(完整word版)概率论与数理统计-知识点总复习讲解(良心出品必属精品)
- 格式:doc
- 大小:846.50 KB
- 文档页数:31
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。
以下是对概率论与数理统计主要知识点的详细总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
我们通常用大写字母A、B、C 等来表示。
随机事件的关系包括包含、相等、互斥(互不相容)和对立等。
2、概率的定义概率是用来度量随机事件发生可能性大小的数值。
概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。
概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。
3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。
二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。
2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。
三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。
2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。
随机事件和概率第一节 基本概念1、排列组合初步 (1)排列组合公式)!(!n m m P n m -=从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C nm -= 从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
(4)一些常见排列① 特殊排列 相邻 彼此隔开顺序一定和不可分辨② 重复排列和非重复排列(有序) ③ 对立事件 ④ 顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A 发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。
A B=Ø,则表示A 与B不可能同时发生,称事件A与事件B互不相容或者互斥。
基本事件是互不相容的。
Ω-A称为事件A的逆事件,或称A的对立事件,记为A。
它表示A不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11iiii AABABA=,BABA=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型) 1° {}n ωωω 21,=Ω,2° nP P P n 1)()()(21===ωωω 。
设任一事件A ,它是由m ωωω 21,组成的,则有P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++nm =基本事件总数所包含的基本事件数A =4、五大公式(加法、减法、乘法、全概、贝叶斯) (1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B) (2)减法公式 P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B) (3)条件概率和乘法公式定义 设A 、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1⇒P(B /A)=1-P(B/A) 乘法公式:)/()()(A B P A P AB P =更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。
(4)全概公式设事件n B B B ,,,21 满足1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>, 2° ni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。
此公式即为全概率公式。
(5)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n , 2° ni iB A 1=⊂,0)(>A P ,则∑==nj jji i i B A P B P B A P B P A B P 1)/()()/()()/(,i=1,2,…n 。
此公式即为贝叶斯公式。
)(i B P ,(1=i ,2,…,n ),通常叫先验概率。
)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。
如果我们把A 当作观察的“结果”,而1B ,2B ,…,n B 理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
5、事件的独立性和伯努利试验 (1)两个事件的独立性设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的(这个性质不是想当然成立的)。
若事件A 、B 相互独立,且0)(>A P ,则有)()()()()()()|(B P A P B P A P A P AB P A B P ===所以这与我们所理解的独立性是一致的。
若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。
(证明)由定义,我们可知必然事件Ω和不可能事件Ø与任何事件都相互独立。
(证明)同时,Ø与任何事件都互斥。
(2)多个事件的独立性设ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。
对于n个事件类似。
两两互斥→互相互斥。
两两独立→互相独立?(3)伯努利试验定义我们作了n次试验,且满足◆每次试验只有两种可能结果,A发生或A不发生;◆n次试验是重复进行的,即A发生的概率每次均一样;◆每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。
这种试验称为伯努利概型,或称为n重伯努利试验。
用p表示每次试验A发生的概率,则A发生的概率为qp=-1,用)(kP n表示n重伯努利试验中A出现)0(nkk≤≤次的概率,knkknn qpkP C-=)(,nk,,2,1,0=。
随机变量及其分布第一节基本概念在许多试验中,观察的对象常常是一个随同取值的量。
例如掷一颗骰子出现的点数,它本身就是一个数值,因此P(A)这个函数可以看作是普通函数(定义域和值域都是数字,数字到数字)。
但是观察硬币出现正面还是反面,就不能简单理解为普通函数。
但我们可以通过下面的方法使它与数值联系起来。
当出现正面时,规定其对应数为“1”;而出现反面时,规定其对应数为“0”。
于是==)(ωX X ⎩⎨⎧,当反面出现,当正面出现01称X 为随机变量。
又由于X 是随着试验结果(基本事件ω)不同而变化的,所以X 实际上是基本事件ω的函数,即X=X(ω)。
同时事件A 包含了一定量的ω(例如古典概型中A 包含了ω1,ω2,…ωm ,共m 个基本事件),于是P(A)可以由P(X(ω))来计算,这是一个普通函数。
定义 设试验的样本空间为Ω,如果对Ω中每个事件ω都有唯一的实数值X=X(ω)与之对应,则称X=X(ω)为随机变量,简记为X 。
有了随机变量,就可以通过它来描述随机试验中的各种事件,能全面反映试验的情况。
这就使得我们对随机现象的研究,从前一章事件与事件的概率的研究,扩大到对随机变量的研究,这样数学分析的方法也可用来研究随机现象了。
一个随机变量所可能取到的值只有有限个(如掷骰子出现的点数)或可列无穷多个(如电话交换台接到的呼唤次数),则称为离散型随机变量。
像弹着点到目标的距离这样的随机变量,它的取值连续地充满了一个区间,这称为连续型随机变量。
1、随机变量的分布函数(1)离散型随机变量的分布率设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率,即事件(X=X k )的概率为P(X=x k )=p k ,k=1,2,…,则称上式为离散型随机变量X 的概率分布或分布律。
有时也用分布列的形式给出:,,,,,,,,|)(2121k k k p p p x x x x X P X =。
显然分布律应满足下列条件: (1)0≥k p , ,2,1=k , (2)∑∞==11k kp。
(2)分布函数对于非离散型随机变量,通常有0)(==x X P ,不可能用分布率表达。
例如日光灯管的寿命X ,0)(0==x X P 。
所以我们考虑用X 落在某个区间],(b a 内的概率表示。
定义 设X 为随机变量,x 是任意实数,则函数)()(x X P x F ≤=称为随机变量X 的分布函数。
)()()(a F b F b X a P -=≤< 可以得到X 落入区间],(b a 的概率。
也就是说,分布函数完整地描述了随机变量X 随机取值的统计规律性。
分布函数)(x F 是一个普通的函数,它表示随机变量落入区间(– ∞,x]内的概率。
)(x F 的图形是阶梯图形, ,,21x x 是第一类间断点,随机变量X 在k x 处的概率就是)(x F 在k x 处的跃度。
分布函数具有如下性质:1° ,1)(0≤≤x F +∞<<∞-x ;2° )(x F 是单调不减的函数,即21x x <时,有≤)(1x F )(2x F ;3° 0)(lim )(==-∞-∞→x F F x , 1)(lim )(==+∞+∞→x F F x ;4° )()0(x F x F =+,即)(x F 是右连续的; 5° )0()()(--==x F x F x X P 。
(3)连续型随机变量的密度函数定义 设)(x F 是随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=xdxx f x F )()(,则称X 为连续型随机变量。
)(x f 称为X 的概率密度函数或密度函数,简称概率密度。
)(x f 的图形是一条曲线,称为密度(分布)曲线。