2020届二轮(理科数学)专题提能四立体几何中的创新考法与学科素养专题卷(全国通用)
- 格式:pdf
- 大小:869.86 KB
- 文档页数:8
第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
1.(2019·徐州、淮安、宿迁、连云港四市模拟)已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为________.[解析] 由题意得圆锥的底面半径、高分别为r =1,h =3,故该圆锥的体积为V =13π×12×3=3π3. [答案]33π 2.(2019·江苏省高考命题研究专家原创卷(五))《九章算术》第五章《商功》记载:今有圆堡瑽,周四丈八尺,高一丈一尺,问积几何?此处圆堡瑽即圆柱体,其意思是:有一个圆柱体的底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π的值取3,估算该圆堡瑽的体积为________立方尺.(注:一丈等于十尺)[解析] 设该圆柱体底面圆的半径为r 尺,则由题意得2πr =48,所以r ≈8,又圆柱体的高为11尺,故该圆堡瑽的体积V =πr 2h ≈2 112立方尺.[答案] 2 1123.(2019·苏北四市高三模拟)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D -ABC 的体积为________.[解析] 在平面DAC 内过点D 作DE ⊥AC ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥D -ABC 的体积为13×12×4×3×125=245.[答案]2454.(2019·南京模拟)设平面α与平面β相交于直线m ,直线b 在平面α内,直线c 在平面β内,且c ⊥m ,则“c ⊥b ”是“α⊥β”的________条件.[解析] 若α⊥β,又α∩β=m ,c ⊂β,c ⊥m 可得c ⊥α,因为b ⊂α,所以c ⊥b .反过来c ⊥b 不能得到α⊥β(如b ∥m 时,由c ⊥m 可得c ⊥b ,但不能判断α,β的位置关系).[答案] 必要不充分5.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.[解析] 因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,又因为E 是AD 的中点,所以F 是CD 的中点,即EF 是△ACD 的中位线, 所以EF =12AC =12×22=2.[答案] 26.(2019·扬州模拟)设l ,m 是两条不同的直线,α是一个平面,有下列三个命题: ①若l ⊥α,m ⊂α,则l ⊥m ; ②若l ∥α,m ⊂α,则l ∥m ; ③若l ∥α,m ∥α,则l ∥m . 则其中正确命题的序号是________.[解析] 根据线面垂直的性质定理可知①正确. [答案] ①7.(2019·南通高三模拟)已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b .若它们的体积相等,则a 3∶b 3的值为________.[解析] 由题意可得12×a 2×32×a =π(b 2)2×b ,即34a 3=14πb 3,则a 3b 3=π3=3π3.[答案]3π38.(2019·江苏省高考命题研究专家原创卷(三))如图,若三棱锥A 1BCB 1的体积为3,则三棱柱ABC -A 1B 1C 1的体积为________.[解析] 设三棱柱的底面面积为S ,高为h ,则VA 1ABC =13S △ABC ·h =13Sh =13VABC A 1B 1C 1,同理VC A 1B 1C 1=13VABC A 1B 1C 1,所以VA 1BCB 1=13VABC A 1B 1C 1.又VA 1BCB 1=3,所以三棱柱ABC -A 1B 1C 1的体积为9.[答案] 99.(2019·南通模拟)如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为P A ,PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与CF 异面;②直线BE 与AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面P AD .其中一定正确的有________个.[解析] 如图,易得EF ∥AD ,AD ∥BC ,所以EF ∥BC ,即B ,E ,F ,C 四点共面,则①错误,②正确,③正确,④不一定正确. [答案] 210.(2019·江苏高考专家原创卷)已知正三棱锥P -ABC 的体积为223,底面边长为2,D 为侧棱P A 的中点,则四面体D -ABC 的表面积为________.[解析] 设底面正三角形ABC 的中心为O ,连结OA ,OP ,又底面边长为2,可得OA =233,由V P ABC =13S △ABC ·PO ,即223=13PO ×34×22,得PO =263,所以P A =PO 2+AO 2=2.S △ABC=3,S △DAB =S △DAC =32,S △DBC =2,所以四面体D -ABC 的表面积为23+2.[答案] 23+ 211.(2019·江苏省高考命题研究专家原创卷(二))已知三棱锥P -ABC 中,P A =3,PC =2,AC =1,平面P AB ⊥平面ABC ,D 是P A 的中点,E 是PC 的中点.(1)求证:DE ∥平面ABC ; (2)求证:平面BDE ⊥平面P AB .[证明] (1)因为D 是P A 的中点,E 是PC 的中点, 所以DE ∥AC .又DE ⊄平面ABC ,AC ⊂平面ABC , 所以DE ∥平面ABC .(2)因为P A =3,PC =2,AC =1,所以P A 2+AC 2=PC 2, 所以三角形P AC 是直角三角形,AC ⊥P A . 又DE ∥AC ,所以DE ⊥P A . 过P 作PH ⊥AB 于H .因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PH ⊂平面P AB , 所以PH ⊥AC .又DE ∥AC ,所以DE ⊥PH . 又P A ∩PH =P ,P A ,PH ⊂平面P AB , 所以DE ⊥平面P AB .又DE ⊂平面BDE ,所以平面BDE ⊥平面P AB .12.(2019·南京检测)如图,在正三棱柱ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ;(2)求证:平面A 1EC ⊥平面ACC 1A 1.[证明] (1)连结AC 1交A 1C 于点O ,连结OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1. 又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A 1EC ,OE ⊂平面A 1EC , 所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点, 所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC , 所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC , 所以平面A 1EC ⊥平面ACC 1A 1.13.(2019·江苏高考原创卷)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =4,DE =2AB =3,且F 是CD 的中点.(1)求证:AF ∥平面BCE ;(2)在线段CE 上是否存在点H ,使DH ⊥平面BCE ?若存在,求出CHHE 的值;若不存在,请说明理由.[解] (1)证明:取CE 的中点P ,连结FP ,BP , 因为F 为CD 的中点, 所以FP ∥DE ,且FP =12DE .又AB ∥DE ,且AB =12DE ,所以AB ∥FP ,且AB =FP , 所以四边形ABPF 为平行四边形, 所以AF ∥BP .因为AF ⊄平面BCE ,BP ⊂平面BCE , 所以AF ∥平面BCE .(2)在线段CE 上存在点H ,使DH ⊥平面BCE .理由如下:在△CDE 中,过点D 作DH ⊥CE ,交CE 于点H , 因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE ∥AB ,所以DE ⊥平面ACD ,又CD 、AF ⊂平面ACD ,所以DE ⊥AF ,DE ⊥CD .又CD ∩DE =D ,所以AF ⊥平面DCE .又BP ∥AF , 所以BP ⊥平面DCE .因为DH ⊂平面CDE ,所以DH ⊥BP . 又BP ∩CE =P , 所以DH ⊥平面BCE .在Rt △CDE 中,CD =4,DE =3,DH ⊥CE , 所以CH =165,HE =95,CH HE =169.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点.(1)求证:B 1C 1⊥平面ABB 1A 1;(2)在CC 1上是否存在一点E ,使得∠BA 1E =45°,若存在,试确定E 的位置,并判断平面A 1BD 与平面BDE 是否垂直?若不存在,请说明理由.[解] (1)证明:因为AB =B 1B ,所以四边形ABB 1A 1为正方形,所以A 1B ⊥AB 1, 又因为AC 1⊥平面A 1BD ,所以AC 1⊥A 1B , 所以A 1B ⊥平面AB 1C 1,所以A 1B ⊥B 1C 1. 又在直棱柱ABC -A 1B 1C 1中,BB 1⊥B 1C 1, 所以B 1C 1⊥平面ABB 1A 1.(2)存在.证明如下:设AB =BB 1=a ,CE =x ,因为D 为AC 的中点,且AC 1⊥A 1D ,所以A 1B =A 1C 1=2a ,又因为B 1C 1⊥平面ABB 1A 1,B 1C 1⊥A 1B 1,所以B 1C 1=a ,BE =a 2+x 2, A 1E =2a 2+(a -x )2=3a 2+x 2-2ax ,在△A 1BE 中,由余弦定理得BE 2=A 1B 2+A 1E 2-2A 1B ·A 1E ·cos 45 °,即a 2+x 2=2a 2+3a 2+x 2-2ax -23a 2+x 2-2ax ·2a ·22,所以3a 2+x 2-2ax =2a -x ,解得x =12a ,即E 是C 1C 的中点,因为D ,E 分别为AC ,C 1C 的中点,所以DE ∥AC 1, 因为AC 1⊥平面A 1BD ,所以DE ⊥平面A 1BD , 又因为DE ⊂平面BDE ,所以平面A 1BD ⊥平面BDE .。
2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分立体几何(理科)部分1. (广东5)给定以下四个命题:①假设一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②假设一个平面通过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③ C..③和④ D.②和④ D2.〔宁夏海南11〕一个棱锥的三视图如图,那么该棱锥的全面积 〔单位:c 2m 〕为〔A 〕48+122 〔B 〕48+242 〔C 〕36+122 〔D 〕36+242 解析:选A.3. (宁夏海南8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且22EF =,那么以下结论中错误的选项是 〔A 〕AC BE ⊥ 〔B 〕//EF ABCD 平面〔C 〕三棱锥A BEF -的体积为定值 〔D 〕异面直线,AE BF 所成的角为定值解析:A 正确,易证11;AC D DBB AC BE ⊥⊥平面,从而B 明显正确,//,//EF BD EF ABCD ∴平面易证;C 正确,可用等积法求得;D 错误。
选D.4.(山东4) 一空间几何体的三视图如下图,那么该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+ D. 2343π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面 边长为2,高为3,因此体积为()2123233⨯⨯=因此该几何体的体积为2323π+.答案:C【命题立意】:此题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 运算出.几何体的体积.5.(辽宁11)正六棱锥P-ABCDEF 中,G 为PB 的中点,那么三棱锥D-GAC 与三棱锥P-GAC 体积之比为〔A 〕1:1 〔B 〕1:2 〔C 〕2:1 〔D 〕3:2 答案:C 解析:连接FC 、AD 、BE ,设正六边形 的中心为O ,连接AC 与OB 相交点H ,那么GH∥PO,故GH⊥平面ABCDEF , ∴平面GAC⊥平面ABCDEF 又DC⊥AC,BH⊥AC, ∴DC⊥平面GAC ,BH⊥平面GAC , 且DC=2BH ,故三棱锥D-GAC 与三棱锥P-GAC 体积之比为2:1。
(8)立体几何1、如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,,D F ,分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF △的周长的最小值为( )A .222+B .232+C .62+D .72+2、如图,如果底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下的部分的体积是( )A.21π()3r a b +B.21π()2r a b + C.2π()r a b + D.22()r a b +3、如图,网格纸上的小正方形的边长为1,粗线(实线、虚线)画出的是某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为( )A.20B.π204+C.3π204+D.5π204+4、已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E F ,分别是PA AB ,的中点,90CEF ∠=︒,则球O 的体积为( ) A .86πB .46πC .26πD .6π5、如图,已知,,,A B C D 四点不共面,且,AB CD αα,,,,AC E AD F BD H BC G αααα⋂=⋂=⋂=⋂=,则四边形EFHG 的形状是( )A.平行四边形B.菱形C.矩形D.正方形 6、如图是正方体的平面展开图,以下四个结论中,正确的序号是( ) (1)BM 与ED 平行; (2)CN 与BE 是异面直线; (3)CN 与BM 成60o 角; (4)DM 与BN 垂直.A.(1)(2)(3)B.(2)(4)C.(3)D.(3)(4)7、已知,m n 两条不重合的直线,,αβ是两个不重合的平面,则下列命题中真命题的个数是( )①若,//m n αα⊂,则//m n ②若//,//m m αβ,则//αβ;③若n αβ⋂=且//m n ,则//m α且//m β; ④若,m m αβ⊥⊥,则//αβ. A.3B.2C.1D.08、如图,在四棱锥P ABCD -中,底面ABCD 矩形,侧棱AP ⊥平面ABCD ,1AB =,3AP =,点M 在线段BC 上,且AM M D ⊥,则当PMD △的面积最小时,线段BC 的长度为( )A.3B.322C.2D.329、在四面体ABCD 中,二面角A BC D --的大小为60,点P 为直线BC 上一动点,记直线P A 与平面BCD 所成的角为θ,则 ( )A. θ的最大值为60B. θ的最小值为60C. θ的最大值为30D. θ的最小值为3010、将直角ABC △沿斜边上的高AD 折成120的二面角,已知直角边43,46AB AC ==,那么下面说法正确的是( )A . 平面ABC ⊥平面ACDB . 四面体D ABC -的体积是86 C . 二面角A BCD --的正切值是423 D . BC 与平面ACD 所成角的正弦值是21711、已知某实心机械零件的三视图如图所示,若该实心机械零件的表面积为664π+,则a=_______.12、如图所示,平面11BCC B ⊥平面ABC ,120ABC =,四边形11BCC B 为正方形,且2AB BC ==,则异面直线1BC 与AC 所成角的余弦值为__________________.13、正方体1111ABCDA B C D ﹣,则下列四个命题: ①P 在直线1BC 上运动时,三棱锥1AD PC ﹣的体积不变; ②P 在直线1BC 上运动时,直线AP 与平面1ACD 所成角的大小不变; ③P 在直线1BC 上运动时,二面角1P AD C ﹣﹣的大小不变;④M 是平面1111A B C D 上到点D 和1C 距离相等的点,则M 点的轨迹是过1D 点的直线; 其中正确的命题编号是 .14、已知点,E F 分别在正方体1111ABCD A B C D -的棱11,BB CC 上,且12B E EB =,12CF FC =,则平面AEF 与平面ABC 所成的二面角的正切值等于__________.15、如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,60,3,23,3ABC AB AD AP ∠=︒===.(1)求证:平面PCA⊥平面PCD;(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45︒,求二面角E AB D--的余弦值.答案以及解析1答案及解析: 答案:D 解析:2答案及解析: 答案:B 解析:3答案及解析: 答案:B解析:由三视图可得该几何体如图所示,由已知得该几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的,所以该几何体的表面积211622125π2π44S =⨯-⨯⨯-⨯+⨯⨯1π24π2084+⨯=+.4答案及解析:答案:D 解析:5答案及解析: 答案:A 解析:6答案及解析: 答案:D 解析:7答案及解析: 答案:C解析:对于①,若,//m n αα⊂,则m 与n 平行或异面,故不正确;对于②,若//,//m m αβ,则α与β可能相交或平行,故不正确;对于③,若n αβ⋂=,//m n ,则m 也可能在平面α或β内,故不正确;对于④,垂直于同一直线的两平面平行,若,m m αβ⊥⊥,则//αβ,故④正确.综上,是真命题的只有④,故选C.8答案及解析: 答案:B解析:由题意,设,BM x MC y ==,则BC AD x y ==+因为PA ⊥平面ABCD ,MD ⊂平面ABCD ,所以PA MD ⊥.又AM M D ⊥,所以PA AM A ⋂=,所以,MD ⊥平面PAM ,则MD PM ⊥.易知 221,1AM x MD y =+=+,在Rt AMD △中,222AM DM AD +=,即()22211x y x y +++=+,化简得1xy =,Rt PMD △中, 224,1PM x MD y =+=+,所以22143522PMD S x x =++≥△当且仅当224x x=,即22,2x y ==时,取等号,此时322BC x y =+=9答案及解析: 答案:A 解析:10答案及解析:答案:C 解析:11答案及解析:答案:3 解析:12答案及解析: 答案:64解析:13答案及解析: 答案:①③④ 解析:14答案及解析: 答案:23解析:如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1.平面ABC 的一个法向量为1(0,0,1)n =.设平面AEF 的法向量为2(,,)n x y z =.所以12(1,0,0),1,1,,0,1,33A E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以10,1,3AE ⎛⎫= ⎪⎝⎭,11,0,3EF ⎛⎫=- ⎪⎝⎭,则2200n AE n EF ⎧⋅=⎪⎨⋅=⎪⎩即103103y z x z ⎧+=⎪⎪⎨⎪-+=⎪⎩取1x =,则1,3y z =-=.故2(1,1,3)n =-.所以平面AEF 与平面ABC 所成的二面角的平面角α满足31122cos ,sin 1111α==,所以2tan 3α=.15答案及解析:答案:(1)在平行四边形ABCD 中,60ADC ∠=︒,3,23CD AD ==, 由余弦定理得2222cos 9AC AD CD AD CD ADC =+-⋅∠=, ∴222AC CD AD +=,∴90ACD ∠=︒,即CD AC ⊥, 又PA ⊥底面ABCD CD ⊂,底面ABCD ,PA CD ∴⊥,又ACCD C =,CD ∴⊥平面PCA .又CD ⊂平面PCD , ∴平面PCA ⊥平面PCD .(2)如图,以A 为坐标原点,AB AC AP ,,所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.则(0,0,0),(3,0,0),(0,3,0),(3,3,0),(0,0,3)A B C D P - 设(,,)E x y z ,(01)PE PC λλ=≤≤, 则(,,3)(0,3,3)x y z λ-=- ∴0,3,33x y z λλ===-, 即点E 的坐标为(0,3,33)λλ- ∴(3,3,33)BE λλ=--又平面ABCD 的一个法向量为(0,0,1)n = ∴223345cos ,39(33)BE n λλλ-∴︒==++-解得13λ=∴点E 的坐标为(0,1,2), ∴(0,1,2),(3,0,0)AE AB ==, 设平面EAB 的法向量为(,,)m x y z = 由00m AB m AE ⎧⋅=⎪⎨⋅=⎪⎩得020x y z =⎧⎨+=⎩ 令1z =,得平面EAB 的一个法向量为(0,2,1)m =- ∴15cos ,55m n m n m n⋅===. 又二面角E AB D --的平面角为锐角,所以,二面角E AB D --的余弦值为55解析:。
立体几何(理)考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、空间两条直线的三种位置关系,并会判定。
3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。
4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。
5. 理解空间向量的概念,掌握空间向量的加法、减法和数乘; 了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算; 掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6. 了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. 掌握棱柱, 棱锥的性质, 并会灵活应用, 掌握球的表面积、体积公式; 能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7. 空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题, 进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9. 理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法). 对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2020 年高考中立体几何命题有如下特点:1. 线面位置关系突出平行和垂直,将侧重于垂直关系.2. 多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3. 多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4. 有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22 分之间,题型一般为 1 个选择题, 1 个填空题, 1 个解答题.要点梳理】1. 三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等2. 直观图:已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段平行性不变,但在直观图中其长度为原来的一半•3. 体积与表面积公式:1⑴柱体的体积公式:V柱Sh;锥体的体积公式:V锥-Sh;3台体的体积公式:V棱台—h(s . SS S);球的体积公式:V球—r3.3 3⑵球的表面积公式:S求4 R2.4. 有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5. 平行与垂直关系的证明,熟练判定与性质定理.6. 利用空间向量解决空间角与空间距离。
高考热点追踪(四)体积、表面积创新试题两例赏析随着课改的深入,高考考查考生的创新意识已逐年增强,有些试题不仅“立意”新颖,而且在“求解途径、求解方法”上也力求创新.以下采用空间几何体体积、表面积两例,加以剖析,以感受其“立意”之新、“求解”之新,从而领略其蕴含的创新意识和探究能力.(2019·苏州模拟)某市为创建国家级旅游城市,市政府决定实施“景观工程”,对现有平顶的民用多层住宅进行“平改坡”.计划将平顶房屋改为尖顶,并铺上彩色瓦片.现对某幢房屋有如下两种改造方案:方案1:坡顶如图1所示,为侧顶面是等腰三角形的直三棱柱,尖顶屋脊AA 1的长度与房屋长度BB 1等长,有两个坡面需铺上瓦片.方案2:坡顶如图2所示,为由图1消去两端相同的两个三棱锥而得,尖顶屋脊DD 1比房屋长度BB 1短,有四个坡面需铺上瓦片.若房屋长BB 1=2a ,宽BC =2b ,屋脊高为h ,试问哪种尖顶铺设的瓦片比较省?说明理由.【解】 作AE ⊥BC , 即AE ⊥平面B 1BCC 1,AE 为屋脊的高,故AE =h . 由DB =DC ,得DE ⊥BC ,故AB =h 2+b 2.设AD 长为x ,则DE =h 2+x 2,所以,S △BCD =12BC ·DE =12·2b ·h 2+x 2=bh 2+x 2,S △ABD +S △ACD =xh 2+b 2.由于面积均为正数,所以只需比较(S △ABD +S △ACD )2与(S △BCD )2的大小.事实上:(S △ABD +S △ACD )2-(S △BCD )2=x 2(h 2+b 2)-b 2(h 2+x 2)=x 2h 2-b 2h 2=h 2(x 2-b 2). 所以分b >x ,b =x ,b <x 三种情况讨论,得结果为:(1)若AD 之长小于房屋宽度的一半时,图1尖顶铺设的瓦片较省; (2)若AD 之长等于房屋宽度的一半时,两种尖顶铺设的瓦片数相同; (3)若AD 之长大于房屋宽度的一半时,图2尖顶铺设的瓦片较省.[名师点评] 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题.即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.(2019·南京、盐城模拟) 如图,正三棱柱ABC -A 1B 1C 1的底面边长为4,侧棱长为a ,过BC 的截面为DBC .E 为BC 的中点且∠DEA =30°.(1)分别就a =3和a =1计算截面的面积; (2)记该截面的面积为f (a ),求f (a )的最大值.【解】 (1)因为∠DEA =30°,等边△ABC 边长为4, 所以AE =23.在Rt △DAE 中,DA =AE ·tan ∠DEA =2.①当a =3时,D 点在侧棱AA 1上,截面为△BCD , 在Rt △DAE 中, DE =AD 2+AE 2=4,所以S △BCD =12BC ·DE =12×4×4=8.②当a =1时,D 点在AA 1延长线上,截面为梯形BCNM ,因为AD =2,AA 1=1,所以MN 是△DBC 的中位线, 所以S 梯形BCNM =34S △DBC =34×8=6.(2)当a ≥2时, 截面与正三棱柱ABC -A 1B 1C 1的棱AA 1相交于D 点,此时截面为△BCD ,其面积为S △BCD =12BC ·DE =12×4×4=8;当0<a <2时,截面为梯形BCNM ,但是始终有DA =AE ·tan ∠DEA =2, 由△BCD ∽△MND , 得DF DE =DA 1DA =2-a2, 所以S 梯形BCNM =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫2-a 22×S △BCD =4a -a 24×8=2a (4-a ).所以f (a )=⎩⎨⎧8,a ≥2,2a (4-a ),0<a <2,于是当a ≥2时,该函数的最大值为8.[名师点评] 截面问题是立体几何题中的一类比较常见的题型,由于截面的“动态”性,使截得的结果也具有一定的可变性. 涉及多面体的截面问题,都要经过先确定截面形状,再解决问题的过程,本例通过改变侧棱长而改变了截面形状;也可以通过确定侧棱长,改变截面与底面所成角而改变截面形状.平行问题是高考中热点问题,其中最重要的又是线线平行的判定,因为它是证明线面平行,面面平行的基础,下面举例解析线线平行的判定方法.一、利用中位线定理得线线平行题目中给出中点条件时,往往隐含着中位线的信息因素,利用中位线很容易寻求线线平行.但不同三角形中的中位线效果也不一样,因此,寻求三角形的中位线也是解题的关键.(2019·南京模拟)如图,在长方体ABCD -A 1B 1C 1D 1中,底面是菱形,AA 1=12AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1,B ,M 三点的平面A 1BMN 交C 1D 1于点N .求证:EM ∥平面A 1B 1C 1D 1.【证明】 取A 1B 1的中点F ,连结EF ,C 1F .因为E为A1B的中点,所以EF綊12BB1.又因为M为CC1中点,所以EF綊C1M.所以四边形EFC1M为平行四边形,所以EM∥FC1.而EM⊄平面A1B1C1D1,FC1⊂平面A1B1C1D1,所以EM∥平面A1B1C1D1.[名师点评]线面关系转化为线线关系,体现了转化的思想.二、利用比例关系得线线平行对应线段成比例是平面几何中判断直线平行的重要依据,而线面平行的空间问题通过转化可变通为线线平行.已知正方形ABCD的边长是13,平面ABCD外一点P到正方形各顶点的距离都为13,M、N分别是P A、BD上的点且PM∶MA=BN∶ND=5∶8,如图所示.求证:直线MN∥平面PBC.【证明】连结AN并延长交BC于E点,连结PE,则EN∶NA=BN∶ND,所以NENA=PMMA,所以MN∥PE,而MN⊄平面PBC,PE⊂平面PBC,所以MN∥平面PBC.[名师点评]利用成比例线段是寻求线线平行的一条行之有效的措施.三、利用线面平行性质得线线平行线面平行的性质定理中,包含要素:两线两面.两线两面的关系是:一线在一面内平行于另一面,一线是两面的交线.结论是:两线平行.(2019·南京模拟)在四棱锥P-ABCD中.若平面P AB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【解】假定直线l∥平面ABCD,由于l⊂平面PCD,且平面PCD∩平面ABCD=CD,所以l∥CD.同理可得l∥AB,所以AB∥CD.所以当AB∥CD时直线l能与平面ABCD平行,否则不平行.[名师点评]线面关系转化为线线关系,体现了重要的数学思想方法:转化的思想,化繁为简,化未知为已知.四、利用面面平行性质得线线平行利用面面平行的性质定理,即如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号表示:若α∥β,α∩γ=a,β∩γ=b,则a∥b.如图所示,已知平面α∥平面β,A∈α,B∈α,C∈β,D∈β,AC,BD是异面直线,点E,F分别是AC,BD的中点,求证:EF∥α.【证明】如图,过点E作直线A1C1∥BD,设A1C1与平面α,β分别交于点A1,C1.连结AA1,A1B,CC1,C1D.因为α∥β,平面A1C1DB∩平面α=A1B,平面A1C1DB∩平面β=C1D,所以A1B∥C1D,又BD∥A1C1,所以四边形A1C1DB为平行四边形.同理,AA1∥CC1,又E为AC的中点,所以E为A1C1的中点,又F为BD的中点,所以EF∥A1B,因为A1B⊂平面α,EF⊄平面α,所以EF∥α.[名师点评]第三个辅助平面往往要根据需要作出,或观察出,这是面面平行性质使用的需要.总之线线平行的判定,不但需要平面几何的知识作基础,更需要解决问题和处理问题的方法,这需要在学习中善于思考、善于总结和积累,由量变到质变,当积累达到一定的程度,就会升华.1.(2019·徐州、淮安、宿迁、连云港四市模拟)已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为________.[解析] 由题意得圆锥的底面半径、高分别为r =1,h =3,故该圆锥的体积为V =13π×12×3=3π3. [答案]33π 2.(2019·江苏省高考命题研究专家原创卷(五))《九章算术》第五章《商功》记载:今有圆堡瑽,周四丈八尺,高一丈一尺,问积几何?此处圆堡瑽即圆柱体,其意思是:有一个圆柱体的底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π的值取3,估算该圆堡瑽的体积为________立方尺.(注:一丈等于十尺)[解析] 设该圆柱体底面圆的半径为r 尺,则由题意得2πr =48,所以r ≈8,又圆柱体的高为11尺,故该圆堡瑽的体积V =πr 2h ≈2 112立方尺.[答案] 2 1123.(2019·苏北四市高三模拟)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D -ABC 的体积为________.[解析] 在平面DAC 内过点D 作DE ⊥AC ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥D -ABC 的体积为13×12×4×3×125=245.[答案]2454.(2019·南京模拟)设平面α与平面β相交于直线m ,直线b 在平面α内,直线c 在平面β内,且c ⊥m ,则“c ⊥b ”是“α⊥β”的________条件.[解析] 若α⊥β,又α∩β=m ,c ⊂β,c ⊥m 可得c ⊥α,因为b ⊂α,所以c ⊥b .反过来c ⊥b 不能得到α⊥β(如b ∥m 时,由c ⊥m 可得c ⊥b ,但不能判断α,β的位置关系).[答案] 必要不充分5.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.[解析] 因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,又因为E 是AD 的中点,所以F 是CD 的中点,即EF 是△ACD 的中位线, 所以EF =12AC =12×22=2.[答案] 26.(2019·扬州模拟)设l ,m 是两条不同的直线,α是一个平面,有下列三个命题: ①若l ⊥α,m ⊂α,则l ⊥m ; ②若l ∥α,m ⊂α,则l ∥m ; ③若l ∥α,m ∥α,则l ∥m . 则其中正确命题的序号是________.[解析] 根据线面垂直的性质定理可知①正确. [答案] ①7.(2019·南通高三模拟)已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b .若它们的体积相等,则a 3∶b 3的值为________.[解析] 由题意可得12×a 2×32×a =π(b 2)2×b ,即34a 3=14πb 3,则a 3b 3=π3=3π3.[答案]3π38.(2019·江苏省高考命题研究专家原创卷(三))如图,若三棱锥A 1BCB 1的体积为3,则三棱柱ABC -A 1B 1C 1的体积为________.[解析] 设三棱柱的底面面积为S ,高为h ,则VA 1ABC =13S △ABC ·h =13Sh =13VABC A 1B 1C 1,同理VC A 1B 1C 1=13VABC A 1B 1C 1,所以VA 1BCB 1=13VABC A 1B 1C 1.又VA 1BCB 1=3,所以三棱柱ABC -A 1B 1C 1的体积为9.[答案] 99.(2019·南通模拟)如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为P A ,PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与CF 异面;②直线BE 与AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面P AD .其中一定正确的有________个.[解析] 如图,易得EF ∥AD ,AD ∥BC ,所以EF ∥BC ,即B ,E ,F ,C 四点共面,则①错误,②正确,③正确,④不一定正确. [答案] 210.(2019·江苏高考专家原创卷)已知正三棱锥P -ABC 的体积为223,底面边长为2,D 为侧棱P A 的中点,则四面体D -ABC 的表面积为________.[解析] 设底面正三角形ABC 的中心为O ,连结OA ,OP ,又底面边长为2,可得OA =233,由V P ABC =13S △ABC ·PO ,即223=13PO ×34×22,得PO =263,所以P A =PO 2+AO 2=2.S △ABC=3,S △DAB =S △DAC =32,S △DBC =2,所以四面体D -ABC 的表面积为23+2.[答案] 23+ 211.(2019·江苏省高考命题研究专家原创卷(二))已知三棱锥P -ABC 中,P A =3,PC =2,AC =1,平面P AB ⊥平面ABC ,D 是P A 的中点,E 是PC 的中点.(1)求证:DE∥平面ABC;(2)求证:平面BDE⊥平面P AB.[证明] (1)因为D是P A的中点,E是PC的中点,所以DE∥AC.又DE⊄平面ABC,AC⊂平面ABC,所以DE∥平面ABC.(2)因为P A=3,PC=2,AC=1,所以P A2+AC2=PC2,所以三角形P AC是直角三角形,AC⊥P A.又DE∥AC,所以DE⊥P A.过P作PH⊥AB于H.因为平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,PH⊂平面P AB,所以PH⊥AC.又DE∥AC,所以DE⊥PH.又P A∩PH=P,P A,PH⊂平面P AB,所以DE⊥平面P AB.又DE⊂平面BDE,所以平面BDE⊥平面P AB.12.(2019·南京检测)如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.(1)求证:BF∥平面A1EC;(2)求证:平面A1EC⊥平面ACC1A1.[证明] (1)连结AC1交A1C于点O,连结OE,OF,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1. 又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A 1EC ,OE ⊂平面A 1EC , 所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点, 所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC , 所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1. 因为OE ⊂平面A 1EC , 所以平面A 1EC ⊥平面ACC 1A 1.13.(2019·江苏高考原创卷)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =4,DE =2AB =3,且F 是CD 的中点.(1)求证:AF ∥平面BCE ;(2)在线段CE 上是否存在点H ,使DH ⊥平面BCE ?若存在,求出CHHE 的值;若不存在,请说明理由.[解] (1)证明:取CE 的中点P ,连结FP ,BP ,因为F 为CD 的中点,所以FP ∥DE ,且FP =12DE . 又AB ∥DE ,且AB =12DE , 所以AB ∥FP ,且AB =FP ,所以四边形ABPF 为平行四边形,所以AF ∥BP .因为AF ⊄平面BCE ,BP ⊂平面BCE ,所以AF ∥平面BCE .(2)在线段CE 上存在点H ,使DH ⊥平面BCE .理由如下:在△CDE 中,过点D 作DH ⊥CE ,交CE 于点H ,因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE ∥AB ,所以DE ⊥平面ACD ,又CD 、AF ⊂平面ACD ,所以DE ⊥AF ,DE ⊥CD .又CD ∩DE =D ,所以AF ⊥平面DCE .又BP ∥AF ,所以BP ⊥平面DCE .因为DH ⊂平面CDE ,所以DH ⊥BP .又BP ∩CE =P ,所以DH ⊥平面BCE .在Rt △CDE 中,CD =4,DE =3,DH ⊥CE ,所以CH =165,HE =95,CH HE =169. 14.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点.(1)求证:B1C1⊥平面ABB1A1;(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由.[解] (1)证明:因为AB=B1B,所以四边形ABB1A1为正方形,所以A1B⊥AB1,又因为AC1⊥平面A1BD,所以AC1⊥A1B,所以A1B⊥平面AB1C1,所以A1B⊥B1C1.又在直棱柱ABC-A1B1C1中,BB1⊥B1C1,所以B1C1⊥平面ABB1A1.(2)存在.证明如下:设AB=BB1=a,CE=x,因为D为AC的中点,且AC1⊥A1D,所以A1B=A1C1=2a,又因为B1C1⊥平面ABB1A1,B1C1⊥A1B1,所以B1C1=a,BE=a2+x2,A1E=2a2+(a-x)2=3a2+x2-2ax,在△A1BE中,由余弦定理得BE2=A1B2+A1E2-2A1B·A1E·cos 45 °,即a2+x2=2a2+3a2+x2-2ax-23a2+x2-2ax·2a·22+x2-2ax=2a-x,2,所以3a解得x=12a,即E是C1C的中点,因为D,E分别为AC,C1C的中点,所以DE∥AC1,因为AC1⊥平面A1BD,所以DE⊥平面A1BD,又因为DE⊂平面BDE,所以平面A1BD⊥平面BDE.。
2024届高考数学复习创新题型专项(立体几何)练习一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是( )A .B .C .D .5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为( )(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.27.(2022ꞏ全国ꞏ高一专题练习)《九章算术》中有这样的图形:今有圆锥,下周三丈五尺,高五丈一尺(1丈10=尺);若该圆锥的母线长x 尺,则x =( )A B C D 8.(2021秋ꞏ吉林四平ꞏ高三四平市第一高级中学校考阶段练习)“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm ,则该阿基米德多面体的表面积为( )A .(24800cm +B .(24800cm +C .(23600cm +D .(23600cm + 9.(2022秋ꞏ宁夏吴忠ꞏ高二青铜峡市高级中学校考开学考试)牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为4V V π=牟球,并且推理出了“牟合方盖”的八分之一的体积计算公式,即38V r V =-牟方盖差,从而计算出343V r π=球.如果记所有棱长都为r 的正四棱锥的体积为V ,则:V V =方差盖( )A B .1 C D .10.(2022秋ꞏ湖北襄阳ꞏ高二襄阳市第一中学校考阶段练习)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,AC BB 的中点,G 是MN 的中点,若1AG xAB y AA z AC =++ ,则x y z ++=( )A .32B .23 C .1 D .3411.(2022秋ꞏ江西抚州ꞏ高二临川一中校考期中)如图,何尊是我国西周早期的青铜礼器,其造型浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词最早的文字记载,何尊还是第一个出现“德”字的器物,证明了周王朝以德治国的理念,何尊的形状可近似看作是圆台和圆柱的组合体,组合体的高约为40cm ,上口直径约为28cm ,经测量可知圆台的高约为16cm ,圆柱的底面直径约为18cm ,则该组合体的体积约为( )(其中π的值取3)A .11280cm 3B .12380cm 3C .12680cm 3D .12280cm 312.(2022秋ꞏ安徽ꞏ高三校联考开学考试)《几何原本》是古希腊数学家欧几里得的一部不朽之作, 其第11卷中将轴截面为等腰直角三角形的圆锥称为“直角圆锥”.若一个直角圆锥的侧面积为,则该圆锥的体积为( )AB .3πC .D .13.(2022秋ꞏ青海西宁ꞏ高三统考期中)我国历史文化悠久,“爰”铜方彝是商代后期的一件文物,其盖似四阿式屋顶,盖为子口,器为母口,器口成长方形,平沿,器身自口部向下略内收,平底、长方形足、器内底中部及盖内均铸一“爰”字.通高24cm ,口长13.5cm ,口宽12cm ,底长12.5cm ,底宽10.5cm.现估算其体积,上部分可以看作四棱锥,高约8cm ,下部分看作台体,则其体积约为( )11.5≈,12.7≈)A .37460.8cmB .3871.3cmC .31735.3cmD .32774.9cm14.(2022秋ꞏ湖北ꞏ高二校联考期中)在中国古代数学著作《九章算术》中记载了一种称为“曲池”的几何体,该几何体的上、下底面平行,且均为扇环形(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,它的高为4,1AA ,1BB ,1CC ,1DD 均与曲池的底面垂直,底面扇环对应的两个圆的半径分别为2和4,对应的圆心角为90°,则图中异面直线1AB 与1CD 所成角的余弦值为( )A .45B .35C .23 D .3415.(2023ꞏ江西抚州ꞏ高三金溪一中校考开学考试)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意为粮食满园、称心如意、十全十美.下图为一种婚庆升斗的规格,把该升斗看作一个正四棱台,忽略其壁厚,则该升斗的容积约为( )39.6,1L 1000cm ≈=,参考公式:(13V S S h 下上棱台=+⋅)A .1.5LB .2.4LC .5.0LD .7.1L16.(2022春ꞏ湖南长沙ꞏ高二湖南师大附中校考阶段练习)波利亚在其论著中多次提到“你能用不同的方法推导出结果吗?”,“试着换一个角度探索下去……”.这都属于“算两次”的原理.另外,更广义上讲,“算两次”也是对同一个问题,用两种及其以上的方法解答出来,即对同一个问题解两次,得到相同的结果,体现殊途同归,一题多解.试解决下面的问题:四面体ABCD 中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的表面积为( )A .7925πB .7320πC .6316πD .4π17.(2022秋ꞏ黑龙江齐齐哈尔ꞏ高二齐齐哈尔市第八中学校校考开学考试)灯笼起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面的一部分(除去两个球冠).如图2,球冠是由球面被一个平面截得的,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球的半径为R ,球冠的高为h ,则球冠的面积2S Rh π=.已知该灯笼的高为46cm ,圆柱的高为3cm ,圆柱的底面圆直径为30cm ,则围成该灯笼所需布料的面积为( )A .22090cm πB .22180cm πC .22340cm πD .22430cm π18.(2022秋ꞏ湖北武汉ꞏ高二武汉市第十一中学校考阶段练习)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为43π时,该裹蒸粽的高的最小值为( ) A .4 B .6 C .8 D .1019.(2023ꞏ全国ꞏ高三专题练习)鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .(86++B .(68+C .(86+D .(68+ 20.(2022秋ꞏ江苏连云港ꞏ高三校考阶段练习)刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,上棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为6,底边宽为4,上棱长为2,高为2,则它的表面积是( )A .B .24+C .24+D .24+二、多选题21.(2021秋ꞏ重庆沙坪坝ꞏ高二重庆市天星桥中学校考阶段练习)三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长2cm ,外径长3cm ,筒高4cm ,中部为棱长是3cm 的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则( )A .该玉琮的体积为3π184+(3cm )B .该玉琮的体积为7π274-(3cm ) C .该玉琮的表面积为54π+(2cm ) D .该玉琮的表面积为549π+(2cm )22.(2022ꞏ全国ꞏ高三专题练习)“端午节”为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子便是端午节食俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为3cm 2,高为6cm (不含外壳)的圆柱状竹筒粽.现有两碗馅料,若一个碗的容积等于半径为6cm 的半球的体积,则( ) 4.44≈)A .这两碗馅料最多可包三角粽35个B .这两碗馅料最多可包三角粽36个C .这两碗馅料最多可包竹筒粽21个D .这两碗馅料最多可包竹筒粽20个23.(2022ꞏ全国ꞏ高三专题练习)攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30︒米,则该正四棱锥的( )A .底面边长为6米BC .侧面积为D .体积为立方米 24.(2022秋ꞏ湖北襄阳ꞏ高二校考阶段练习)在《九章算术》中,四个面都是直角三角形的三棱锥被称为“鳖臑”.在鳖臑-P ABC 中,PA ⊥底面ABC ,则( )A . 0AB AC ⋅= 可能成立B . 0BC AC ⋅= 可能成立 C . 0PA BC ⋅= 一定成立D . 0BC AB ⋅= 可能成立25.(2022春ꞏ广东广州ꞏ高一广州科学城中学校考期中)唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图2),当这种酒杯内壁的表面积(假设内壁表面光滑,表面积为S 平方厘米,半球的半径为R 厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则R 的取值可能为( )A B C D 26.(2022ꞏ海南ꞏ统考模拟预测)素描是使用单一色彩表现明暗变化的一种绘画方法,素描水平反映了绘画者的空间造型能力.“十字贯穿体”是学习素描时常用的几何体实物模型,如图是某同学绘制“十字贯穿体”的素描作品.“十字贯穿体”是由两个完全相同的正四棱柱“垂直贯穿”构成的多面体,其中一个四棱柱的每一条侧棱分别垂直于另一个四棱柱的每一条侧棱,两个四棱柱分别有两条相对的侧棱交于两点,另外两条相对的侧棱交于一点(该点为所在棱的中点).若该同学绘制的“十字贯穿体”由两个底面边长为2,高为6的正四棱柱构成,则( )A .一个正四棱柱的某个侧面与另一个正四棱柱的两个侧面的交线互相垂直B .该“十字贯穿体”的表面积是112-C .该“十字贯穿体”的体积是483-D .一只蚂蚁从该“十字贯穿体”的顶点A 出发,沿表面到达顶点B 的最短路线长为43+27.(2022ꞏ全国ꞏ高三专题练习)祖暅(公元5—6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S S =环圆总成立,若椭半球的短轴6AB =,长半轴5CD =,则下列结论正确的是( )A .椭半球体的体积为30πB .椭半球体的体积为15πC .如果4C F FD =,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863π D .如果4C F F D = ,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π三、填空题28.(2022秋ꞏ上海浦东新ꞏ高二上海市建平中学校考阶段练习)我国古代数学名著《九章算术》中,定义了三个特别重要而基本的多面体,它们是:(1)“堑堵”:两个底面为直角三角形的直棱柱;(2)“阳马”:底面为长方形,且有一棱与底面垂直的棱锥;(3)“鳖臑(biēnào )”:每个面都为直角三角形的四面体.魏晋时期的大数学家刘徽进一步研究发现:任何一个“堑堵”都可以分割成一个“阳马”和一个“鳖臑”且“阳马”和“鳖臑”的体积比为定值.则此定值为______.29.(2022秋ꞏ上海浦东新ꞏ高三上海市建平中学校考阶段练习)我国古代将四个面都是直角三角形的四面体称作鳖臑,如图,在鳖臑S ABC -中,SC ⊥平面ABC ,ABC 是等腰直角三角形,且AB SC =,则异面直线BC 与SA 所成角的正切值为______.(写出一个值即可,否则有两个答案)30.(2022春ꞏ浙江宁波ꞏ高二校考学业考试)宁波老外滩天主教堂位于宁波市新江桥北堍, 建于清同治十一年(公元 1872 年). 光绪二十五 (1899年) 增建钟楼, 整座建筑由教堂、钟楼、偏屋组成, 造型具有典型罗马哥特式风格. 其顶端部分可以近似看成由一个正四棱锥和一个正方体组成的几何体, 且正四棱锥的侧棱长为10m , 其底面边长与正方体的棱长均为6m , 则顶端部分的体积为__________.31.(2022ꞏ全国ꞏ高三专题练习)蹴鞠,2006年5月20日,已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球,因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.已知某鞠(球)的表面上有四个点(不共面)、、、,2,A B C DAB CD AC BD BC AD======__________.32.(2022春ꞏ福建泉州ꞏ高一泉州五中校考期中)“牟合方盖”(图①)是由我国古代数学家刘徽创造的,其构成是由一个正方体从纵横两侧面作内切圆柱(圆柱的上下底面为正方体的上下底面,圆柱的侧面与正方体侧面相切)的公共部分组成的(图②),假设正方体的棱长为2,则其中一个内切圆柱的表面积为___________;该正方体的内切球也是“牟合方盖”的内切球,所以用任一平行于正方体底面的平面去截“牟合方盖”,截面均为正方形,根据祖暅原理(夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等)可得“牟合方盖”的体积为____________.33.(2023ꞏ全国ꞏ高三专题练习)佩香囊是端午节传统习俗之一.香囊内通常填充一些中草药,有清香、驱虫、开窍的.因地方习俗的差异,香囊常用丝布做成各种不同的形状,形形色色,玲珑夺目.图1的平行四边形ABCD由六个边长为1的正三角形构成.将它沿虚线折起来,可得图2所示的六面体形状的香囊.那么在图2这个六面体中内切球半径为__________,体积为__________.34.(2022ꞏ高二单元测试)《九章算术》第五卷中涉及一种几何体——羡除,它下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.该羡除是一个多面体ABCDFE ,如图,四边形ABCD ,ABEF 均为等腰梯形,AB CD EF ∥∥,平面ABCD ⊥平面ABEF ,梯形ABCD ,ABEF 的高分别为3,7,且6AB =,10CD =,8EF =,则AD BF ⋅= ______,DE = ______.35.(2021秋ꞏ四川广安ꞏ高二四川省武胜烈面中学校校考开学考试)《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体)在如图所示的堑堵111ABC A B C -中,12BB BC AB ===且有鳖臑11C ABB -和鳖臑1C ABC -,现将鳖臑1C ABC -的一个面1ABC 沿1BC 翻折180︒,使A 点翻折到E 点,求形成的新三棱锥11C AB E -的外接球的表面积是_________.36.(2022ꞏ全国ꞏ高三专题练习)正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正八面体ABCDEF 的棱长都是2(如图),P ,Q 分别为棱AB ,AD 的中点,则CP FQ ⋅= ________.37.(2022秋ꞏ辽宁ꞏ高二辽宁实验中学校考期中)阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1)k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在棱长为6的正方体1111ABCD A B C D -中,点M 是BC 的中点,点P 是正方体表面11DCC D 上一动点(包括边界),且满足APD MPC ∠=∠,则三棱锥D PBC -体积的最大值为______.38.(2022ꞏ全国ꞏ高三专题练习)祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.有一个球形瓷碗,它可以看成半球的一部分,若瓷碗的直径为8,高为2,利用祖暅原理可求得该球形瓷碗的体积为______.四、解答题39.(2022ꞏ全国ꞏ高三专题练习)自古以来,斗笠是一个防晒遮雨的用具,是家喻户晓的生活必需品之一,主要用竹篾和一种叫做棕榈叶染白后编织而成,已列入世界非物质文化遗产名录.现测量如图中一顶斗笠,得到图中圆锥PO 模型,经测量底面圆O 的直径48cm AB =,母线30cm AP =,若点C 在 AB 上,且π6CAB ∠=,D 为AC 的中点.证明:BC ∥平面POD ;40.(2022秋ꞏ贵州遵义ꞏ高三统考阶段练习)故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,228AB AD EF ===,EF ∥底面ABCD ,且EA ED FB FC ===,M ,N 分别为AD ,BC 的中点.(1)证明:EF AB ∥,且BC ⊥平面EFNM .(2)若EM 与底面ABCD 所成的角为π4,过点E 作EH MN ⊥,垂足为H ,过H 作平面ABFE 的垂线,写出作法,并求H 到平面ABFE 的距离.41.(2022秋ꞏ上海浦东新ꞏ高二上海师大附中校考期中)《九章算术ꞏ商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.”如图,在鳖臑ABCD 中,侧棱AB ⊥底面BCD ;(1)若BC CD ⊥,ADB θ∠=1,2BDC θ∠=,3ADC θ∠=,求证:123cos cos cos θθθ⋅=;(2)若1AB =,2BC =,1CD =,试求异面直线AC 与BD 所成角的余弦.(3)若BD CD ⊥,2AB BD CD ===,点P 在棱AC 上运动.试求PBD △面积的最小值.42.(2022秋ꞏ北京ꞏ高二北京一七一中校考期中)“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼ꞏ闵可夫斯基提出来的.如图是抽象的城市路网,其中线段AB 是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用(),d A B 表示,又称“曼哈顿距离”,即(),d A B AC CB =+,因此“曼哈顿两点间距离公式”:若()11,A x y ,()22,B x y ,则()2121,d A B x x y y =-+-(1)①点()A 3,5,()2,1B -,求(),d A B 的值.②求圆心在原点,半径为1的“曼哈顿单位圆”方程.(2)已知点()10B ,,直线220x y -+=,求B 点到直线的“曼哈顿距离”最小值; (3)设三维空间4个点为(),,i i i i A x y z =,1,2,3,4i =,且i x ,i y ,{}0,1i z ∈.设其中所有两点“曼哈顿距离”的平均值即d ,求d 最大值,并列举最值成立时的一组坐标.参考答案一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B 【详细分析】由图写出点A 的坐标,然后再利用关于x 轴对称的点的性质写出对称点的坐标.【答案详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm【答案】C 【详细分析】结合组合体表面积的计算方法计算出正确答案.【答案详解】圆柱、圆锥的底面半径为8cm ,10cm =,所以陀螺的表面积是22π82π88π810272πcm ⨯+⨯⨯+⨯⨯=.故选:C3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 【答案】B【详细分析】连接AE 并延长交CD 于点F ,则F 为CD 的中点,利用向量的加减运算得答案【答案详解】连接AE 并延长交CD 于点F ,因为E 为ACD 的重心,则F 为CD 的中点,且23AE AF = ()2211133233BE AE AB AF AB AC AD AB AC AD AB ∴=-=-=⨯+-=+- 1133a b c =-++ . 故选:B .4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是()A.B.C.D.【答案】B【详细分析】利用排除法结合俯视图的定义和已知条件详细分析判断.【答案详解】法一:榫眼的形状和榫头一致,故榫眼的俯视图的轮廓线为虚线且从结果图可知榫眼应为通透的,排除AD;又C选项的结构左下方部分缺了一块,这与榫眼的结构不符,符合条件的只有B.法二:因榫眼的制作部件为长方体,所以,C,D不正确;又榫眼应为通透的,所以A不正确,所以符合条件的只有B.故选B.5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .【答案】D【详细分析】由BC CD ⊥,AB ⊥底面BCD ,将三棱锥A BCD -放在长方体中,求出外接球的半径以及圆周率的值,再由球的表面积公式即可求解.【答案详解】如图所示:因为BC CD ⊥,AB ⊥底面BCD ,1BC =,2AB CD ==,所以将三棱锥A BCD -放在长、宽、高分别为2,1,2的长方体中,三棱锥A BCD -的外接球即为该长方体的外接球,外接球的直径3AD ===,利用张衡的结论可得2π5168=,则π=所以球O 的表面积为234π9π2⎛⎫== ⎪⎝⎭故选:D.6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及。
高三数学二轮复习精选专题练(理科,有解析)空间几何体1、已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的体积是 ( )A.8π+B.283π+C.12π+D.2123π+【答案】A2、在直角坐标系xOy 中,设(2,2),(2,3)A B --,沿y 轴把坐标平面折成120o的二面角后,AB 的长是()37 B. 6 C. 35 53 【答案】A【解析】做AC 垂直y 轴于点C,BD 垂直y 轴于点D ,BM 平行于y 轴,且NC 垂直Y 轴,则0=120ACM ∠,又AC=MC=2,所以由余弦定理得AM=23,在ABM ∆,0=9023,537BMA AM BM AB ∠===,,所以.即AB 的长是37.3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ).可得这个几何体的体积是()A.133cmB.233cmC.433cmD.833cm【答案】C4、已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为()A.243π- B.242π- C.3242π- D.24π-【答案】C5、如图,某几何体的正视图和俯视图都是矩形,侧视图是等腰直角三角形,则该几何体的体积为()A.163B.8C.16D. 83【答案】B6、平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( ) A. π23 B. π3 C. π32 D. π2【答案】ABD 所在的圆直径就是BD,BDC 所在的圆直径是BC,由题意两个圆面垂直,且ABD 所在的圆面被BDC 所在的圆平分,所以BDC 所在的圆就是大圆;球的直径就是BC 3,所以正确的选项是A.7、设集合P={直四棱柱},Q={正四棱柱},S={长方体},则()A .()S Q P =UB .()P Q S ⊆IC .()P S Q⊆I D .()P Q S ⊆U 【答案】B【解析】底面为正方形的直四棱柱是长方体的一种,所以正确选项为B.8、半径为R 的半圆卷成一个圆锥,则它的体积为() 3324R πB 338R πC 3524R πD 358R π【答案】A设圆锥底面圆的半径为r ,高为h ,则2πr=πR ,∴r=2R ∵R 2=r 2+h 2,∴h=32R ,∴V=213()322R R π=3324R π,故选A 。
2019届二轮(理科数学)专题提能四立体几何中的创新考法与学科素养专题卷(全国通用)一、选择题1.中国古代数学名著《九章算术》第五章“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为()A .3795000立方尺B .2024000立方尺C .632500立方尺D .1897500立方尺解析:由三视图可知该几何体是一个水平放置的底面是等腰梯形的四棱柱,其体积V =12×(20+40)×50×1265=1897500(立方尺),故选D.答案:D2.中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD ,ABFE ,CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10,EF 到平面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是()A .110B .116C .118D .120解析:如图,过点A 作AP ⊥CD ,AM ⊥EF ,过点B 作BQ ⊥CD ,BN ⊥EF ,垂足分别为P ,M ,Q ,N ,连接PM ,QN ,将一侧的几何体补到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,体积V =15×8=120.答案:D3.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的三棱锥称为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知三棱锥P ADE 为鳖臑,且PA ⊥平面ABCE ,AD =AB =2,ED =1,若该鳖臑的外接球的表面积为9π,则该阳马的外接球的体积为()A .23πB .33πC .42πD .43π解析:由题意得三棱锥P ADE 中,ED ⊥DA ,又PA ⊥平面ABCE ,所以其外接球的直径2r =PE ,设PA =x ,则2r =PA 2+AD 2+DE 2=x 2+22+12=x 2+5,则其外接球的表面积S =4πr 2=π(x 2+5)=9π,解得x =2.阳马——四棱锥P ABCD 的外接球的直径为PC ,即2R =PC =PA 2+AD 2+DC 2=22+22+22=23,所以R =3,故其外接球的体积V =43πR 3=43π×(3)3=43π,故选D.答案:D4.《九章算术·商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺.问积几何?答曰:四万六千五百尺.”所谓“堑堵”,就是两底面为直角三角形的直棱柱.如图所示的几何体是一个“堑堵”,AB =BC =4,AA 1=5,M 是A 1C 1的中点,过B ,C ,M 的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为()A .40B .50C .25+152+329D .30+202+329解析:如图,设A1B 1的中点为N ,连接MN ,BN ,则MN ∥BC ,所以过B ,C ,M 的平面为平面BNMC ,所求三棱台为A 1MN -ACB ,所以其表面积为S △ABC +S △A 1NM +S 梯形AA 1MC +S 梯形AA 1NB +S 梯形MNBC =12×4×4+12×2×2+12×(22+42)×5+12×(4+2)×5+12×(2+4)×29=25+152+329.答案:C5.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为()A.392B.752C .39 D.6018解析:设下底面的长为x (92≤x <9),则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-(92)2+172×92+392=752.故选B.答案:B6.如图,在正三棱柱ABC A 1B 1C 1中,底面正三角形的边长为a ,侧棱长为b ,且a ≥b >0,点D 是四边形BB 1C 1C 的两条对角线的交点,则当直线AD 与侧面ABB 1A 1所成角的正切值取得最小值时,正三棱柱ABC A 1B 1C 1的体积是()A.34a 3B.38a 3C.312a 3 D.324a 3解析:如图所示,取BC 的中点E ,连接DE .过点E 作EF ⊥AB 于点F ,过点D 作DG ∥EF 交平面ABB 1A 1于点G ,连接AG ,FG ,AE .易知DE 是△BCB 1的中位线,所以DE ∥BB 1.因为平面ABB 1A 1⊥平面ABC ,平面ABB 1A 1∩平面ABC =AB ,EF ⊥AB ,所以EF ⊥平面ABB 1A 1.又DG ∥EF ,所以DG ⊥平面ABB 1A 1.则∠DAG 是直线AD 与侧面ABB 1A 1所成的角.因为DE ∥BB 1,DE ⊄平面ABB 1A 1,BB 1⊂平面ABB 1A 1,所以DE ∥平面ABB 1A 1.因为平面DEFG ∩平面ABB 1A 1=FG ,所以DE ∥FG ,又DG ∥EF ,所以四边形DEFG 是平行四边形.所以GD =EF =12×sin 60˚×AC =34a ,FB =12×cos 60˚AC =14a ,所以AF =34a .又FG =DE =12CC 1=12b ,所以AG =AF 2+FG 2=(34a )2+(12b )2=916a 2+14b 2.在Rt △DAG 中,tan ∠DAG =GDAG =34a 916a 2+14b 2=3a 9a 2+4b 2=3a 29a 2+4b 2=39+4b 2a2,因为a ≥b >0,所以b 2≤a 2,得0<b 2a2≤1,所以tan ∠DAG =39+4b 2a2≥39+4×1=3913,当且仅当a =b 时取等号,故直线AD 与侧面ABB 1A 1所成角的正切值的最小值是3913,此时正三棱柱ABC A 1B 1C 1的体积V =12·a ·a ·32·a =34a 3.故选A.答案:A 二、填空题7.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A BCD 为鳖臑,AB ⊥平面BCD ,且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________.解析:四面体A BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =4 3.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.答案:56π8.如图,已知在四棱锥P ABCD 中,PA ⊥底面ABCD ,PA =22,底面ABCD 是边长为4的正方形,M ,N 分别是AB ,AD 上的动点,E 为MN上一点,满足MN ⊥平面PAE ,且PE =2AE ,则△PMN 的面积的最小值是________.解析:∵MN ⊥平面PAE ,PE ⊂平面PAE ,∴MN ⊥PE ,MN ⊥AE ,又PE =2AE ,∴S△PMN=2S △AMN ,则求△PMN 的面积的最小值转化为求△AMN 的面积的最小值.∵PA ⊥底面ABCD ,∴PA ⊥AE ,又PE =2AE ,∴∠APE =π4,则AE =2 2.设AM =m ,AN =n ,则在Rt △AMN 中,AM ·AN =AE ·MN ,即mn =22·m 2+n 2≥22·2mn ,∴mn ≥16,当且仅当m =n =4时等号成立,∴S △PMN =2S △AMN ≥2×12×16=8 2.答案:829.有一个倒圆锥形容器,它的轴截面是顶角的余弦值为0.5的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为________.解析:如图所示,作出轴截面,因轴截面是顶角的余弦值为0.5的等腰三角形,所以顶角为60˚,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π·(3r )23r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π·h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .答案:315r10.如图,在边长为2的正方形ABCD 中,圆心为B ,半径为r (0<r <2)的圆与AB 、BC 分别交于E 、F 两点,且sin ∠CDF =55,则阴影部分绕直线BC 旋转一周后形成的几何体的表面积为________.解析:由旋转体的定义可知,阴影部分绕直线BC 旋转一周后形成的几何体为圆柱中挖掉一个半球和一个圆锥,其表面为阴影部分的边界线绕BC 旋转一周后形成的图形.在Rt △DCF 中,由sin ∠CDF =55可得tan ∠CDF =12,故CF =12CD =1,所以BF =BE =1.①线段AD 绕直线BC 旋转一周后形成圆柱的侧面,该圆柱的底面半径为2,母线长为2,故该圆柱的侧面积S 1=2π×2×2=8π;②线段AE 绕直线BC 旋转一周后形成一个圆环,大圆的半径为2,小圆的半径为1,故该圆环的面积S 2=π×22-π×12=3π;③圆弧EF 绕直线BC 旋转一周后形成一个半球面,所在球的半径为1,故其表面积S 3=12×4π×12=2π;④线段DF 绕直线BC 旋转一周后形成一个圆锥的侧面,圆锥的底面半径为2,母线长为5,故其表面积S 4=π×2×5=25π.所以阴影部分绕直线BC 旋转一周后形成的几何体的表面积S =S 1+S 2+S 3+S 4=8π+3π+2π+25π=(13+25)π.答案:(13+25)π三、解答题11.现需设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABC DA 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6m ,PO 1=2m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当PO 1为多少时,仓库的容积最大?解析:(1)由PO 1=2知O 1O =4PO 1=8.因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABC DA 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m ,则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以+h 2=36,即a 2=2(36-h 2),0<h <6,于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6.从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍).当0<h <23时,V ′>0,V 是单调递增函数;当23<h <6时,V ′<0,V 是单调递减函数.故当h =23时,V 取得极大值,也是最大值.因此,当PO 1=23m 时,仓库的容积最大.12.如图,已知异面直线a ,b 成60˚角,其公垂线段(指与a ,b 直线垂直相交的线段)EF =2,长为4的线段AB 的两端点A ,B 分别在直线a ,b 上运动.(1)指出AB 中点P 的轨迹所在位置;(2)求AB 中点P 的轨迹所在的曲线方程.解析:(1)设EF 的中点O ,而P 为AB 的中点,故O ,P 在EF 的中垂面α上,从而P点轨迹在EF 的中垂面α上.(2)设A ,B 在面α上的射影为C ,D ,则由AP =PB =2,AC =BD =1,得CD =23.因为a ∥OC ,b ∥OD ,所以∠COD =60˚.在平面α内,以O 为原点,∠COD 的角平分线为x 轴的正半轴建立直角坐标系如图.设C 点的坐标为(3t 1,t 1),D 点坐标为(3t 2,-t 2),则P 点坐标(x ,y )=32(t 1+t 2),=12(t 1-t 2),因为CD =23,所以[3(t 1-t 2)2+(t 1+t 2)2=12.所以x 29+y 2=1,故P 点轨迹在EF 的中垂面α上,且轨迹为椭圆.。