 负反馈方框图⑤反馈量负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的增益在加入负反馈电路之后减小了。
当负反馈电路造成的净输入信号愈小,即负反馈量愈大,负反馈放大器的增益愈小,反之负反馈量愈小,负反馈放大器的增益愈大。
判断一个电路是何种反馈类型的步骤:
1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络;
2)根据反馈信号的取出方式,判定是电压还是电流反馈;
3)根据反馈的接入方式判定是串联反馈还是并联反馈;
4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈。
具体分析如下:
1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络;
2)根据反馈信号的取出方式,判定是电压还是电流反馈;
方法1:将输出端短路,若反馈信号不存在,为电压反馈;反之为电流反馈。
方法2:当反馈信号与输出信号由同一端引出时(如输出信号从集电极取出,反馈网络的输入端也接在集电极)是电压反馈;反之为电流反馈。
3)根据反馈的接入方式判定是串联反馈还是并联反馈;
反馈信号Vf与输入信号Vi在输入回路串接,以电压形式叠加,为串联反馈。
反馈信号If与输入信号Ii在输入回路并接,以电流形式叠加,为并联反馈。
方法1:输入信号与反馈信号在不同节点引入(例如三极管b和e极,或运放的反向端和同向端)为串联反馈;输入信号与反馈信号在同一节点引入(例如三极管b极,或运放的反向端)为并联反馈。
方法2:将输入回路的反馈点对地短路,若输入信号仍能加到放大电路中去,为串联反馈;若输入信号不能加到放大电路中去,为并联反
馈。
4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈
采用“瞬时极性法”
从输入端加入任意极性(正或负)的信号,使信号沿着信号传输路径向下传输(从输入到输出)。
再从输出反向传输(反馈)到输入端。
反馈信号在输入端与原输入信号相比较,看净输入信号是增加还是减小(极性相同还是极性相反)。
极性相同(增加)是正反馈,极性相反(减小)是负反馈。
具体判别时可以将输入和反馈两个信号,接到输入回路的同一极上,则两者极性相反为负反馈,极性相同为正反馈。
同样的道理也可以将输入和反馈两个信号,接到输入回路的两个不同的电极上,则两者极性相反为正反馈,极性相同为负反馈
为了迅速准确地判断反馈极性,应该注意以下几点:
(1)正确理解电路中各点瞬时极性的含义。
所谓正极性,在输入正弦波时,可以指正弦波的正半周;在输入非正弦波时,表示该点的电位增大或该支路的瞬时电流增大。
反之,所谓负极性指交流信号的负半周或瞬时量减少。
(2)熟悉常用放大电路输入输出之间的相位关系。
在共射组态中,信号由基极输入,集电极输出,输入与输出之间相位相反。
在共基组态中,信号由发射极输入,集电极输出,输入与输出之间相位相同。
在共集组态中,信号由基极输入,发射极输出,输入与输出之间相位相同。
同理也不难确定差分放大电路和集成运算放大电路中的相位关
系。
(3)理解放大器件中输入输出间的控制原理,以确定净输入量。
如对于运算放大器,不难看出运放两个输入端之间的差模输入电压或输入电流可以控制运放的输出电压或电流;对于三极管组成的放大电路来说,三极管的基极输入电流或发射结电压的大小控制输出电压或电流;对于差分放大电路来说,差模输入电压或基极输入电流控制输出电压或电流。
因此,根据输入回路中输入信号与反馈信号的接法,可以判断净输入信号是增加还是减小,从而确定电路中的反馈极性是正反馈还是负反馈。
图4 反馈极性的判断
(a) 通过净输入电压的变化判断反馈极性
(b) 通过净输入电流的变化判断反馈极性
(c)电路引入了正反馈
图4(a)所示电路中,设输入电压的瞬时极性对地为正,由于
从同相端输入,则输出电压对地也为正,由此得反馈电压对地也为正,因此集成运放的净输入电压减小,说明电路引入了负反馈。
图4(b)所示电路中,设输入电压的瞬时极性对地为正,由于从反相端输入,则输出电压对地为负,由此可得三个支路中、、
的瞬时流向,并由此判断出集成运放的净输入电流减小,说明电路引入了负反馈。
将图4(a) 电路中运放的同相输入端和反相输入端互换,得图4(c) 电路,设输入电压的瞬时极性对地为正,由于从反相端输入,则输
出电压对地为负,由此得反馈电压对地也为负,因此集成运放的净输入电压增大,说明电路引入了正反馈。