高三数学寒假作业冲刺培训班之历年真题汇编复习实战72151
- 格式:doc
- 大小:969.01 KB
- 文档页数:26
数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。
答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。
线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x1,x2, (x)21()2(2)()n x x x x x x -+-+- 其中,x y 表示样本均值。
N 是正整数,则1221()(ab )n n n n n n a b a b a a b b -----=-+++……一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足iz=1,其中i 为虚数单位,则 A .i B .i C .1 D .12.已知集合A=(,),x y x y 为实数,且221x y +=,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为A .4B .3C .2D .13.已知向量a=(1,2),b=(1,0),c=(3,4)。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x1,x2,…,xa 的标准差 锥体体积公式13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a1)(a2)=0的A.充分而不必要条件 B 必要而不充分条件 C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A.14B.13C.12 D.23 5.10⎰(e2+2x )dx 等于A.1B.e1C.eD.e+1 6.(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 7.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A.1322或B.23或2C.12或2D.2332或8.已知O 是坐标原点,点A (1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[1.0]B.[0.1]C.[0.2]D.[1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (1),所得出的正确结果一定不可能是A.4和6B.3和1C.2和4D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S1、S2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的。
1.已知集合{}{}2lg ,230A x y x B x x x ===--<,则A B = ( ▲ )A .(0,3)B .(1,0)-C .(,0)(3,)-∞+∞D .(1,3)-2.已知b a ,为异面直线,下列结论不正确的是( ▲ )A .必存在平面α使得αα//,//b aB .必存在平面α使得b a ,与α所成角相等C .必存在平面α使得αα⊥⊂b a ,D .必存在平面α使得b a ,与α的距离相等3.已知实数y x ,满足⎪⎩⎪⎨⎧≤-≤+≥-32302y x y x y x ,则y x -的最大值为( ▲ )A .1B .3C .1-D .3-4.已知直线l :b kx y +=,曲线C :0222=-+x y x ,则“0=+b k ”是“直线l 与曲线C 有公共点”的( ▲ ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设函数)(x f y =是定义在R 上的偶函数,对任意的R x ∈都有(6)()(3)f x f x f +=+,则满足上述条件的)(x f 可以是( ▲ )A .()cos 3xf x π=B .()sin 3x f x π=C .2()2cos 6x f x π=D .2()2cos 12xf x π=6.如图,已知1F 、2F 为双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点,点P 在第一象限,且满足 2||F P a =,1122()0F P F F F P +⋅=,线段2PF 与双曲线C 交于点Q ,若225F P F Q =,则双曲线C 的渐近线方程为( ▲ )A.y = B .C .y x =D .y x =7.已知集合22{(,)|1}M x y x y=+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M的“和谐实数对”。
第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(l) i505的虚部为(A) i (B) i (C)l (D) l(2)命题“∀x∈[2,+∞),x+3≥l"的否定为(A)∃xo∈[2,+∞),x0+3<1 (B)∃xo∈[2,+∞),xo +3≥l(C)∀ x∈[—2,+∞), x+3<1 (D)∀ x∈(∞,2), x+3≥l(3)小赵、小钱、小孙、小李四位同学被问到谁去过长城时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是(A)小赵 (B)小李 (C)小孙 (D)小钱(4)公比不为1的等比数列{an}满足a5a6+a4a7=18,若a1am=9,则m的值为(A)8 (B)9 (C) 10 (D) 11(5)阅读如图所示的程序框图,运行相应的程序,输出的结果s=(A)4 (B)5 (C)6 (D)7(6)《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2000斛(1丈=10尺,l尺=10寸,斛为容积单位,l斛≈1.62立方尺,π≈3),则圆柱底圆周长约为(A)l丈3尺 (B)5丈4尺 (C)9丈2尺 (D) 48丈6尺(7)己知直线ax+by一6=0(a>0,b>0)被圆x2+ y2—2x 4y=0截得的弦长为5则ab的最大值是(A)52 (B)4 (C) 92(D) 9 (8)T 为常数,定义fT(x)=(),(),()f x f x T T f x T ≥⎧⎨<⎩,若f(x)=x lnx ,则f3[f2(e)]的值为. (A)el (B)e (C)3 (D)e+l(9)设M 、N 是抛物线C: y2 =2px (p>0)上任意两点,点E 的坐标为(一λ,0)(λ≥0)若 EM EN ⋅的最小值为0,则λ= (A)0 (B)2p (C)p (D)2p (10)已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为(11)已知集合P={n|n=2k 一l ,k ∈N*,k≤50},Q={2,3,5},则集合T ={xy|x ∈P, y ∈Q} 中元素的个数为(A) 147 (B) 140 (C) 130 (D) 117(12)设向量a=(1,k),b=(x ,y),记a 与b 的夹角为θ.若对所有满足不等式|x 一2|≤y ≤l的x ,y ,都有θ∈(0,2π),则实数k 的取值范围是 (A)(一l ,+∞) (B)(一l ,0)(0,∞)(C)(1,+∞) (D)(一l,0)(1,+∞)第II 卷本卷包括必考题和选考题两部分。
一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (3)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论xi所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞) .【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得 x∈∅,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为 y=﹣5x+3. .【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.【解答】解;y′=﹣5e﹣5x,∴k=﹣5,∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= 50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1) .【分析】首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,化为普通方程为:y2=x,曲线ρsinθ=1,化为普通方程为:y=1,联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题. 17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测an=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即ak=2k+1.那么,当n=k+1时,由Sn=2nan+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴an=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0 解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f (1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|2.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.3 C.7 D.155.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)7.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.48.(5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每小题5分,共30分.9.(5分)若(x+i)i=﹣1+2i(x∈R),则x=.10.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.11.(5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.12.(5分)在△ABC中,a=1,b=2,cosC=,则c=;sinA=.13.(5分)若x,y满足,则z=x+y的最小值为.14.(5分)顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序粗加工精加工时间原料原料A 9 15原料B 6 21则最短交货期为个工作日.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn ﹣an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.16.(13分)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.18.(13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 [0,2) 62 [2,4)83 [4,6)174 [6,8)225 [8,10)256 [10,12)127 [12,14) 68 [14,16) 29 [16,18) 2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)19.(14分)已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.20.(13分)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|【分析】根据函数单调性的性质和函数成立的条件,即可得到结论.【解答】解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.【点评】本题主要考查函数定义域和单调性的判断,比较基础.2.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【分析】直接利用交集的运算得答案.【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.【点评】本题考查交集及其运算,是基础题.3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)【分析】直接利用平面向量的数乘及坐标减法运算得答案.【解答】解:由=(2,4),=(﹣1,1),得:2﹣=2(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7).故选:A.【点评】本题考查平面向量的数乘及坐标减法运算,是基础的计算题.4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.3 C.7 D.15【分析】算法的功能是求S=1+21+22+…+2k的值,根据条件确定跳出循环的k值,计算输出的S值.【解答】解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∵跳出循环的k值为3,∴输出S=1+2+4=7.故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.5.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.【解答】解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选:D.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.6.(5分)已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C.【点评】本题考查还是零点的判断,属基础题.7.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【分析】根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.【点评】本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.8.(5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【分析】由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.【解答】解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∴p=﹣0.2t2+1.5t﹣2,对称轴为t=﹣=3.75.故选:B.【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若(x+i)i=﹣1+2i(x∈R),则x= 2 .【分析】化简原式可得∴﹣1+xi=﹣1+2i,由复数相等的定义可得.【解答】解:∵(x+i)i=﹣1+2i,∴﹣1+xi=﹣1+2i,由复数相等可得x=2故答案为:2【点评】本题考查复数相等的充要条件,属基础题.10.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为 x2﹣y2=1 .【分析】利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.11.(5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为 2.【分析】由主视图知CD⊥平面ABC、B点在AC上的射影为AC中点及AC长,由左视图可知CD长及△ABC中变AC的高,利用勾股定理即可求出最长棱BD的长.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC=,在Rt△BCD中,BD=,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.【点评】本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解决问题的能力.12.(5分)在△ABC中,a=1,b=2,cosC=,则c= 2 ;sinA=.【分析】利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.【解答】解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.13.(5分)若x,y满足,则z=x+y的最小值为 1 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.。
一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (3)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论xi所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞) .【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得 x∈∅,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为 y=﹣5x+3. .【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.【解答】解;y′=﹣5e﹣5x,∴k=﹣5,∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1) .【分析】首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,化为普通方程为:y2=x,曲线ρsinθ=1,化为普通方程为:y=1,联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题. 17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测an=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即ak=2k+1.那么,当n=k+1时,由Sn=2nan+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴an=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0 解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f (1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.高考模拟复习试卷试题模拟卷【考情解读】1.了解集合的含义、元素与集合的属于关系;2.理解集合之间包含与相等的含义,能识别给定集合的子集;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合的关系及运算.【重点知识梳理】1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A.【高频考点突破】考点一 集合的含义【例1】 (1)若集合A ={x ∈R|ax2+ax +1=0}中只有一个元素,则a =( ) A .4 B .2 C .0 D .0或4(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a2,a +b ,0},则a2 016+b2 016=________.【答案】(1)A (2)1【规律方法】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【变式探究】 (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m2+m},若3∈A ,则m 的值为________.【答案】(1)C (2)-32 考点二 集合间的基本关系【例2】 (1)已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,则实数m 的取值范围为__________.(2)设U =R ,集合A ={x|x2+3x +2=0},B ={x|x2+(m +1)x +m =0},若(∁UA)∩B =∅,则m =__________.【答案】(1)(-∞,4](2)1或2【规律方法】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图来直观解决这类问题.【变式探究】 (1)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅ C.A⊆B D.B⊆A(2)已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是__________.【答案】(1)D(2)(4,+∞)考点三集合的基本运算【例3】 (1)(·四川卷)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}(2)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}【答案】(1)A(2)B【规律方法】(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.【变式探究】 (1)(·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅ B.{2}C .{5}D .{2,5}(2)设集合M ={x|-1≤x <2},N ={y|y <a},若M∩N≠∅,则实数a 的取值范围一定是( ) A .[-1,2) B .(-∞,2] C .[-1,+∞) D .(-1,+∞)【答案】(1)B (2)D考点四 集合背景下的新定义问题以集合为背景的新定义问题,集合只是一种表述形式,实质上考查的是考生接受新信息、理解新情境、解决新问题的数学能力.解决此类问题,要从以下两点入手:(1)正确理解创新定义.分析新定义的表述意义,把新定义所表达的数学本质弄清楚,进而转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.【例4】设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪m≤x≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x≤n ,且M ,N 都是集合{0|0≤x≤1}的子集,如果把b -a 叫作集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是( )A.13B.23C.112D.512【答案】C 【真题感悟】1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =() (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C3.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A4.【高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A UB ()()(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B5.【高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( ) (A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A6.【高考山东,文1】已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3()(B )1,4()(C )(2,3()(D )2,4())【答案】C7.【高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞8.【高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B9.【高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C1.(·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B =( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C2.(·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B .{x|3<x<4} C .{x|2≤x<3} D .{x|2≤x≤3} 【答案】A3.(·福建卷) 已知集合{a ,b ,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a +10b +c 等于________.【答案】2014.(·广东卷) 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}【答案】B5.(·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C6.(·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C7.(·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.【答案】{3,5,13}8.(·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}9.(·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=() A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C10.(·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D11.(·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2 B.3C.5 D.7【答案】B12.(·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=() A.∅ B.{2}C.{0} D.{-2}【答案】B13.(·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B14.(·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C15.(·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D16.(·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D17.(·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.18.(·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D19.(·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.16【答案】C20.(·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B21.(·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A22.(·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D23.(·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B24.(·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C25.(·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B26.(·江苏卷) 集合{-1,0,1}共有________个子集.【答案】827.(·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B=________.【答案】{6,8}28.(·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁UA)=() A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B29.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A30.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A31.(·新课标全国卷Ⅰ) 已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A32.(·浙江卷) 设集合S ={x|x>-2},T ={x|-4≤x≤1},则S∩T =( ) A .[-4,+∞) B .(-2,+∞) C .[-4,1] D .(-2,1] 【答案】D33.(·重庆卷) 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U(A ∪B)=( ) A .{1,3,4} B .{3,4} C .{3} D .{4} 【答案】D【押题专练】1.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5【答案】C2.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】D3.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是() A.0 B.1C.2 D.3【答案】C4.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2C.3 D.4【答案】C5.已知A ={0,m,2},B ={x|x3-4x =0},若A =B ,则m =________.【答案】-26.若集合A ={x|x2-9x <0,x ∈N*},B =⎩⎨⎧⎭⎬⎫y ⎪⎪4y ∈N*,y ∈N*,则A∩B 中元素的个数为________.【答案】37.已知集合A ={x|4≤2x≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是________.【答案】(-∞,-2]8.已知集合A ={-4,2a -1,a2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A∩B);(2){9}=A∩B.9.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.高考模拟复习试卷试题模拟卷。
一、选择题(共10小题,每小题5分,满分50分)1.(5分)如果的展开式中含有非零常数项,则正整数n的最小值为()A.3 B.5 C.6 D.102.(5分)将的图象按向量平移,则平移后所得图象的解析式为()A.B.C.D.3.(5分)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}4.(5分)平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m′和n′,给出下列四个命题:①m′⊥n′⇒m⊥n;②m⊥n⇒m′⊥n′;③m′与n′相交⇒m与n相交或重合;④m′与n′平行⇒m与n平行或重合.其中不正确的命题个数是()A.1 B.2 C.3 D.45.(5分)已知p和q是两个不相等的正整数,且q≥2,则=()A.0 B.1 C.D.6.(5分)若数列{an}满足(p为正常数),则称{an}为“等方比数列”.甲:数列{an}是等方比数列;乙:数列{an}是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.(5分)双曲线的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于()A.﹣1 B.xOy C.D.8.(5分)已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是()A.2 B.3 C.4 D.59.(5分)连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是()A. B.C. D.10.(5分)已知直线(θ是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有()A.60条B.66条C.72条D.78条二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知函数y=2x﹣a的反函数是y=bx+3,则a=;b=.12.(5分)复数z=a+bi,a,b∈R,且b≠0,若z2﹣4bz是实数,则有序实数对(a,b)可以是.(写出一个有序实数对即可)13.(5分)设变量x,y满足约束条件,则目标函数2x+y的最小值为.14.(5分)某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率.(用数值作答)15.(5分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示.据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为;(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么,药物释放开始,至少需要经过小时后,学生才能回到教室.三、解答题(共6小题,满分75分)16.(12分)已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ.(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=2sin2的最大值与最小值.17.(12分)分组频数[1.30,1.34) 4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54) 2合计100在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(Ⅱ)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少;(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间[1.30,1.34)的中点值是1.32)作为代表.据此,估计纤度的期望.18.(12分)如图,在三棱锥V﹣ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<).(Ⅰ)求证:平面V AB⊥平面VCD;(Ⅱ)当确定角θ的值,使得直线BC与平面V AB所成的角为.19.(12分)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点.(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.20.(13分)已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.(Ⅰ)用a表示b,并求b的最大值;(Ⅱ)求证:f(x)≥g(x)(x>0).21.(14分)已知m,n为正整数.(Ⅰ)用数学归纳法证明:当x>﹣1时,(1+x)m≥1+mx;(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)【考点】二项式定理的应用.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0得方程,求使方程有整数解的最小n值即可.【解答】解:由展开式通项有=Cnr•3n﹣r•(﹣2)r•x2n﹣5r由题意得,故当r=2时,正整数n的最小值为5,故选项为B【点评】本题主要考查二项式定理的基本知识,以通项公式切入探索,由整数的运算性质易得所求.本题中“非零常数项”为干扰条件.2.(5分)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】法一:以平移公式切入,利用向量解答即可;法二:利用平移的意义直接推出结果.【解答】解:法一由向量平移的定义,在平移前、后的图象上任意取一对对应点P′(x′,y′),P(x,y),则=,代入到已知解析式中可得选A法二由平移的意义可知,先向左平移个单位,再向下平移2个单位.故选A.【点评】本题主要考查向量与三角函数图象的平移的基本知识,易错点:将向量与对应点的顺序搞反了,或死记硬背以为是先向右平移个单位,再向下平移2个单位,误选C.为简单题.3.(5分)【考点】元素与集合关系的判断;绝对值不等式的解法.【分析】首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P ﹣Q即可.【解答】解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B【点评】本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.4.(5分)【考点】空间中直线与平面之间的位置关系.【分析】由射影的概念以及线线垂直关系的判定方法,观察具体的正方体判断,即可得答案.【解答】解:由射影的概念以及线线垂直关系的判定方法,观察如图的正方体:∵AC⊥BD但A1C,BD1不垂直,故①错;∵A1B⊥AB1但在底面上的射影都是AB故②错;∵AC,BD相交,但A1C,BD异面,故③错;∵AB∥CD但A1B,C1D异面,故④错故选D【点评】本题主要考查空间线面之间位置关系,以及射影的意义理解.关键是要理解同一条直线在不同平面上的射影不同;线在面内,线面平行,线面相交的不同位置下,射影也不相同.要从不用的方向看三垂线定理,充分发挥空间想象力.5.(5分)【考点】极限及其运算.【分析】本题考查数列的极限和运算法则,可用特殊值探索结论,即同时考查学生思维的灵活性.当不能直接运用极限运算法则时,首先化简变形,后用法则即可.本题也体现了等比数列求和公式的逆用.【解答】解析:法一特殊值法,由题意取p=1,q=2,则,可见应选C法二∵∴(1+x)m﹣1=x[1+(1+x)+(1+x)2+(1+x)m﹣1]令,m分别取p和q,则原式化为∵,所以原式=(分子、分母1的个数分别为p个、q个)故选C.【点评】注意到本题的易错点:取特值时忽略p和q是两个不相等的正整数的条件,误选B;或不知变形而无法求解,或者认为是型而误选B,看错项数而错选D.6.(5分)【考点】数列的应用.【分析】由题意可知,乙⇒甲,但是,即甲成立,乙不一定成立,所以甲是乙的必要条件但不是充分条件.【解答】解:由等比数列的定义,若乙:{an}是等比数列,公比为q,即则甲命题成立;反之,若甲:数列{an}是等方比数列,即即公比不一定为q,则命题乙不成立,故选B【点评】本题是易错题.由,得到的是两个等比数列,而命题乙是指一个等比数列,忽略等比数列的确定性,容易错选C7.(5分)【考点】双曲线的简单性质.【分析】先根据题设可知点M同时满足双曲线和抛物线的定义,且在双曲线右支上,进而联立方程可求得|MF1|和|MF2|,代入答案可得.【解答】解:由题设可知点M同时满足双曲线和抛物线的定义,且在双曲线右支上,故由定义可得故原式=,故选A.【点评】本题主要考查双曲线和抛物线的定义和性质,几何条件列方程组,消元后化归曲线的基本量的计算,体现数形结合方法的重要性.8.(5分)【考点】等差数列的前n项和.【分析】充分利用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:由等差数列的前n项和及等差中项,可得=(n∈N*),故n=1,2,3,5,11时,为整数.故选D【点评】本题主要考查等差数列的性质、等差中项的综合应用以及分离常数法,数的整除性是传统问题的进一步深化,对教学研究有很好的启示作用.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,则有如下关系=.9.(5分)【考点】数量积表示两个向量的夹角;等可能事件的概率.【分析】由题意知本题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大部分内容考查的是向量的问题,这是一个综合题.【解答】解:由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=(m,n)与=(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.故选C.【点评】向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.(5分)【考点】直线与圆相交的性质.【分析】直线是截距式方程,因而不平行坐标轴,不过原点,考查圆上横坐标和纵坐标均为整数的点的个数,结合排列组合知识分类解答.【解答】解:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆x2+y2=100上的整数点共有12个,分别为(6,±8),(﹣6,±8),(8,±6),(﹣8,±6),(±10,0),(0,±10),前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成C122=66条直线,其中有4条直线垂直x轴,有4条直线垂直y 轴,还有6条过原点(圆上点的对称性),故满足题设的直线有52条.综上可知满足题设的直线共有52+8=60条,故选A【点评】本题主要考查直线与圆的概念,以及组合的知识,既要数形结合,又要分类考虑,要结合圆上点的对称性来考虑过点的直线的特征.是较难问题.易错点:不能准确理解题意,甚至混淆.对直线截距式方程认识不明确,认识不到三类特殊直线不能用截距式方程表示;对圆上的整数点探索不准确,或分类不明确,都会导致错误,胡乱选择.二、填空题(共5小题,每小题5分,满分25分)11.(5分)【考点】反函数.【分析】本题考查对互为反函数的两个函数关系的理解,可有两种方法,其一,求出y=2x ﹣a的反函数令其与y=bx+3的对应系数相等获得,其二由互为反函数图象上的点之间的对称关系,取特殊点求解.【解答】解:法一:函数y=2x﹣a的反函数为y=x+a,与y=bx+3对照可得a=6,b=法二:在y=bx+3上取点(0,3),得点(3,0)在y=2x﹣a上,故得a=6;又y=2x﹣6上有点(0,﹣6),则点(﹣6,0)在y=bx+3由此可得a=6,b=答案:a=6;b=【点评】本题主要考查反函数的概念及其对称性的应用.直接求反函数也可,较为简单.该题的易错点:运算错误导致填写其他错误答案.12.(5分)【考点】复数的基本概念.【分析】本题主要考查复数的基本概念和运算,有一般结论需要写出一个具体结果,属开放性问题.在解答过程中要注意本题的易错点:复数运算出错导致结果写错,或审题马虎,只写出a=2b,不合题意要求.【解答】解:由复数运算法则可知z2﹣4bz=a2﹣b2﹣4ab+(2ab﹣4b2)i,由题意得2ab﹣4b2=0(b≠0),∴a=2b(a≠0,b≠0),则有序实数对(a,b)可以是(2,1)或满足a=2b的任意一对非零实数对故答案为:(2,1)或满足a=2b的任意一对非零实数对【点评】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.13.(5分)【考点】简单线性规划.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+y的最小值.【解答】解:由约束条件得如图所示的三角形区域,令2x+y=z,y=﹣2x+z,显然当平行直线过点时,z取得最小值为;故答案为:【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(5分)【考点】n次独立重复试验中恰好发生k次的概率.【分析】判断是否为独立重复试验的关键是每次试验事件A的概率不变,并且每次试验的结果同其他各次试验的结果无关,重复是指试验为一系列的试验,并非一次试验,而是多次,但要注意重复事件发生的概率相互之间没有影响.【解答】解:∵由题意知运动员在三分线投球的命中率是定值,投球10次∴本题是一个独立重复试验∴所求概率故答案为:【点评】本题考查n次独立重复试验中,某事件恰好发生k次的概率,直接用公式解决.易错点是把“恰好投进3个球”错误理解为某三次投进球,忽略“三次”的任意性.15.(5分)【考点】直线与圆锥曲线的综合问题.【分析】(1)当0≤t≤0.1时,可设y=kt,把点(0.1,1)代入直线方程求得k,得到直线方程;当t>0.1时,把点(0.1,1)代入求得a,曲线方程可得.最后综合可得答案.(2)根据题意可知y≤0.25,把(1)中求得的函数关系式,代入即可求得t的范围.【解答】解:(I)由题意和图示,当0≤t≤0.1时,可设y=kt(k为待定系数),由于点(0.1,1)在直线上,∴k=10;同理,当t>0.1时,可得(II)由题意可得,即得或或t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,在(II)中填写了其他错误答案.三、解答题(共6小题,满分75分)16.(12分)【考点】三角函数的最值;三角函数的恒等变换及化简求值;解三角形.【分析】(Ⅰ)根据三角形的面积,数量积的范围,推出关系式,然后求出θ的取值范围;(Ⅱ)利用二倍角公式、两角差的正弦函数,化简函数f(θ)=2sin2为一个角的一个三角函数的形式,根据(Ⅰ)的范围,求出函数的最大值与最小值.【解答】解:(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,则由,0≤bccosθ≤6,可得0≤cotθ≤1,∴.(Ⅱ)====.∵,,∴.即当时,f(θ)max=3;当时,f(θ)min=2.【点评】本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.17.(12分)【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(I)条件的表中给出了分组和频数,要完成频率分布表,需要把频率做出来,列出频率分布表,写上每一个频数对应的频率.(II)由频率分布表知纤度落在[1.38,1.50)中的概率约为0.30+0.29+0.10,而要求的纤度小于1.40的数据有一部分需要把一个分组分成两部分,使得这两部分的概率相等,得到结果.(III)要做纤度的期望,需要有各组数据的平均值,同一组数据常用该组区间的中点值做平均值,利用期望的公式,写出这组数据的期望.【解答】解:(Ⅰ)(Ⅱ)由频率分布表知纤度落在[1.38,1.50)中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为.(Ⅲ)总体数据的期望约为1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.【点评】本小题主要考查频率分布直方图、概率、期望等和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.18.(12分)【考点】空间中直线与平面之间的位置关系.【分析】法一:(Ⅰ)要证平面VAB⊥平面VCD,只需证明平面V AB内的直线AB,垂直平面VCD内的两条相交直线CD、VC即可;(Ⅱ)过点C在平面VCD内作CH⊥VD于H,说明∠CBH就是直线BC与平面V AB所成的角.求出,使得直线BC与平面V AB所成的角为.法二:以CA,CB,CV所在的直线分别为x轴、y轴、z轴,(Ⅰ)建立如图所示的空间直角坐标系,证明,,推出AB⊥平面VCD,即可证明平面V AB⊥平面VCD.(Ⅱ)求出平面V AB的一个法向量,利用,求出使得直线BC与平面V AB所成的角为的θ的值.【解答】解法1:(1)∵AC=BC=a,∴△ABC是等腰三角形,又D是AB的中点,∴CD⊥AB,又VC⊥底面ABC,∴VC⊥AB.于是AB⊥平面VCD,又AB⊂平面V AB,∴平面V AB⊥平面VCD.(2)过点C在平面VCD内作CH⊥VD于H,则由(1)知CH⊥平面V AB.连接BH,于是∠CBH就是直线BC与平面V AB所成的角,依题意,所以在Rt△CHD中,;在Rt△BHC中,,∴,∵,∴,故当时,直线BC与平面V AB所成得角为.解法2:(1)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),,,于是,,,.从而,即AB⊥CD.同理,即AB⊥VD,又CD∩VD=D,∴AB⊥平面VCD.又AB⊂平面V AB,∴平面V AB⊥平面VCD.(2)设平面V AB的一个法向量为n=(x,y,z)则由,得可取,又,于是=,即,∵,∴,故当时,直线BC与平面V AB所成得角为.解法3:(1)以点D为原点,以DC、DB所在的直线分别为x轴、y轴.建立如图所示的空间直角坐标系,则D(0,0,0),,,,,于是,,.从而,即AB⊥DC,同理,即AB⊥DV.又DC∩DV=D,∴AB⊥平面VCD.又AB⊂平面V AB,∴平面V AB⊥平面VCD.(2)设平面V AB的一个法向量为n=(x,y,z),则由得取n=(tanθ,0,1),又,于是,即.又∵,∴.故当时,直线BC与平面V AB所成的角为.【点评】本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力19.(12分)【考点】直线与圆锥曲线的综合问题.【分析】解法1:(Ⅰ)依题意,点N的坐标为N(0,﹣p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2﹣2pkx﹣2p2=0.然后由韦达定理结合三角形面积公式进行求解.(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为O',l与AC为直径的圆相交于点P,Q,PQ的中点为H,则O'H⊥PQ,Q'点的坐标为(,y1+),由此入手能够求出抛物线的通径所在的直线.解法2:(Ⅰ)依题意,点N的坐标为N(0,﹣p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2﹣2pkx﹣2p2=0.由弦长公式得=,又由点到直线的距离公式得.由此能求出△ANB面积的最小值.(Ⅱ)假设满足条件的直线l存在,其方程为y=a,则以AC为直径的圆的方程为(x﹣0)(x﹣x1)﹣(y﹣p)(y﹣y1)=0,将直线方程y=a代入得x2﹣x1x+(a﹣p)(a﹣y1)=0,则.由此入手能够求出抛物线的通径所在的直线.【解答】解:法1:(Ⅰ)依题意,点N的坐标为N(0,﹣p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得,消去y得x2﹣2pkx﹣2p2=0.由韦达定理得x1+x2=2pk,x1x2=﹣2p2.于是==,∴当k=0时,.(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为O',l与AC为直径的圆相交于点P,Q,PQ的中点为H,则O'H⊥PQ,O'点的坐标为().∵,,∴|PH|2=|O'P|2﹣|O'H|2==,∴|PQ|2=(2|PH|)2=.令,得,此时|PQ|=p为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得=,又由点到直线的距离公式得.从而,∴当k=0时,.(Ⅱ)假设满足条件的直线l存在,其方程为y=a,则以AC为直径的圆的方程为(x﹣0)(x﹣x1)+(y﹣p)(y﹣y1)=0,将直线方程y=a代入得x2﹣x1x+(a﹣p)(a﹣y1)=0,则|x1﹣x2|2=.设直线l与以AC为直径的圆的交点为P(x3,y3),Q(x4,y4),则有.令,得,此时|PQ|=p为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.【点评】本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.21.(14分)【考点】用数学归纳法证明不等式;数学归纳法.【分析】解法一:(Ⅰ)直接利用用数学归纳法证明的证明方法证明即可;(Ⅱ)对于n≥6,已知,利用指数函数的性质以及放缩法证,m=1,2…,n;(Ⅲ)利用(Ⅱ)的结论,以及验证n=1,2,3,4,5时等式是否成立,即可求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.解法二::(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明.(Ⅱ)同解法一;(Ⅲ)利用反证法证明当n≥6时,不存在满足该等式的正整数n.验证同解法一.【解答】解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>﹣1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得,于是=,m=1,2,n.(Ⅲ)解:由(Ⅱ)知,当n≥6时,,∴.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>﹣1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>﹣1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵,∴,而由(Ⅰ),,∴.(Ⅲ)解:假设存在正整数n0≥6使等式成立,即有.②又由(Ⅱ)可得=,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.【点评】本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.注意放缩法的应用.20.(13分)【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(Ⅰ)设出两曲线的公共点坐标,分别求出f(x)和g(x)的导函数,把设出点的坐标代入两导函数中得到两关系式,联立两关系式即可解出公共点的横坐标,把求出的横坐标代入得到用a表示出b的式子,设h(t)等于表示出的式子,求出h(t)的导函数,令导函数大于0求出t的范围即为函数的增区间,令导函数小于0求出x的范围即为函数的减区间,根据函数的增减性即可求出h(t)的最大值即为b的最大值;(Ⅱ)设F(x)=f(x)﹣g(x),求出F(x)的导函数,根据导函数的正负得到F(x)的单调区间,由x大于0和函数的增减性得到F(x)的最小值为0,即f(x)﹣g(x)大于等于0,得证.【解答】解:(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同.∵f'(x)=x+2a,,由题意f(x0)=g(x0),f'(x0)=g'(x0).即由得:x0=a,或x0=﹣3a(舍去).即有.令,则h'(t)=2t(1﹣3lnt).于是当t(1﹣3lnt)>0,即时,h'(t)>0;当t(1﹣3lnt)<0,即时,h'(t)<0.故h(t)在为增函数,在为减函数,于是h(t)在(0,+∞)的最大值为.(Ⅱ)设,则F'(x)=.故F(x)在(0,a)为减函数,在(a,+∞)为增函数,于是函数F(x)在(0,+∞)上的最小值是F(a)=f(a)﹣g(a)=a2+2a2﹣3a2lna+a2﹣3a2lna=0,故当x>0时,有f(x)﹣g(x)≥0,即当x>0时,f(x)≥g(x).【点评】本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,]。
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠A DC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.已知定点A 、B ,且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( ) A .12B .32 C .72D .5 2. 若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是( )(A )(1,2](B )[2,)+∞(C )(1,3](D )[3,)+∞3.【百强校】【陕西西安西北工大附中高三下学期5月模拟】已知抛物线x y 82=的焦点与双曲线1222x y a-=的一个焦点重合,则该双曲线的离心率为() A .255 B .41515C .233D .2 4.【山东高考理第10题】 已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为22221x y a b -=,1C 与2C 的离心率之积为23,则2C 的渐近线方程为( ) A.02=±y x B.02=±y x C.02=±y x D.02=±y x5. 【嵊州市高三第二次教学质量调测】已知双曲线2222C :1(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,过2F 作平行于C 的渐近线的直线交C 于点P .若12PF PF ⊥,则C 的离心率为( )A 23.2 D 56.【全国1高考理第4题】已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3B. 3C. m 3D. m 37.【改编题】已知斜率为2的直线l 双曲线2222:1(0,0)x y C a b a b-=>>交,A B 两点,若点(2,1)P 是AB 的中点,则C 的离心率等于()(A) 22 (B) 2 (C) 3 (D ) 28.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞9.【百强校】【实验中学高三上学期第五次模拟考试】已知双曲线2222:1x y C a b-=的左、右焦点分别是12,F F ,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,则双曲线C 的离心率的值是 ( ) A .123+B .312+C .1313+D .1313+ 10.已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,其中一条渐近线方程为(*)2by x b N =∈,P 为双曲线上一点,且满足5OP <(其中O 为坐标原点),若1PF 、12F F 、2PF 成等比数列,则双曲线C 的方程为( )A.2214x y -=B.221x y -= C.22149x y -= D.221416x y -= 二、填空题11.【全国普通高等学校招生统一考试理科数学(浙江卷)】双曲线2212x y -=的焦距是,渐近线方程是.12.【日照市高三校际联合检测(二模)】已知双曲线()222210,0x y a b a b-=>>的左焦点()125,0F -,右焦点()225,0F ,离心率5e =.若点P 为双曲线C 右支上一点,则12PF PF -=__________. 13. 【百强校】【实验中学高三上学期第五次模拟】已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,椭圆的离心率为1e ,双曲线的离心率2e ,则=+222131e e . 14.【全国普通高等学校招生统一考试理科数学(上海卷)】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为.15. 【上海市闸北区高三下学期期中练习(二模)】从双曲线()222210,0x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于点P ,若M 是线段FP 的中点,O 为坐标原点,则MO MT -的值是____________.16.【全国普通高等学校招生统一考试数学(江苏卷)】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
高三数学(理科) 第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{1,0,1,2,3}A =-,{|22}B x x =-≤≤,那么A B = (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,1,2,3}-(D ){|22}x x -≤≤2.若复数(2i)(i)a -+的实部与虚部互为相反数,则实数a = (A )3(B )13(C )13-(D )3-3.执行如图所示的程序框图,输出的S 的值为(A )34(B )45(C )56 (D )674.已知等差数列{}n a 中,13a =,26a =. 若2n n b a =,则数列{}n b 的前5项和等于 (A )30 (B )45 (C )90(D )1865.某四棱锥的三视图如图所示,则该四棱锥的 棱中,最长的棱的长度为 (A )2 (B(C )(D )6.设a ,b 是非零向量,则“=a b ”是“2=a a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件俯视图侧(左)视图正(主)视图7.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若||10OA =,||12OB =,细绳长为8,则所得双曲线的离心率为(A )65(B )54(C )32(D )528.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分 别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为(A(B )1 (C(D )2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
12月调研考试数学理【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
【题文】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N =( )A .1[0,)2B .1(,1]2-C .1[1,)2-D .1(,0]2-【知识点】集合及其运算A1【思路点拨】解一元二次不等式求得N ,再根据两个集合的交集的定义求得M∩N .【题文】2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( ) A .2i -B .2i +C .4i - D .4i +【知识点】复数的基本概念与运算L4 【答案】A【思路点拨】直接利用复数模的公式求复数的模,再利用虚数单位i 的运算性质化简后得z ,则复数z 的共轭复数可求.【题文】3.设向量11(1,0),(,)22a b ==,则下列结论中正确的是( ) A .||||a b =B .22a b =C .//a bD .()a b b -⊥ 【知识点】平面向量基本定理及向量坐标运算F2 【答案】D11(1,0),(,)22a b ==,||||a b =不正12a b ⋅=,故a =(1,0),b =(12,12,易得//a b 不成立,故()0a b b -⋅=则a b-与b垂【思路点拨】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由11(1,0),(,)22a b ==,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000nn N ∃∈>,则p ⌝:,21000nn N ∀∈≤;D .命题“(,0),23x xx ∃∈-∞<”是真命题.【知识点】命题及其关系A2 【答案】D【解析】因为命题“若x23x+2=0,则x=1”的逆否命题为“若x≠1,则x23x+2≠0”,所以A 正确;由a=2能得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之,函数f (x )=logax 在区间(0,+∞)上为增函数,a 不一定大于2,所以“a=2”是“函数f (x )=logax 在区间(0,+∞)上为增函数”的充分不必要条件,所以选项B 正确;命题P :∃n ∈N ,2n >1000,的否定为¬P :∀n ∈N ,2n≤1000,所以C 正确;因为当x <0时恒有2x >3x ,所以命题“∃x ∈(∞,0),2x <3x”为假命题,所以D 不正确【思路点拨】选项A 是写一个命题的逆否命题,只要把原命题的结论否定当条件,条件否定当结论即可;选项B 看由a=2能否得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之又是否成立;选项C 、D 是写出特称命题的否定,注意其否定全称命题的格式.【题文】5.右图是一容量为100的样本的重量的频率分布直方图, 则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.5【知识点】用样本估计总体I2 【答案】C【解析】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50由于[10,15]的组中值为12.5,由图可估计样本重量的中位数12.【思路点拨】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50,结合[10,15]的组中值,即可得出结论.【题文】6.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:①y=x•sinx 为偶函数;②y=x•cosx x <0时,③y=x•|cosx|≤0恒成立则从左到右图象对应的函数序号应为:①④②③【思路点拨】从左到右依次分析四个图象可知,第一个图象关于Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y 轴左侧,函数值不大于0,分析四个函数的解析后,即可得到函数的性质,进而得到答案.【题文】7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥ B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα【知识点】空间中的平行关系垂直关系G4 G5【答案】C【解析】A .根据线面垂直的垂直的判定定理可知,m ,n 必须是相交直线,所以A 错误. B .根据直线和平面平行的判定定理可知,a 必须在平面α外,所以B 错误.xC .根据面面平行的性质定理可知,两个平行平面同时和第三个平面相交,则交线平行,所以C 正确.D .根据面面平行的判定定理可知,直线a ,b 必须是相交直线,才能得到面面平行.所以D 错误. 【思路点拨】A .利用线面垂直的定义和判定定理判断.B .利用线面平行的判定定理判断.C .利用面面平行的性质判断.D .利用线面平行的性质和面面平行的判定定理判断. 【题文】8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++=B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 【知识点】圆的方程H3 【答案】A代入x2+y2=4得(2x4)2+(2y+2)2=4,化简得(x2)2+(y+1)2=1.【题文】9.已知函数0x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞ C .()01, D .()()011,,+∞【知识点】函数与方程B9 【答案】B若a≠0,若f (f (x ))=0,可得当x≤0时,a•ex=1无解,进而得到实数a 的取值范围.【题文】10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【知识点】空间几何体的三视图和直观图G2 【答案】A【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体.如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球, 由题意可知,正方体的棱长为1,所以外接球的半径为R=32, 所以此四面体的外接球表面积S=4×π×(32)2=3π. 【思路点拨】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球表面积. 【题文】11.已知b 为如图所示的程序框图输出的结果,则二项式6()bx x-的展开式中的常数项是( )A .20B .20C .540D .540【知识点】算法与程序框图L1 【答案】C【解析】第一次循环:b=3,a=2;第二次循环得:b=5,a=3;第三次循环得:b=7,a=4;第四次循环得:b=9,a=5;不满足判断框中的条件输出b=9.【思路点拨】根据题意,分析该程序的作用,可得b的值,再利用二项式定理求出展开式的通项,分析可得常数项.【题文】12.设等差数列{}n a满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦【知识点】等差数列及等差数列前n项和D2【答案】B【思路点拨】利用三角函数的倍角公式、积化和差与和差化积公式化简已知的等式,根据公差d的范围求出公差的值,代入前n项和公式后利用二次函数的对称轴的范围求解首项a1取值范围.第II卷(非选择题,共90分)【题文】二、填空题:本题共4小题,每小题5分,共20分。
一、选择题(每小题5分,共40分)1.(5分)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.23.(5分)执行如图所示的程序框图输出的结果为()A.(﹣2,2) B.(﹣4,0) C.(﹣4,﹣4)D.(0,﹣8)4.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)设{an}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 7.(5分)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}8.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油二、填空题(每小题5分,共30分)9.(5分)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)在△ABC中,a=4,b=5,c=6,则=.13.(5分)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)已知数列{an}满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】利用复数的运算法则解答.【解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.【点评】本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.【解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值∴z最大值=0+2×1=2.故选:D.【点评】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)执行如图所示的程序框图输出的结果为()A.(﹣2,2) B.(﹣4,0) C.(﹣4,﹣4)D.(0,﹣8)【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目.4.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.【解答】解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选:B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5【分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.【点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)设{an}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A 不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{an}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}【分析】在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选:C.【点评】本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油【分析】根据函数图象的意义逐项分析各说法是否正确.【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C正确;对于D,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故D错误.故选:C.【点评】本题考查了函数图象的意义,属于中档题.二、填空题(每小题5分,共30分)9.(5分)在(2+x)5的展开式中,x3的系数为40(用数字作答)【分析】写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.【解答】解:(2+x)5的展开式的通项公式为:Tr+1=25﹣rxr,所求x3的系数为:=40.故答案为:40.【点评】本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.【分析】运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.【解答】解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.【分析】化为直角坐标,再利用点到直线的距离公式距离公式即可得出.【解答】解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)在△ABC中,a=4,b=5,c=6,则=1.【分析】利用余弦定理求出cosC,cosA,即可得出结论.【解答】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.【分析】首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.【解答】解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.【点评】本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.【分析】①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.【解答】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.【点评】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.【分析】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦函数的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.【解答】解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.【点评】本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)【分析】设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,由题意可知P(Ai)=P(Bi)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.【解答】解:设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,由题意可知P(Ai)=P(Bi)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P (A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.【点评】本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.【分析】(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,(a≠2),BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.【分析】(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.【解答】解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.【点评】本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A (m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.【分析】(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即yQ2=xM•xN,+n2,根据m,m的关系整体求解.【解答】解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,xM=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,yQ),∴tan∠OQM=tan∠ONQ,∴=,即yQ2=xM•xN,+n2=1yQ2==2,∴yQ=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)【点评】本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)已知数列{an}满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.【分析】(Ⅰ)a1=6,利用an+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任意n≥k,an是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.【解答】解:(Ⅰ)若a1=6,由于an+1=(n=1,2,…),M={an|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任意n≥k,an是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为ak=2ak﹣1,或ak=2ak﹣1﹣36,所以2ak﹣1是3的倍数;于是ak﹣1是3的倍数;类似可得,ak﹣2,…,a1都是3的倍数;从而对任意n≥1,an是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,an=(n=1,2,…),可归纳证明对任意n≥k,an<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥2时,an是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,an是3的倍数.因此当n≥3时,an∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,an不是3的倍数.因此当n≥3时,an∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.【点评】本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.第五章 平面向量第一节 平面向量的概念及线性运算班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。