高考数学一轮复习第六章不等式推理与证明课时分层作业四十数学归纳法理
- 格式:doc
- 大小:1.07 MB
- 文档页数:6
2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理基础热身1.设M=2a(a-2),N=(a+1)(a-3),则有()A.M>NB.M≥NC.M<n< bdsfid="83" p=""></n<>D.M≤N2.[xx·襄阳五中模拟]设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.若a,b,c∈R,a>b,则下列不等式成立的是()A.<b< bdsfid="92" p=""></b<>B.a2>b2C.>D.a|c|>b|c|4.已知-1≤a≤3,-5<b<3,则a+|b|的取值范围是.< bdsfid="97" p=""></b<3,则a+|b|的取值范围是.<>5.有外表相同,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>c+b,a+c<b,则a,b,c,d由大到小的排列顺序为.< bdsfid="100" p=""></b,则a,b,c,d由大到小的排列顺序为.<> 能力提升6.已知下列四个关系:①若a>b,则ac2>bc2;②若a>b,则<;③若a>b>0,c>d>0,则>;④若a>b>1,c<0,则a cA.1个B.2个C.3个D.4个7.[xx·潮州二模]已知a>b,则下列各式一定正确的是()A.a lg x>b lg xB.ax2>bx2C.a2>b2D.a·2x>b·2x8.[xx·广西玉林质检]已知a=log23,b=,c=log53,则()A.c<a<b< bdsfid="127" p=""></a<b<>B.a<b<c< bdsfid="130" p=""></b<c<>C.b<c<a< bdsfid="133" p=""></c<a<>D.b<a<c< bdsfid="136" p=""></a<c<>9.[xx·南阳一中月考]设a>b>0,x=-,y=-,则x,y的大小关系为()A.x>yB.x<y< bdsfid="143" p=""></y<>C.x=yD.x,y的大小关系不定10.若a<b,d<c,且(c-a)(c-b)0,则a,b,c,d的大小关系是()</b,d<c,且(c-a)(c-b)A.d<a<c<b< bdsfid="153" p=""></a<c<b<>B.a<c<b<d< bdsfid="156" p=""></c<b<d<>C.a<d<b<c< bdsfid="159" p=""></d<b<c<>D.a<d<c<b< bdsfid="162" p=""></d<c<b<>11.[xx·北京东城区二模]据统计,某超市两种蔬菜A,B连续n天的价格(单位:元)分别为a1,a2,a3,…,a n和b1,b2,b3,…,b n.令M={m|a mA.若A?B,B?C,则A?CB.若A?B,B?C同时不成立,则A?C不成立C.A?B,B?A可同时不成立D.A?B,B?A可同时成立12.[xx·南京一模]已知a,b为实数,且a≠b,a<0,则a 2b-(填“>”“<”或“=”).13.[xx·咸阳模拟]已知函数f=ax+b,0<f<2,-1<f<1,则2a-b的取值范围是.< bdsfid="184" p=""></f<2,-1<f<1,则2a-b的取值范围是.<>14.[xx·河南天一大联考]已知实数a∈(-3,1),b∈,,则的取值范围是.难点突破15.(5分)[xx·杭州质检]若实数a,b,c满足对任意实数x,y有3x+4y-5≤ax+by+c≤3x+4y+5,则()A.a+b-c的最小值为2B.a-b+c的最小值为-4C.a+b-c的最大值为4D.a-b+c的最大值为616.(5分)[xx·盐城一模]已知-1≤a+b≤3,2≤a-b≤4,若2a+3b的最大值为m,最小值为n,则m+n= .课时作业(三十四)第34讲一元二次不等式及其解法基础热身1.不等式-x2+3x+10>0的解集为 ()A.(-2,5)B.(-∞,-2)∪(5,+∞)C.(-5,2)D.(-∞,-5)∪(2,+∞)2.[xx·上饶四校联考]设x∈R,则“0<x<2”是“x2-x-2<="" bdsfid="233" p=""></x<2”是“x2-x-2A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.[xx·淮北一中四模]若(x-1)(x-2)<2,则(x+1)(x-3)的取值范围是()A.(0,3)B.C.D.4.若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是.5.若关于x的不等式ax2-6x+a2<0的解集是(1,m),则m= .能力提升6.如果关于x的不等式x2<ax+b的解集是{x|1<x<="" bdsfid="270" p=""></ax+b的解集是{x|1<xA.-81B.81C.-64D.647.若存在x∈[-2,3],使不等式2x-x2≥a成立,则实数a的取值范围是()A.(-∞,1]B.(-∞,-8]C.[1,+∞)D.[-8,+∞)8.[xx·岳阳质检]设函数f(x)=若不等式xf(x-1)≥a的解集为[3,+∞),则实数a的值为()A.-3B.3C.-1D.19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a 的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.[xx·银川二中一模]已知a1>a2>a3>0,则使得(1-a i x)2<1(i=1,2,3)都成立的x的取值范围是()A.B.C.D.11.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,则t的取值范围是()A.B.C.D.12.已知函数f(x)=x2-2ax+a2-1,若关于x的不等式f[f(x)]<0的解集为空集,则实数a的取值范围是.13.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,则x的取值范围是.14.[xx·惠州二调]已知函数f(x)=则不等式f[f(x)]≤3的解集为.难点突破15.(5分)[xx·苏北三市(连云港、徐州、宿迁)三模]已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是()A.B.C.D.16.(5分)[xx·湖州、衢州、丽水三市联考]已知函数f=ax2+bx+c(a,b,c∈R),若存在实数a ∈[1,2],对任意x∈[1,2],都有f≤1,则7b+5c的最大值是.课时作业(三十五)第35讲二元一次不等式(组)与简单的线性规划问题基础热身1.(x-2y+1)(x+y-3)<0表示的平面区域为()图K35-12.已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为()A.(-24,7)B.(-∞,-7)∪(24,+∞)C.(-7,24)D.(-∞,-24)∪(7,+∞)3.[xx·阜阳质检]不等式|x|+|3y|-6≤0所对应的平面区域的面积为()A.12B.24C.36D.484.在平面直角坐标系中,不等式组表示的平面区域的形状是.5.[xx·桂林、崇左、百色一模]设x,y满足约束条件则x2+y2的最大值为.能力提升6.已知实数x,y满足约束条件则目标函数z=x-2y的最小值为()A.-1B.1C.3D.77.[xx·南充三诊]若实数x,y满足不等式组则z=2x+y的最大值是()A.B.C.14D.218.设x,y满足约束条件则的最大值为()A.B.2C.D.09.[xx·惠州二模]设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则实数m的取值范围是()A.B.C.D.10.[xx·宁德质检]已知约束条件表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为()A.B.1C.D.11.[xx·大庆实验中学一模]已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域上的一个动点,则·的取值范围是.12.[xx·淮南二模]已知实数x,y满足不等式组若目标函数z=y-mx 取得最大值时有唯一的最优解(1,3),则实数m的取值范围是.13.(15分)[xx·天津河东区二模]制定投资计划时,不仅要考虑可能获得的盈利,还要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划的投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问:投资人对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?最大盈利额是多少?14.(15分)某人有一套房子,室内面积共计180 m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18 m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15 m2,可住游客3名,每名游客每天住宿费50元.装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天才能获得最大的房租收益?难点突破15.(5分)[xx·衡阳二联]集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠?,则r的取值范围为()A.B.C.D.16.(5分)[xx·九江模拟]已知实数x,y满足若z=mx+y的最大值为 3,则实数m的值是()A.-2B.3C.8D.2课时作业(三十六)第36讲基本不等式基础热身1.[xx·北京海淀区一模]若m<n<0,则下列不等式中正确的是()< bdsfid="561" p=""></n<0,则下列不等式中正确的是()<>A.>B.>C.+>2D.m+n>mn2.[xx·青岛质检]已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y 有()A.最小值20B.最小值200C.最大值20D.最大值2003.[xx·赤峰模拟]若函数f=x+(x>2)在x=a处取得最小值,则a=()A.1+B.1+C.3D.44.[xx·天津河东区二模]已知a>0,b>0,且2a+b=4,则的最小值是.5.[xx·成都九校联考]设正数a,b满足a+2b=1,则+的最小值为.能力提升6.[xx·郑州三模]若实数a,b,c均大于0,且(a+c)·(a+b)=6-2,则2a+b+c的最小值为()A.-1B.+1C.2+2D.2-27.[xx·雅安三诊]对一切实数x,不等式x2+a+1≥0恒成立,则实数a的取值范围是() A.B.C.D.8.[xx·乌鲁木齐三模]已知x,y∈R,x2+y2+xy=315,则x2+y2-xy 的最小值是()A.35B.105C.140D.2109.[xx·泉州模拟]已知2a+2b=2c,则a+b-2c的最大值为()A.-2B.-1C.D.-10.[xx·深圳调研]若函数f=x+(m为大于0的常数)在(1,+∞)上的最小值为3,则实数m的值为.11.用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是.12.[xx·日照三模]已知向量a=(m,1),b=(4-n,2),m>0,n>0,若a∥b,则+的最小值为.13.(15分)[xx·盐城三模]已知a,b,c为正实数,且a+b+c=3,证明: ++≥3.14.(15分)[xx·黄冈中学模拟]某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x(x>0)吨,且每吨原材料创造的利润提高了0.5x%.若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12a-x万元,其中a>0.(1)若设备升级后生产这批A产品的利润不低于原来生产这批A产品的利润,求x的取值范围;(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.难点突破15.(5分)[xx·河南豫南六市联考]已知函数f=ax2+bx+c(b>a),对任意的x∈R,f≥0恒成立,则的最小值为()A.3B.2C.1D.016.(5分)[xx·湛江二模]已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,又存在x0∈R,a+2x0+b=0,则的最小值为.课时作业(三十七)第37讲合情推理与演绎推理基础热身1.[xx·鹰潭一模]用“三段论”推理:任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0.你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的2.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点3.观察图K37-1中各正方形图案,则所有圆点总和S n与n的关系式为()图K37-1A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n4.[xx·兰州模拟]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,….由以上式子可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1= .5.[xx·烟台二模]在正项等差数列中有=成立,则在正项等比数列中,类似的结论为.能力提升6.[xx·郑州一中调研]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.xx年是“干支纪年法”中的丙申年,那么xx年是“干支纪年法”中的()A.丁酉年B.戊未年C.乙未年D.丁未年7.下面说法正确的是()①数列{a n}的前三项是1,2,3,那么这个数列的通项公式为a n=n;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④8.[xx·临汾一中、忻州一中、长治二中、康杰中学联考]已知[x]表示不大于x的最大整数,设函数f(x)=log2,得到下列结论:结论1:当2<x< bdsfid="827" p=""></x<>结论2:当4<x< bdsfid="831" p=""></x<>结论3:当6<x< bdsfid="835" p=""></x<>……照此规律,结论6为.9.如图K37-2甲所示,在直角三角形ABC中,AC⊥AB,AD⊥BC,D 是垂足,则有AB2=BD·BC,该结论称为射影定理.如图乙所示,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比直角三角形中的射影定理,则有.图K37-2难点突破10.(5分)[xx·郑州、平顶山、濮阳二模]设函数f(0)(x)=sin x,定义f(1)(x)=f'(0)(x),f(2)(x)=f'(1)(x),…,f(n)(x)=f'(n-1)(x),则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(xx)(15°)的值是 ()A.B.C.0D.111.(5分)[xx·江南十校二模]某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向.有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.课时作业(三十八)第38讲直接证明与间接证明基础热身1.[xx·莱芜一中模拟]用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,应假设()A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根2.要证明a2+b2-1-a2b2≤0,只需证明()A.2ab-1-a2b2≤0B.a2+b2-1≤C.-1-a2b2≤0D.(a2-1)(b2-1)≥03.[xx·南昌二模]已知等差数列的前n项和为S n,若S2k+1>0,则一定有()A.a k>0B.S k>0C.a k+1>0D.S k+1>04.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,+<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设≥1.其中正确说法的序号是.能力提升5.[xx·大连模拟]“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是()A.男护士B.女护士C.男医生D.女医生6.[xx·福建师大附中一模]若O为△ABC平面内一点,且满足(-)·(+-2)=0,则△ABC为()A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形7.设A,B,C为锐角三角形ABC的三个内角,M=sin A+sin B+sinC,N=cos A+2cos B,则()A.M<n< bdsfid="997" p=""></n<>B.M=NC.M>ND.M,N大小不确定8.[xx·武汉模拟]已知f=,a≠b,则|f-f|与|a-b|的大小关系为()A.>B.<C.=D.不确定9.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是(填序号).①假设三个角都不大于60°;②假设三个角都大于60°;③假设三个角至多有一个大于60°;④假设三个角至多有两个大于60°.难点突破10.(5分)[xx·山西运城调研]在△ABC中,AC=5,+-=0,则BC+AB=()A.6B.7C.8D.911.(5分)[xx·北京海淀区二模]已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图K38-1所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记T i(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是()A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数图K38-1课时作业(三十九)第39讲数学归纳法基础热身1.用数学归纳法证明“1+a+a2+…+a n+1=(a≠1,n∈N*)”,在验证n=1时,左端所得的项为()A.1B.1+aC.1+a+a2D.1+a+a2+a32.用数学归纳法证明“凸n边形对角线的条数f=”时,第一步应验证()A.n=1成立B.n=2成立C.n=3成立D.n=4成立3.用数学归纳法证明“1+++…+=”时,由n=k到n=k+1,等式左边需要添加的项是()A.B.C.D.4.在数列{a n}中,a1=2,a n+1=(n∈N*),可以猜想数列的通项公式为.5.用数学归纳法证明“1+++…+<2-(n≥2,n∈N*)”时第一步需要验证的不等式为.能力提升6.已知n为正偶数,用数学归纳法证明“1-+-+…+=2++…+”时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n= 时等式成立()A.k+1B.k+2C.2k+2D.2(k+2)7.用数学归纳法证明“1+++…+< bdsfid="1143" p=""><>A.2k-1B.2k-1C.2kD.2k+18.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总可推出f(k+1)≥k+2成立.那么,下列说法正确的是()A.若f(1)<2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立9.设平面内有n(n≥3)条直线,它们任何2条不平行,任何3条不共点,若k条这样的直线把平面分成f个区域,则k+1条直线把平面分成的区域数f(k+1)=f+ .10.用数学归纳法证明“2n>2n2-2n+1对于n≥n0的正整数n均成立”时,第一步证明中的起始值n0应取.11.设f(n)=1-+-+…+,则f(k+1)=f+ .(不用化简)12.用数学归纳法证明“1-+-+…+-=++…+”时,假设n=k时等式成立,则n=k+1时,等式右边为.13.(10分)[xx·山西孝义质检]数列满足a n+5a n+1=36n+18,且a1=4.(1)写出的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.难点突破14.(5分)如果命题P(n∈N*)对n=k(k∈N*)成立,则它对n=k+1也成立,现已知P对n=4不成立,则下列结论中正确的是 ()A.P对任意n∈N*成立B.P对n>4成立C.P对n<4成立D.P对n≤4不成立15.(5分)已知f(m)=1+++…+(m∈N*),用数学归纳法证明f>时,f-f= .课时作业(三十三)1.A[解析] 因为M-N=2a(a-2)-(a+1)(a-3)=a2-2a+3=(a-1)2+2>0,所以M>N,故选A.2.D[解析] 因为“a>b”不能推出“|a|>|b|”成立,且“|a|>|b|”也不能推出“a>b”成立,所以“a>b”是“|a|>|b|”的既不充分也不必要条件.故选D.3.C[解析] 取a=1,b=-1,排除选项A;取a=0,b=-1,排除选项B;取c=0,排除选项D;显然>0,则不等式a>b的两边同时乘,所得不等式仍成立.故选C.4.[-1,8)[解析] 因为-5<b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以< bdsfid="1228" p=""></b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以<>a+|b|的取值范围是[-1,8).5.d>b>a>c [解析] ∵a+b=c+d,a+d>c+b,∴2a>2c,即a>c,∴b<d.∵a+c<b,∴a<b.综上可得< bdsfid="1235" p=""></d.∵a+c<b,∴a<b.综上可得<>d>b>a>c.6.B[解析] c=0时,①错误;a>0>b时,②错误;根据不等式的性质知③正确;根据指数函数的性质可知④正确.故正确的有2个.7.D[解析] A中,当x=1时,不成立;B中,当x=0时,不成立;C中,当a=0,b=-1时,不成立;D 中,因为2x>0,所以a·2x>b·2x成立.故选D.8.A[解析] 由题可知a=log2<a<b.故选a.< bdsfid="1248" p=""><a<b.故选a.<>9.B[解析] ∵x>0,y>0,==<1,∴x<y,故选b.< bdsfid="1252" p=""></y,故选b.<>10.A[解析] ∵a<b,(c-a)(c-b)0,∴a<c<b,且db,结合d<c,知< bdsfid="1258" p=""></c,知<></c<b,且d</b,(c-a)(c-b) d<a<c<b.故选a.< bdsfid="1262" p=""></a<c<b.故选a.<>11.C[解析] 特例法:例如蔬菜A连续10天的价格分别为1,2,3,4,…,10,蔬菜B连续10天的价格分别为10,9,…,1时,A?B,B?A 同时不成立,故选C.12.< [解析] ∵a≠b,a<0,∴a-2b-=<0,∴a<2b-.13. [解析] 由函数的解析式可知0<a+b<2,-1<-a+b< bdsfid="1272" p=""></a+b<2,-1<-a+b<>14.(-24,8)[解析] 当-3<a<="">15.A[解析] 当x=1,y=-1 时,-6≤a-b+c≤4,所以a-b+c的最小值为-6,最大值为4,故B,D 错误;当x=-1,y=-1 时,-12≤-a-b+c≤-2,则2≤a+b-c≤12,所以a+b-c的最小值为2,最大值为12,故A正确,C错误.故选A.16.2[解析] 设2a+3b=x(a+b)+y(a-b),则解得因为-≤(a+b)≤,-2≤-(a-b)≤-1,所以-≤(a+b)-(a-b)≤,即-≤2a+3b≤,所以m+n=2.课时作业(三十四)1.A[解析] 由x2-3x-10<0,解得-2<x<5.< bdsfid="1289" p=""></x<5.<>2.A[解析] 由x2-x-2<0,得-1<x<2,故选a.< bdsfid="1293" p=""></x<2,故选a.<>3.C[解析] 由(x-1)(x-2)<2,解得0<x< bdsfid="1297" p=""></x<>4.(-∞,-6]∪[2,+∞)[解析] 由已知得方程x2-ax-a+3=0有实数根,即Δ=a2+4(a-3)≥0,故a≥2或a≤-6.5.2[解析] 由题意知,a≠0,方程ax2-6x+a2=0的根为1,m,且m>1,则所以m=2.6.B[解析] 不等式x2<ax+b可化为x2-ax-b<0,其解集是{x|1<x</ax+b可化为x2-ax-b<0,其解集是{x|1<x7.A[解析] 设f(x)=2x-x2,则当x∈[-2,3]时,f(x)=-(x-1)2+1∈[-8,1],因为存在x∈[-2,3],使不等式2x-x2≥a成立,所以a≤f(x)max,所以a≤1,故选A.8.B[解析] 由题意知3是方程xf(x-1)=a的一个根,则a=3f(3-1)=3×(2-1)=3,故选B.9.A[解析] 令g(x)=x2-4x-2,x∈(1,4),易得g(x)<-2.< bdsfid="1317" p=""><-2.<>10.B[解析] 由题意有(1-a i x)2<1?x2-2a i x<0?xx-<0,所以不等式的解集为0,.又0<<<,所以x的取值范围为0,,故选B.11.B[解析] 由题意知征收耕地占用税后每年损失耕地为20-t万亩,则税收收入为20-t×24 000×t%万元,由题意有20-t×24 000×t%≥9000,整理得t2-8t+15≤0,解得3≤t≤5,∴当耕地占用税税率为3%~5%时,既可减少耕地损失又可保证此项税收一年不少于9000万元.∴t的取值范围是3≤t≤5,故选B.12.(-∞,-2][解析] f(x)=x2-2ax+a2-1=[x-(a+1)][x-(a-1)],则f(x)<0?a-1<x<a+1,则f[f(x)]<0?a-1<f(x)< bdsfid="1327" p=""></x<a+1,则f[f(x)]<0?a-1<f(x)<>13.,[解析] 记f(m)=mx2-2x-m+1=(x2-1)m+1-2x(|m|≤2),则f(m)<0恒成立等价于解得<x<.< bdsfid="1334" p=""></x<.<>14. [解析] 由题意,f[f(x)]≤3,则f(x)≥0或∴f(x)≥-3,∴x<0或∴x≤.15.B[解析] 设f(x)=x2-2(a-2)x+a,当Δ=4(a-2)2-4a<0,即1<a0对x∈R恒成立.当Δ=0时,a=1或a=4,当a=1时,f=0,不合题意;当a=4时,f(2)=0,符合题意.当Δ>0时,</a需满足即即4<a≤5.综上,实数a的取值范围是(1,5].< bdsfid="1345" p=""></a≤5.综上,实数a的取值范围是(1,5].<>16.-6[解析] 因为x∈[1,2],所以ax2+bx+c≤1等价于a≤,由题意知存在a∈[1,2],使得不等式a≤对任意x∈[1,2]恒成立,所以≥1,即x2+bx+c-1≤0对x∈[1,2]恒成立,所以即所以7b+5c=3(b+c)+2(2b+c)≤-6,即7b+5c的最大值为-6.课时作业(三十五)1.C[解析] 原不等式等价于不等式组或分别画出两个不等式组所表示的平面区域(图略),观察可知选C.2.C[解析] ∵点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,∴(-9+2-a)(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24,故选 c.< bdsfid="1358" p=""></a<24,故选c.<>3.B[解析] 如图,不等式+-6≤0所对应的平面区域为一个菱形及其内部,菱形的对角线长分别为12,4,所以其面积为×12×4=24,故选B.4.正方形[解析] 不等式组表示的平面区域由四条直线x=1,x=-1,y=2,y=4围成,其形状为正方形.5.5[解析] 由约束条件作出可行域如图所示,由得得A(2,-1).由图可知x2+y2的最大值为22+(-1)2=5,故答案为5.6.B[解析] 由约束条件作出可行域如图所示,目标函数z=x-2y可化为y=x-z,其中-z表示斜率为的直线在y轴上的截距,通过平移可知,当直线经过点A(3,1)时-z取到最大值,即z 取得最小值,最小值为1.故选B.7.B[解析] 作出可行域如图所示,目标函数z=2x+y可化为y=-2x+z,其中z表示斜率为-2的直线在y轴上的截距,由图可知,当直线过点A,时z取得最大值,故选B.8.A[解析] 作出不等式组表示的平面区域如图中阴影部分所示,又表示区域内的点与原点连线的斜率,由图知,==,故选A.。
第六章 不等式、推理与证明 6.7 数学归纳法练习 理[A 组·基础达标练]1.用数学归纳法证明不等式1+12+14+…+12n -1>12764成立,起始值至少应取为( )A .7B .8C .9D .10答案 B解析 左边的和为1-12n1-12=2-21-n ,当n =8时,和为2-2-7>12764,故选B.2.[2016·青岛高三月考]用数学归纳法证明1n +1+1n +2+…+12n >1134时,由k 到k +1,不等式左边的变化是( )A .增加12 k +1 项B .增加12k +1和12k +2两项C .增加12k +1和12k +2两项同时减少1k +1项D .以上结论都不对 答案 C 解析 n =k 时, 左边=1k +1+1k +2+…+1k +kn =k +1时,左边=1 k +1 +1+1 k +1 +2+…+1k +1 + k +1,由“n =k ”变成“n =k +1”时,不等式左边的变化是12k +1+12k +2-1k +1. 3.[2016·安庆高三月考]用数学归纳法证明2n>n 2(n ≥5,n ∈N +),第一步应验证( ) A .n =4 B .n =5 C .n =6 D .n =7答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5,故选B.4.[2015·德州一模]用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边的式子为( )A .1B .1+2C .1+2+22D .1+2+22+23答案 D解析 根据数学归纳法的步骤可得,n =1,左边为1+2+22+23.5.[2015·潍坊模拟]某个命题与正整数有关,若当n =k (k ∈N *)时该命题成立,那么可推得当n =k +1时该命题也成立,现已知当n =4时该命题不成立,那么可推得( )A .当n =5时,该命题不成立B .当n =5时,该命题成立C .当n =3时,该命题成立D .当n =3时,该命题不成立 答案 D解析 由n =k 时成立可推得n =k +1时成立,取逆否命题,可知选D.6.[2015·南昌模拟]已知f (n )=12+22+33+…+(2n )2,则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+(2k +1)2+(2k +2)2B .f (k +1)=f (k )+(k +1)2C .f (k +1)=f (k )+(2k +2)2D .f (k +1)=f (k )+(2k +1)2 答案 A解析 根据数学归纳法步骤可得f (k +1)=12+22+33+…+(2k )2+(2k +1)2+(2k +2)2=f (k )+(2k +1)2+(2k +2)2,可知选A.7.设S n =1+12+13+14+…+12n ,则S n +1-S n =______.答案12n+1+12n +2+12n +3+…+12n +2n 解析 S n +1=1+12+13+14+…+12n +1S n +1-S n =12n+1+12n +2+12n +3+…+12n +2n . 8.设数列{a n }的前n 项和为S n ,且对任意的正整数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案nn +1解析 令n =1, S 1=a 1=12n =2,S 2=a 1+a 2=23n =3,S 3=a 1+a 2+a 3=34猜想n =n ,S n =nn +1.9.[2015·陕西一模]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,1+2+…+n +…+2+1=________.答案 n 2解析 ∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,…,∴归纳可得1+2+…+n +…+2+1=n 2.10.[2016·云南名校联考]观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 ⎣⎢⎡⎦⎥⎤n n +1 22解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎡⎦⎥⎤n n +1 22. [B 组·能力提升练]1.[2015·湖北高考]已知数列{a n }的各项均为正数,b n =n ⎝⎛⎭⎪⎫1+1n na n (n ∈N +),e 为自然对数的底数.(1)求函数f (x )=1+x -e x的单调区间,并比较⎝⎛⎭⎪⎫1+1n n 与e 的大小;(2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b na 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n . 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x .当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x. 令x =1n ,得1+1n <e 1n,即⎝ ⎛⎭⎪⎫1+1n n<e.①(2)b 1a 1=1·⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2⎝ ⎛⎭⎪⎫1+122=(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3⎝ ⎛⎭⎪⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b n a 1a 2…a n=(n +1)n.②下面用数学归纳法证明②.a .当n =1时,左边=右边=2,②成立.b .假设当n =k (k ∈N *且k ≥1)时,②成立,即b 1b 2…b k a 1a 2…a k=(k +1)k.当n =k +1时,b k +1=(k +1)⎝⎛⎭⎪⎫1+1k +1k +1·a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k ·(k +1)⎝ ⎛⎭⎪⎫1+1k +1k +1=(k +2)k +1. 所以当n =k +1时,②也成立.根据a 、b ,可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术-几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+…+(a 1a 2…a n )1n= b 1 112+ b 1b 2 123+ b 1b 2b 3 134+…+ b 1b 2…b n1nn +1≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n n +1=b 1⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n n +1 +b 2⎣⎢⎡12×3+13×4+…+⎦⎥⎤1n n +1 +…+b n ·1n n +1=b 1⎝⎛⎭⎪⎫1-1n +1+b 2⎝ ⎛⎭⎪⎫12-1n +1+…+b n ⎝ ⎛⎭⎪⎫1n -1n +1 <b 11+b 22+…+b nn=⎝ ⎛⎭⎪⎫1+111a 1+⎝ ⎛⎭⎪⎫1+122a 2+…+⎝ ⎛⎭⎪⎫1+1n na n <e a 1+e a 2+…+e a n =e S n .即T n <e S n .2.[2015·江苏高考]已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解 (1)f (6)=13. (2)当n ≥6时,f (n )=下面用数学归纳法证明:①当n=6时,f(6)=6+2+62+63=13,结论成立;②假设n=k(k∈N*且k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:a.若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+k-12+k-23+3=(k+1)+2+k+12+k+13,结论成立;b.若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+k2+k3+1=(k+1)+2+k+1 -12+k+1 -13,结论成立;c.若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+k-12+k-13+2=(k+1)+2+k+12+k+1 -23,结论成立;d.若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+k2+k-23+2=(k+1)+2+k+1 -12+k+13,结论成立;e.若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+k-12+k3+2=(k+1)+2+k+12+k+1 -13,结论成立;f.若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+k2+k-13+1=(k+1)+2+k+1 -12+k+1 -23,结论成立.综上所述,结论对满足n≥6的自然数n均成立.。
第七节 数学归纳法【最新考纲】 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k(k≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案:(1)× (2)× (3)× (4)√2.(2016·银川九中月考)在应用数学归纳法证明凸n 边形的对角线为12n(n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0解析:因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C. 答案:C3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k(k≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析:k 为偶数,则k +2为偶数. 答案:B4.利用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的差为________.解析:当n =k 时,左边=1k +1+1k +2+…+1k +k,①当n =k +1时,左边=1k +2+1k +3+…+1k +k +12k +1+12k +2,②②-①得,12k +1+12k +2-1k +1=12k +1-12k +2. 答案:12k +1-12k +25.用数学归纳法证明:“1+12+13+…+12n -1<n (n>1)”由n =k(k>1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.解析:当n =k 时,不等式为1+12+13+…+12k -1<k.则n =k +1时,左边应为:1+12+13+…+12k -1+12k +12k +1+…+12k +1-1则增加的项数为2k +1-1-2k +1=2k. 答案:2k一种方法数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.两点注意运用数学归纳法应注意1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.一、选择题2.如果命题p(n)对n=k(k∈N*)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是( )A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立解析:由题意知n=k时成立,则n=k+2时也成立,又n=2时成立,则p(n)对所有正偶数都成立.答案:B3.用数学归纳法证明“2n>2n+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取 ( )A.2 B.3 C.5 D.6解析:∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.∴n的第一个取值n0=3.答案:B4.凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n+1)为( ) A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:边数增加1,顶点也相应增加1个,它与和它不相邻的n-2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.答案:C5.用数学归纳法证明3(2+7k)能被9整除,证明n=k+1时,应将3(2+7k+1)配凑成( )A .6+21·7kB .3(2+7k)+21C .3(2+7k )D .21(2+7k)-36解析:要配凑出归纳假设,故3(2+7k +1)=3(2+7·7k )=6+21·7k =21(2+7k)-36. 答案:D 二、填空题6.已知数列{a n }满足a 1=1,a n +1=12a n +1(n∈N *),通过计算a 1,a 2,a 3,a 4,可猜想a n=________.解析:a 1=1,a 2=12a 1+1=32,a 3=12a 2+1=74,a 4=12a 3+1=158.所以猜想a n =2n-12n -1.答案:2n-12n -1三、解答题 9.设a>0,f(x)=ax a +x,令a 1=1,a n +1=f(a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.(1)解:因为a 1=1,所以a 2=f(a 1)=f(1)=a1+a; a 3=f(a 2)=a 2+a ;a 4=f(a 3)=a3+a .猜想a n =a (n -1)+a(n∈N *).(2)证明:①当n =1时,a 1=1猜想正确.②假设n =k(k≥1,k ∈N *)时猜想正确, 则a k =a(k -1)+a,则a k +1=f(a k )=a ·a ka +a k =a ·a(k -1)+a a +a(k -1)+a=a (k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确.由①②知,对于任何n∈N *,都有a n =a (n -1)+a .10.(2014·安徽卷节选)设实数c>0,整数p>1,p∈N*.证明:当x>-1且x≠0时,(1+x)p>1+px.证明:用数学归纳法证明.①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以当p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业四十数学归纳法(25分钟50分)一、选择题(每小题5分,共35分)1.下列结论能用数学归纳法证明的是( )A.x>sinx,x∈(0,π)B.e x≥x+1(x∈R)C.1+++…+=2-(n∈N+)D.sin(α+β)=sinαcosβ+cosαsinβ(α,β∈R)【解析】选C.数学归纳法是用来证明与自然数有关的命题的一种方法,由此可知选项C符合题意.2.设V是多面体的顶点个数,F是多面体的面数,E是多面体的棱的条数,若多面体为凸多面体,则V+F-E=2,这个结论是18世纪著名数学家欧拉最早发现的,称为欧拉定理,在用数学归纳法证明这个定理时,验证的第一个值n0为( )A.1B.2C.3D.4【解析】选D.凸多面体面数最小的是四面体,在四面体中V=4,F=4, E=6,此时V+F-E=2成立.3.(2017·哈尔滨模拟)已知n为正偶数,用数学归纳法证明1-+-+…-=2(++…+)时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证( )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立【解析】选B.因为n为偶数,故假设n=k成立后,再证n=k+2时等式成立.4.(2017·郑州模拟)用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( )A.k2+1B.(k+1)2C.D.(k2+1)+(k2+2)+…+(k+1)2【解析】选D.当n=k时,左边=1+2+3+…+k2,当n=k+1时,左边=1+2+…+k2+(k2+1)+…+(k+1)2,所以应加上(k2+1)+(k2+2)+…+(k+1)2.【加固训练】(2017·南昌模拟)已知f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的关系是( )A.f(k+1)=f(k)+(2k+1)2+(2k+2)2B.f(k+1)=f(k)+(k+1)2C.f(k+1)=f(k)+(2k+2)2D.f(k+1)=f(k)+(2k+1)2【解析】选A.f(k+1)=12+22+32+…+(2k)2+(2k+1)2+2(k+1)]2=f(k)+(2k+1)2+(2k+2)2.5.(2017·岳阳模拟)用数学归纳法证明不等式1+++…+>(n∈N*)成立,其初始值至少应取( )A.7B.8C.9D.10【解析】选B.1+++…+=>,整理得2n>128,解得n>7,所以初始值至少应取8.【一题多解】解答本题还可用如下方法:选B.验证法:当n=7时,1+++…+==2-=,不成立;当n=8时,1+++…+==2-=>=成立.【加固训练】用数学归纳法证明2n>2n+1,n的第一个取值应是( ) A.1 B.2 C.3 D.4【解析】选C.因为n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.所以n的第一个取值应是3.6.利用数学归纳法证明不等式1+++…+<f(n)(n≥2,n∈N*)的过程中,由n=k到n=k+1时,左边增加了( )世纪金榜导学号99972668 A.1项 B.k项C.2k-1项D.2k项【解析】选D.令不等式的左边为g(n),则g(k+1)-g(k)=1+++…++++…+-=++…+,其项数为2k+1-1-2k+1=2k+1-2k=2k.故右边增加了2k项.【误区警示】解答本题易误选C,出错的原因是计算项数时,漏了加1.7.(2017·南宁模拟)已知f(n)=(2n+7)·3n+9,存在正整数m,使得对任意n∈N+,f(n)都能被m整除,则m的最大值为( )A.18B.36C.48D.54【解析】选B.由于f(1)=36,f(2)=108,f(3)=360都能被36整除,猜想f(n)能被36整除,即m的最大值为36.当n=1时,可知猜想成立.假设当n=k(k≥1,k∈N*)时,猜想成立,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=(2k+9)·3k+1+9=(2k+7)·3k+9+36(k+5)·3k-2,因此f(k+1)也能被36整除,故所求m的最大值为36.二、填空题(每小题5分,共15分)8.用数学归纳法证明“1+a2+a4+…+a2n+4=(a≠1)”,在验证n=1时,左端计算所得为________. 世纪金榜导学号99972669【解析】当n=1时,等式的左端为1+a2+a4+a6.答案:1+a2+a4+a69.当n为正奇数时,求证x n+y n被x+y整除,当第二步假设n=2k-1时命题为真,进而需验证n=________,命题为真. 世纪金榜导学号99972670 【解析】当n为正奇数时,求证x n+y n被x+y整除,用数学归纳法证明时,第二步假设n=2k-1时命题为真,进而需要验证n=2k+1时命题为真.答案:2k+110.(2017·西安模拟)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为________. 世纪金榜导学号99972671【解析】1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4(个)区域;3条直线最多可将平面分成1+(1+2+3)=7(个)区域;…;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=(个)区域.答案:(20分钟40分)1.(5分)设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是( )A.若f(1)<1成立,则f(10)<100成立B.若f(2)<4成立,则f(1)≥1成立C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立【解析】选D.选项A,B与题设中不等号方向不同,故A,B错;选项C中,应该是k≥3时,均有f(k)≥k2成立;选项D符合题意.2.(5分)用数学归纳法证明不等式++…+>(n>2)的过程中,由n=k到n=k+1时,不等式的左边( )A.增加了一项:B.增加了两项:,C.增加了两项:,,又减少了一项:D.增加了一项:,又减少了一项:【解析】选C.当n=k时,左边=++…+,n=k+1时,左边=++…+++.两式相减,得+-.3.(5分)用数学归纳法证明n n+1>(n+1)n(n∈N*)时,验证的第一个n0的值为________. 世纪金榜导学号99972672【解析】用验证法求解.当n=1时,n n+1=1<(n+1)n=2,当n=2时,n n+1=8<(n+1)n=9,当n=3时,n n+1=34=81>(n+1)n=43=64,当n=4时,n n+1=45=210=1024>(n+1)n=54=252=625.综上,验证的第一个n0的值为3.答案:34.(12分)(2017·深圳模拟)已知点P n(a n,b n)满足a n+1=a n·b n+1,b n+1=(n ∈N*)且点P1的坐标为(1,-1). 世纪金榜导学号99972673(1)求过点P1,P2的直线l的方程.(2)试用数学归纳法证明:对于n∈N*,点P n都在(1)中的直线l上.【解析】(1)由P1的坐标为(1,-1)知a1=1,b1=-1.所以b2==,a2=a1·b2=.所以点P2的坐标为.所以直线l的方程为2x+y=1.(2)①当n=1时,2a1+b1=2×1+(-1)=1成立.②假设n=k(k∈N*,k≥1)时,2a k+b k=1成立,则2a k+1+b k+1=2a k·b k+1+b k+1=(2a k+1)===1,所以当n=k+1时,命题也成立.由①②知,对n∈N*,都有2a n+b n=1,即点P n都在直线l上.【加固训练】(2017·常德模拟)设a>0,f(x)=,令a1=1,a n+1=f(a n),n∈N*.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式.(2)用数学归纳法证明你的结论.【解析】(1)因为a1=1,所以a2=f(a1)=f(1)=;a3=f(a2)=;a4=f(a3)=.猜想a n=(n∈N*).(2)①当n=1时,a1=1猜想正确.②假设n=k(k≥1,k∈N*)时猜想正确,则a k=.则a k+1=f(a k)====.这说明,n=k+1时猜想正确.由①②知,对于任何n∈N*,都有a n=.5.(13分)(2017·衡水模拟)已知函数f(x)=alnx+(a∈R). 世纪金榜导学号99972674(1)当a=1时,求f(x)在1,+∞)上的最小值.(2)若f(x)存在单调递减区间,求a的取值范围.(3)求证:ln(n+1)>+++…+.【解析】(1)当a=1时,f(x)=l nx+,定义域为(0,+∞).因为f′(x)=-=>0,所以f(x)在(0,+∞)上是增函数,所以f(x)在x∈1,+∞)内的最小值为f(1)=1.(2)f′(x)=-=,因为f(x)存在单调递减区间,所以f′(x)<0有正数解,即ax2+2(a-1)x+a<0有正数解.令h(x)=ax2+2(a-1)x+a,①当a=0时,明显成立.②当a<0时,h(x)=ax2+2(a-1)x+a是开口向下的抛物线,所以ax2+2(a-1)x+a<0有正数解.③当a>0时,h(x)=ax2+2(a-1)x+a是开口向上的抛物线,即方程ax2+2(a-1)x+a=0有正根.设其两根为x1,x2,因为x1x2=1>0,所以方程ax2+2(a-1)x+a=0有两正根,所以解得0<a<.综合①②③知,a<.(3)当n=1时,ln(n+1)=ln2,因为3ln2=ln8>1,所以ln2>,即当n=1时,不等式成立.设当n=k时,ln(k+1)>++…+成立.当n=k+1时,ln(k+2)=ln(k+1)+ln>++…++ln.根据(1)的结论可知,当x>1时,lnx+>1,即lnx>.令x=,所以ln>,则有ln(k+2)>++…++,即当n=k+1时,不等式也成立.综上可知不等式成立.关闭Word文档返回原板块。
(全国通用版)2019版高考数学一轮复习第六章不等式、推理与证明课时分层作业四十6.6 数学归纳法理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第六章不等式、推理与证明课时分层作业四十6.6 数学归纳法理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第六章不等式、推理与证明课时分层作业四十6.6 数学归纳法理的全部内容。
课时分层作业四十数学归纳法一、选择题(每小题5分,共35分)1。
用数学归纳法证明“2n〉n2+1对于n≥n0的正整数n都成立"时,第一步证明中的起始值n0应取( )A.2 B。
3 C.5 D。
6【解析】选C。
当n=1时,21=2=12+1,当n=2时,22=4〈22+1=5,当n=3时,23=8<32+1=10,当n=4时,24=16〈42+1=17,当n=5时,25=32〉52+1=26,当n=6时,26=64>62+1=37,故起始值n0应取5.2。
(2018·淄博模拟)设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总能推出f(k+1)≥k+2成立,那么下列命题总成立的是()A。
若f(1)〈2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C。
若f(2)<3成立,则f(1)≥2成立D。
若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立【解析】选D.当f(k)≥k+1成立时,总能推出f(k+1)≥k+2成立,说明如果当k=n时,f(n)≥n+1成立,那么当k=n+1时,f(n+1)≥n+2也成立,所以如果当k=4时,f(4)≥5成立,那么当k≥4时,f(k)≥k+1也成立.3。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层作业四十数学归纳法一、选择题(每小题5分,共35分)1.用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取( )A.2B.3C.5D.6【解析】选C.当n=1时,21=2=12+1,当n=2时,22=4<22+1=5,当n=3时,23=8<32+1=10,当n=4时,24=16<42+1=17,当n=5时,25=32>52+1=26,当n=6时,26=64>62+1=37,故起始值n0应取5.2.(2018·淄博模拟)设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总能推出f(k+1)≥k+2成立,那么下列命题总成立的是( )A.若f(1)<2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立【解析】选D.当f(k)≥k+1成立时,总能推出f(k+1)≥k+2成立,说明如果当k=n时,f(n)≥n+1成立,那么当k=n+1时,f(n+1)≥n+2也成立,所以如果当k=4时,f(4)≥5成立,那么当k≥4时,f(k)≥k+1也成立.3.用数学归纳法证明1-+-+…+-=++…+,则当n=k+1时,左端应在n=k的基础上加上( )A. B.-C.-D.+【解析】选 C.因为当n=k时,左端=1-+-+…+-,当n=k+1时,左端=1-+-+…+-+-.所以,左端应在n=k的基础上加上-.4.观察下列各等式:+=2,+=2,+=2,+=2,依照以上各式成立的规律,归纳出一般性的等式为( )A.+=2B.+=2C.+=2D.+=2【解析】选A.各等式可化为:+=2,+=2,+=2,+=2,可归纳得一般等式:+=2.5.(2018·沈阳模拟)设n为正整数,f(n)=1+++…+,经计算得f(2)=, f(4)>2,f(8)>,f(16)>3,f(32)>,观察上述结果,可推测出一般结论 ( )A.f(2n)>B.f(n2)≥C.f(2n)≥D.以上都不对【解析】选C.f(2)=f(21)==,f(4)=f(22)>,f(8)=f(23)>,f(16)=f(24)>,f(32)=f(25)>,由此可推知f(2n)≥.6.用数学归纳法证明1+2+3+…+2n=2n-1+22n-1(n∈N*)时,假设n=k时命题成立,则当n=k+1时,左端增加的项数是( )A.1项B.k-1项C.k项D.2k项【解析】选D. 运用数学归纳法证明1+2+3+…+2n=2n-1+22n-1(n∈N*)当n=k时,则有1+2+3+…+2k=2k-1+22k-1(k∈N*)左边表示的为2k项的和.当n=k+1时,则左边=1+2+3+…+2k+(2k+1)+…+2k+1,表示的为2k+1项的和,因此,增加了2k+1-2k=2k项.7.(2018·商丘模拟)已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c 对一切n∈N*都成立,则a,b,c的值为 ( )A.a=,b=c=B.a=b=c=C.a=0,b=c=D.不存在这样的a,b,c【解题指南】根据数学归纳法的要求,只需代入前三个数即可.【解析】选A.因为等式对一切n∈N*均成立,所以n=1,2,3时等式成立,即整理得解得a=,b=c=.二、填空题(每小题5分,共15分)8.(2018·洛阳模拟)用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证的不等式是________.解析】由n∈N*,n>1知,n取第一个值n0=2,当n=2时,不等式为1++<2.答案:1++<2.9.设数列{a n}的前n项和为S n,且对任意的自然数n都有(S n-1)2=a n S n,通过计算S1,S2,S3,猜想S n=______.【解析】由(S1-1)2=S1·S1,得S1=,由(S2-1)2=(S2-S1)S2,得S2=,依次得S3=,猜想S n=.答案:10.用数学归纳法证明不等式++…+>的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是________.世纪金榜导学号12560630【解析】不等式的左边增加的式子是+-=,故填.答案:.1.(5分)已知n为正偶数,用数学归纳法证明1-+-+…-=2(++…+)时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证( )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立【解析】选B. k为偶数,则k+2为偶数.2.(5分)用数学归纳法证明“1+++…+<n(n≥2)”时,由n=k 的假设证明n=k+1时,不等式左边需增加的项数为( )A.2k-1B.2k-1C.2kD.2k+1【解析】选C.当n=k时,左边=1+++…+,当n=k+1时,左边=1+++…+,所以左边增加的项数为2k+1-1-(2k-1)=2k+1-2k=2k.3.(5分)(2018·武汉模拟)已知数列{a n}满足条件a n=,设f(n)=(1-a1)(1-a2)(1-a3)…(1-a n),计算f(1),f(2),f(3),f(4)的值,由此猜想f(n)的通项公式为________.【解析】f(1)=,f(2)=,f(3)=,f(4)=.由此可猜想f(n)=.答案:f(n)=4.(12分)(2018·东莞模拟)已知S n=1+++…+(n>1,n∈N*),求证:>1+(n≥2,n∈N*).【证明】(1)当n=2时,=S4=1+++=>1+,即n=2时命题成立;(2)假设当n=k(k≥2,k∈N*)时命题成立,即=1+++…+>1+,则当n=k+1时,=1+++…+++…+>1++++…+>1++=1++=1+,故当n=k+1时,命题成立.由(1)和(2)可知,对n≥2,n∈N*.不等式>1+都成立.5.(13分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4.(2)猜想{a n}的通项公式,并加以证明.【解析】(1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k= (k-1)λk+2k,那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,a k+1=[(k+1)-1]λk+1+2k+1,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).关闭Word文档返回原板块。
分层作业四十数学归纳法
一、选择题(每小题5分,共35分)
1.用数学归纳法证明“2n>n21对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取
( )
A.2
B.3
C.5
D.6
解析选C.当n=1时,21=2=121,
当n=2时,=4<1=5,
当n=3时,23=8<321=10,
当n=4时,24=16<421=17,
当n=5时,25=32>521=26,
当n=6时,26=64>621=37,故起始值n0应取5.
2.(2018·淄博模拟)设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k1成立时,总能推出f(k1)≥k2成立,那么下列命题总成立的是( )
A.若f(1)<2成立,则f(10)<11成立
B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k1成立
C.若f(2)<3成立,则f(1)≥2成立
D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k1成立
解析选D.当f(k)≥k1成立时,总能推出f(k1)≥k2成立,说明如果当k=n时,f(n)≥n1成立,那么当k=n1时,f(n1)≥n2也成立,所以如果当k=4时,f(4)≥5成立,那么当k≥4时,f(k)≥k1也成立.
3.用数学归纳法证明1…=…,则当n=k1时,左端应在n=k的基础上加上 ( )
A. B.
C. D.
解析选C.因为当n=k时,左端=1…,当n=k1时,
左端=1….所以,左端应在n=k的基础上加上.
4.观察下列各等
式:=2,=2,=2,=2,依照以上各式成立的规律,归纳出一般性的等式为( )
A.=2
B.=2
C.=2
D.=2
解析选A.各等式可化为:=2,
=2,
=2,
=2,
可归纳得一般等式:=2.
5.(2018·沈阳模拟)设n为正整数,f(n)=1…,经计算得f(2)=,
f(4)>2,f(8)>,f(16)>3,f(32)>,观察上述结果,可推测出一般结论( ) A.f(2n)> B.f(n2)≥
C.f(2n)≥
D.以上都不对
解析选C.f(2)=f(21)==,f(4)=f()>,
f(8)=f(23)>,f(16)=f(24)>,
f(32)=f(25)>,由此可推知f(2n)≥.
6.用数学归纳法证明123…2n=2n1n1(n∈N*)时,假设n=k时命题成立,则当n=k1时,左端增加的项数是
( )
A.1项
B.k1项
C.k项
D.2k项
解析选D. 运用数学归纳法证明
123…2n=2n1n1(n∈N*)
当n=k时,则有123…2k=2k1k1(k∈N*)
左边表示的为2k项的和.当n=k1时,则
左边=123…2k(2k1)…2k1,表示的为2k1项的和,因此,增加了2k12k=2k项.
7.(2018·商丘模拟)已知12×33×324×33…n×3n1=3n(nab)c对一切n∈N*都成立,则a,b,c的值为
( )
A.a=,b=c=
B.a=b=c=
C.a=0,b=c=
D.不存在这样的a,b,c
解题指南根据数学归纳法的要求,只需代入前三个数即可.
解析选A.因为等式对一切n∈N*均成立,所以n=1,2,3时等式成立,
即
整理得
解得a=,b=c=.
二、填空题(每小题5分,共15分)
8.(2018·洛阳模拟)用数学归纳法证明1…<n(n∈N*,n>1)时,第一步应验证的不等式是________.
解析由n∈N*,n>1知,n取第一个值n0=2,当n=2时,不等式为1<2.
答案:1<2.
9.设数列{a n}的前n项和为S n,且对任意的自然数n都有(S n1)2=a n S n,通过计算S1,S2,S3,猜想S n=______.
解析由(S11)2=S1·S1,得S1=,
由(S21)2=(S2S1)S2,得S2=,
依次得S3=,猜想S n=.
答案:
10.用数学归纳法证明不等式…>的过程中,由n=k推导n=k1时,不等式的左
边增加的式子是________.
导学号12560630
解析不等式的左边增加的式子是=,故填
.
答案:.
1.(5分)已知n为正偶数,用数学归纳法证明1…=2(…)时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证
( )
A.n=k1时等式成立
B.n=k2时等式成立
C.n=2k2时等式成立
D.n=2(k2)时等式成立
解析选B. k为偶数,则k2为偶数.
2.(5分)用数学归纳法证明“1…<n(n≥2)”时,由n=k的假设证明n=k1时,不等式左边需
增加的项数为( )
A.2k1
B.2k-1
C.2k
D.2k1
解析选C.当n=k时,左边=1…,
当n=k1时,左边=1…,所以左边增加的项数为2k11(2k1)=2k12k=2k.
3.(5分)(2018·武汉模拟)已知数列{a n}满足条件a n=,设f(n)=(1a1)(1a2)(1a3)…(1a n),计算f(1),f(2),f(3),f(4)的值,由此猜想f(n)的通项公式为________.
解析f(1)=,f(2)=,f(3)=,f(4)=.由此可猜想f(n)=.
答案:f(n)=
4.(12分)(2018·东莞模拟)已知S n=1…(n>1,n∈N*),求证:>1(n≥2,n∈N*).
证明(1)当n=2时,=S4=1=>1,即n=2时命题成立
(2)假设当n=k(k≥2,k∈N*)时命题成立,即=1 (1)
则当n=k1时,=1……>1…
>1=1=1,
故当n=k1时,命题成立.
由(1)和(2)可知,对n≥2,n∈N*.不等式>1都成立.
5.(13分)在数列{a n}中,a1=2,a n1=λa nλn1(2λ)2n(n∈N*,λ>0).
(1)求a2,a3,a4.
(2)猜想{a n}的通项公式,并加以证明.
解析(1)a2=2λλ(2λ)=λ2,
a3=λ(λ2)λ3(2λ)=2λ323,
a4=λ(2λ323)λ4(2λ)23=3λ424.
(2)由(1)可猜想数列通项公式为:
a n=(n1)λn2n.
下面用数学归纳法证明:
①当n=1,2,3,4时,等式显然成立,
②假设当n=k(k≥4,k∈N*)时等式成立,
即a k=(k1)λk2k,
那么当n=k1时,
a k1=λa kλk1(2λ)2k
=λ(k1)λkλ2kλk12k1λ2k
=(k1)λk1λk12k1
=[(k1)1]λk12k1,
所以当n=k1时,a k1=[(k1)1]λk12k1,猜想成立,
由①②知数列的通项公式为a n=(n1)λn2n(n∈N*,λ>0).。