静电保护器件工作原理及选型应用
- 格式:pdf
- 大小:370.75 KB
- 文档页数:4
TVS管的应用原理参数及选型TVS(Transient Voltage Suppressor)是一种主要用于电子设备中保护电路的二极管,它能够提供有效的瞬态过电压保护,防止电路受到过电压的损害。
TVS管的应用原理、参数及选型如下:一、应用原理:TVS管的工作原理基于Zener电压稳压器的原理。
当TVS管处于正常工作状态时,它会维持一个较低的反向电压,发生瞬态过电压时,TVS管会迅速引导大量的电流,将过电压降低到一个安全范围的电压。
同时,TVS管具有非线性I-V特性,其电阻随电压的变化而变化,能够有效消耗过电压产生的能量。
二、参数:1.最大电压(Vc):TVS管能够承受的最大峰值电压。
选用时应确保过电压不会达到此值。
2.工作电压(Vr):TVS管的额定电压。
当达到此电压时,TVS管开始起作用。
3.额定功率(Pd):TVS管能够持续耗散的功率。
过大的功率会使TVS管过热,降低其寿命。
4. 顶端耐受电流(Itsm):TVS管能够瞬时承受的峰值电流。
当过电压发生时,TVS管必须能够承受此电流。
5.电容(Cj):TVS管的电容特性。
电容越小,TVS管对高频干扰的反应越快。
三、选型:1.根据电路的工作电压确定TVS管的额定电压(Vr)。
额定电压应略大于电路工作电压。
2.根据可能发生的过电压确定TVS管的最大电压(Vc)。
最大电压应大于最大预期过电压。
3.根据电路的功率确定TVS管的额定功率(Pd)。
额定功率应满足电路的需求。
4. 根据过电压产生的峰值电流确定TVS管的顶端耐受电流(Itsm)。
Itsm应大于或等于过电压产生的峰值电流。
5.根据电路的抗干扰能力确定TVS管的电容(Cj)。
电容越小,对干扰的反应越快。
值得注意的是,TVS管的参数选型应根据实际应用情况综合考虑。
不同应用场景下,TVS管的参数需求会有所不同,例如工频电源线路、数据线路、汽车电子等,都会有各自的特殊要求。
总之,TVS管作为一种重要的瞬态过电压保护器件,在电子设备中扮演着关键的角色。
ESD静电二极管选型技巧ESD静电二极管又叫ESD静电保护器,近年来随着科学技术的飞速发展、微电子技术的广泛应用及电磁环境越来越复杂,对静电放电的电磁场效应如电磁干扰(EMI)及电磁兼容性(EMC)问题越来越重视。
ESD静电二极管的优点是体积小,结电容低,反应速度快等。
ESD 静电二极管并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。
那么下面优恩半导体介绍一下ESD静电二极管的选型:1、ESD静电二极管使用时是并联在被保护电路上,正常情况下对线路的工作不应产生任何的影响;2、击穿电压VBR的选择:ESD静电二极管的击穿电压应大于线路最高工作电压Um或者信号电平的最大电压值;3、脉冲峰值电流IPP和最大箝位电压VC的选择:ESD静电二极管使用时,要根据线路上可能出现的最大浪涌电流来选择IPP合适的型号。
要注意的是,此时的最大箝位电压VC应不大于被保护芯片所能耐受的最大峰值电压;4、用于信号传输电路保护时,一定要注意所传输信号的频率或传输速率,当信号频率或传输速率较高时,应选用低电容系列的管子。
5、要采用Array式的ESD保护组件,这样才可以用最少的组件数来缩小PCB的空间及降低PCB的寄生阻抗;6、ESD保护组件的线路电容要够低,如USB2.0需要用小于3pF,USB3.0需要用小于0.3pF,10/100M LAN需要用小于3pF的ESD保护元件;7、ESD保护元件的箝制电压必须要够低,才能使系统在ESD发生时还能不受干扰地运作,至于要多低的箝制电压才够,则要看系统的噪声免疫能力而定。
ESD静电二极管的选型你了解了吗?。
电路保护设计的器件选型技巧与应用方案在电路保护设计中,合适的器件选型是保证电路安全可靠运行的关键之一、下面提供一些器件选型的技巧和应用方案,以帮助设计工程师做出明智的选择。
1. 保险丝(Fuse):保险丝是电路保护中最常见的器件之一,用于在短路或过载情况下切断电路。
在选择保险丝时,需要考虑额定电流、断电容量、快速断开能力和热功率等因素。
在应用中,保险丝应根据所需的电流和热功率来选择合适的尺寸和类型。
2.热释放型保险丝(PTC):热释放型保险丝具有自恢复特性,可在过流条件下自动恢复。
它们适用于需要在设备正常工作温度下保护电路的应用,如电源线圈、电机、传感器等。
选型时需要考虑应用电流和动作温度。
3. 过流保护器(Circuit Breaker):与保险丝类似,过流保护器也用于在短路或过载情况下切断电路,但不需要更换。
选型时需要考虑额定电流、断电能力、断路模式(短路或过载)、电气特性和动作速度等因素。
4. 静电防护器件(ESD Protection Devices):在防止静电损害方面,静电防护器件起着重要作用。
它们包括TVS二极管和静电放电芯片等,用于保护电路免受静电放电的影响。
选型时需要考虑电压容忍度、电流容忍度和响应时间等因素。
5. 过压保护器(Overvoltage Protection Devices):过压保护器用于在电路暂时或持续超过额定电压时保护电路。
它们可以是压敏电阻、金属氧化物浅夹层(MOVs)或硅可控整流器(SCRs)等。
选型时需要考虑额定电压、电流容忍度、响应时间和功率容忍度等因素。
6. 瞬态电压抑制器(Transient Voltage Suppressor,TVS):TVS 器件用于保护电路免受瞬态电压峰值(例如雷电)的影响。
它们可以是双向或单向的二极管。
选型时需要考虑额定电压、电流容忍度、响应时间和耐久性等因素。
7. 热敏电阻(Thermistor):热敏电阻用于监测和控制温度。
ESD原理选型应用ESD(Electrostatic Discharge,静电放电)是一种自然现象,当两个静电带电物体接触或者靠近时,如果存在电荷不平衡,电荷就会通过放电的方式进行平衡,产生电流。
这种放电过程会瞬间释放非常高的电压和电流,对电子设备和电路造成永久性损坏。
因此,为了保护电子设备免受ESD影响,需要在设计阶段选择合适的ESD保护原理和组件,并且在应用中正确使用。
在选择ESD保护原理时,需要考虑以下几个因素:1.触发电压:ESD保护器件的触发电压是指保护器件能够开始导通的最低电压。
触发电压越低,ESD保护越好。
2.响应时间:ESD保护器件的响应时间是指从遭受ESD到开始导通的时间。
响应时间越短,ESD保护越好。
3.最大工作电压:ESD保护器件的最大工作电压是指保护器件能够承受的最大电压。
最大工作电压越高,ESD保护越好。
4.电流能力:ESD保护器件的电流能力是指在承受ESD过程中能够通过的最大电流。
电流能力越高,ESD保护越好。
根据具体应用需求,可以选择以下几种常见的ESD保护原理:1. TVS(Transient Voltage Suppression)二极管:TVS二极管是一种非常常见的ESD保护元件。
它能够快速响应,自动启动保护电路来吸收ESD放电。
TVS二极管具有很高的电流能力和瞬态电压抑制能力,特别适合对抗快速上升的ESD电压脉冲。
2.金属氧化物半导体场效应管(MOSFET):由于MOSFET具有低导通电阻和高电流能力,可以用于ESD保护。
当静电放电作用在MOSFET上时,MOSFET会迅速导通并吸收静电放电,从而保护电路不受损害。
3.电流限制器:电流限制器是一种能够限制通过电路的电流的元件。
在ESD保护中,电流限制器可以用于限制通过ESD放电的电流,从而降低对受保护电子设备的损害。
4. 触发二极管(Trigger Diode):触发二极管是一种具有低触发电压的特殊二极管。
当ESD放电的电压达到触发电压时,触发二极管将导通,并开始保护电路。
干货:ESD静电保护二极管选型方法和技巧(图文并茂)一、ESD静电二极管工作原理ESD(Electrostatic Discharge Protection Devices),静电保护元器件,又称瞬态电压抑制二极管阵列(TVS Array),是由多个TVS 晶粒或二极管采用不同的布局设计成具有特定功能的多路或单路ESD 保护器件,主要应用于各类通信接口静电保护,比如USB、HDMI、RS485、RS232、VGA、RJ11、RJ45、BNC、SIM、SD等接口中。
专业保护器件供应商东沃电子ESD静电保护器件,封装形式多样,从单路的SOD-323到多路的SOT-23、SOT-143、SOT23-6L、SOIC-8、QFN-10等。
电路设计工程师可以根据电路板布局及接口类型选择不同封装形式的ESD静电保护二极管。
目前东沃电子(DOWOSEMI)供应的ESD静电保护二极管产品主要分为:· 单通道ESD和EOS保护器件· 低电容ESD静电二极管· 标准电容ESD静电二极管· 低压ESD静电二极管· 高功率ESD静电二极管二、ESD静电二极管特性· 低电容,最低可达到零点几皮法;· 快速响应时间:通常小于1.0PS;· 体积小,小型化器件,节约PCB空间;· 工作电压可以根据IC的工作电压设计,比如:2.8V、3.3V、5V、12V、15V等等;· 灵活度高,可以根据应用需求设计电容、封装形式、浪涌承受能力等参数;· 封装形式多样化,目前东沃电子拥有的ESD封装有:QFN-0201、SOD-882、DFN1006-3L、SOT-523、SOD-523、QFN-10、SOD-123S、SOD-323、SOT-23、SOT-143、SOT-363、SOT23-6L、SOIC-8、SOIC-16 等;三、ESD静电二极管选型指南1)ESD静电二极管的截止电压要大于电路中最高工作电压;2)脉冲峰值电流IPP 和最大箝位电压VC 的选择,要根据线路上可能出现的最大浪涌电流来选择合适IPP的型号,需要注意的是,此时的VC 应小于被保护晶片所能耐受的最大峰值电压;3)用于信号传输电路保护时,一定要注意所传输信号的频率或传输速率,当信号频率或传输速率较高时,应选用低电容系列的ESD静电二极管;4)根据电路设计布局及被保护线路数选择合适的封装。
静电保护(ESD)原理和设计⼀直想给⼤家讲讲ESD的理论,很经典。
但是由于理论性太强,如果前⾯那些器件理论以及snap-back理论不懂的话,这个⼤家也不要浪费时间看了。
任何理论都是⼀环套⼀环的,如果你不会画鸡蛋,注定了你就不会画⼤卫。
静电放电(ESD: Electrostatic Discharge),应该是造成所有电⼦元器件或集成电路系统造成过度电应⼒(EOS: Electrical Over Stress)破坏的主要元凶。
因为静电通常瞬间电压⾮常⾼(>⼏千伏),所以这种损伤是毁灭性和永久性的,会造成电路直接烧毁。
所以预防静电损伤是所有IC设计和制造的头号难题。
静电,通常都是⼈为产⽣的,如⽣产、组装、测试、存放、搬运等过程中都有可能使得静电累积在⼈体、仪器或设备中,甚⾄元器件本⾝也会累积静电,当⼈们在不知情的情况下使这些带电的物体接触就会形成放电路径,瞬间使得电⼦元件或系统遭到静电放电的损坏(这就是为什么以前修电脑都必须要配戴静电环托在⼯作桌上,防⽌⼈体的静电损伤芯⽚),如同云层中储存的电荷瞬间击穿云层产⽣剧烈的闪电,会把⼤地劈开⼀样,⽽且通常都是在⾬天来临之际,因为空⽓湿度⼤易形成导电通到。
那么,如何防⽌静电放电损伤呢?⾸先当然改变坏境从源头减少静电(⽐如减少摩擦、少穿⽺⽑类⽑⾐、控制空⽓温湿度等),当然这不是我们今天讨论的重点。
我们今天要讨论的时候如何在电路⾥⾯涉及保护电路,当外界有静电的时候我们的电⼦元器件或系统能够⾃我保护避免被静电损坏(其实就是安装⼀个避雷针)。
这也是很多IC设计和制造业者的头号难题,很多公司有专门设计ESD的团队,今天我就和⼤家从最基本的理论讲起逐步讲解ESD保护的原理及注意点,你会发现前⾯讲的PN结/⼆极管、三极管、MOS管、snap-back全都⽤上了。
正向导通反向截⽌(不记得就去翻前⾯的课程),⽽且反偏电压继续增加会发⽣雪崩击穿(Avalanche Breakdown)⽽导通,我以前的专题讲解PN结⼆极管理论的时候,就讲过⼆极管有⼀个特性:正向导通反向截⽌们称之为钳位⼆极管(Clamp)。
esd 器件选型方法我们需要明确什么是esd器件。
ESD(Electrostatic Discharge)中文译为静电放电,是指在电子器件中由于静电积累而引起的瞬时放电现象。
ESD器件是用于保护电子设备免受静电放电的损害,它能够吸收和分散静电放电的能量,从而保护电路不受损坏。
选择合适的esd器件对于保护电子设备的可靠性和稳定性至关重要。
在进行esd器件选型时,我们需要考虑以下几个方面:1. 电路需求:首先,我们需要明确电路的特点和需求。
例如,工作电压范围、工作电流、工作温度等。
这些参数将直接影响我们对esd器件的选择。
2. 处理能力:esd器件的处理能力是指其能够吸收和分散静电放电能量的能力。
一般来说,处理能力越大,器件对静电放电的保护效果越好。
因此,在选型时,我们需要根据实际需求选择合适的处理能力。
3. 响应速度:esd器件的响应速度是指其在面对静电放电时的反应速度。
响应速度越快,器件对静电放电的保护效果越好。
在选型时,我们需要根据实际需求选择响应速度适当的器件。
4. 封装类型:esd器件的封装类型也是需要考虑的因素之一。
常见的封装类型有SOT、SOT23、SOT323、SOT523等。
不同的封装类型适用于不同的应用场景。
在选型时,我们需要根据实际需求选择合适的封装类型。
5. 供应商可靠性:esd器件的供应商可靠性也是我们需要考虑的因素之一。
选择有信誉和口碑的供应商可以确保我们获得质量可靠的esd器件。
选择合适的esd器件需要综合考虑电路需求、处理能力、响应速度、封装类型以及供应商可靠性等因素。
只有在全面考虑这些因素的基础上,我们才能选择到最适合我们应用场景的esd器件,从而保护电子设备的可靠性和稳定性。
esd静电保护二极管工作原理
ESD静电保护二极管工作原理
静电放电(Electrostatic Discharge,ESD)是指由于人类接触或装配电子器件,或者电子器件内部放电,造成巨大的电磁波干扰和器件损坏的过程。
为了避免这种情况的发生,电子产品中常常使用ESD静电保护二极管来防护。
ESD静电保护二极管是一种快速响应的保护器件,其静电放电电压一般为30-50伏,也有较高的阻止干扰能力。
其主要原理如下:
1. 静电放电产生的能量较小,但瞬间电流较大,ESD二极管的快速响应时间可达每秒数纳秒级别,并且具有较高的限流能力,可以有效将放电能量分散到地面。
2. ESD保护二极管由两个电极组成,即阳极和阴极,中间是PN结和保护电路。
3. 在正常情况下,PN结处有一定的反向电压,其内部电场强度很大,且电容很小。
相当于一个很小的开关。
4. 当外部有静电放电时,ESD静电保护二极管会迅速启动,导通且熔断形成的电流,保护电路内部元件不受静电放电损坏。
ESD静电保护二极管具有响应快,极小的阻抗和幅度限制,因此可以应用到各种电路中,可有效的抵御静电危害。
同时,ESD静电保护二极管还可以为其他设备提供保护,如电话线,以及连接线,以防止静电放电的损害。
总之,ESD静电保护二极管对于电子产品来说是非常重要的一种保护器件。
在选择和应用过程中,应该充分考虑使用场景、静电放电强度,以及ESD二极管的响应时间、限流能力等重要参数,以确保其能够有效地保护电路,延长产品的使用寿命。
几种ESD器件的特性及选型原则ESD(Electrostatic Discharge)器件是一类用于保护电子设备免受静电放电(ESD)所引起的瞬态电压损害的设备。
在电子设备中,静电放电可能会导致电路故障、芯片损坏甚至整个系统的瘫痪,因此使用ESD器件来保护电子设备非常重要。
本文将介绍几种常见的ESD器件的特性及选型原则。
1. ESD二极管(ESD Diode)ESD二极管是一种常见的ESD保护器件,其特点是具有良好的ESD耐受能力和低电压保护阈值。
选择ESD二极管时,需要考虑以下几个方面:-阈值电压:ESD二极管在保护时会产生导通电压,选择时需要确保其阈值电压低于保护的系统工作电压。
-规格:根据被保护器件的功耗和工作电压,选择适当的二极管规格。
-快速响应时间:ESD二极管需要具备快速响应速度以保护被保护器件免受瞬态电压冲击。
-低电流泄漏:选择具有低电流泄漏的ESD二极管,以确保长时间使用时不影响系统性能。
2. ESD引线积层器件(ESD Suppressor)ESD引线积层器件是一种用于保护集成电路引脚免受静电放电的器件。
其特点如下:-高响应速度:ESD引线积层器件需要具备快速响应时间,以迅速疏散和吸收ESD电流。
-低引脚电容:选择低引脚电容的ESD引线积层器件可减少对信号传输的干扰。
-高ESD耐受能力:确保所选ESD引线积层器件的ESD耐受能力高于所保护系统的工作环境。
3. ESD防护网络(ESD Protection Network)ESD防护网络是由多个器件组成的网络,用于对整个电子设备或电路板提供全面的ESD保护。
在选择ESD防护网络时,需要考虑以下几个因素:-多级保护:选择具有多级保护的ESD防护网络,以提供更强的ESD保护性能。
-电路布局:根据整个电路板的布局和器件的连接方式,选择适合的ESD防护网络。
-抑制能力:确保所选ESD防护网络的ESD抑制能力符合所保护系统的工作环境。
4. ESD晶体管(ESD Transistor)ESD晶体管是一种具有高ESD耐受能力的晶体管,用于保护芯片的输入和输出端口。
TVS管的⼯作原理与选型TVS管1、TVS是普遍使⽤的⼀种新型⾼效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当⾼的浪涌吸收能⼒。
当它的两端经受瞬间的⾼能量冲击时,TVS能以极⾼的速度把两端间的阻抗值由⾼阻抗变为低阻抗,以吸收⼀个瞬间⼤电流,从⽽把它的两端电压箝制在⼀个预定的数值VC上,从⽽保护后⾯的电路元件不受瞬态⾼压尖峰脉冲的冲击。
当瞬时脉冲结束以后,TVS⼆极管⾃动恢复到⾼阻状态,整个回路进⼊正常电压。
2、TVS 选型参数选型步骤1、最⼤反向⼯作电压VRWM略⾼于待保护电路最⼤的⼯作电压。
VRWM>1.1Vmax2、反向击穿电压VBR=V RWM /0.853、最⼤箝位电压VC应低于被保护电路所允许的最⼤承受电压。
Vc(MAX)=1.30×V(BR)如果超过就保护不了了。
下⾯的有交流的选择,⾃⼰要看从以上过程可以看出,在选择TVS⼆极管时,必须注意以下⼏个参数的选择:1. 最⼩击穿电压VBR和击穿电流I R。
TVS管的击穿电压VBR应根据线路最⾼⼯作电压Vmax来选择。
VBRmin>=1.2Vmax,或VRWM(反向⼯作电压)>=1.1Vmax,交流Vmax=1.414Vac,直流Vmax=VdcVBR是TVS最⼩的击穿电压,在25℃时,低于这个电压TVS是不会发⽣雪崩的。
当TVS 流过规定的1mA电流(I R)时,加于TVS两极的电压为其最⼩击穿电压V BR。
为了满⾜IEC61000-4-2国际标准,TVS⼆极管必须达到可以处理最⼩8kV(接触)和15kV(空⽓)的ESD 冲击,有的半导体⽣产⼚商在⾃⼰的产品上使⽤了更⾼的抗冲击标准。
3. 最⼤箝位电压V C和最⼤峰值脉冲电流I PP。
当持续时间为20mS的脉冲峰值电流I PP流过TVS时,在其两端出现的最⼤峰值电压为V C。
V C、I PP反映了TVS的浪涌抑制能⼒。
V C 与VBR之⽐称为箝位因⼦,⼀般在1.2~1.4之间。
静电保护器件工作原理及选型应用
Socay(Sylvia)
1、产品简述
ESD是代表英文Electrostatic Discharge即“静电放电”的意思。
ESD是本世纪中期以来形成的以研究静电的产生与衰减、静电放电模型、静电放电效应如电流热(火花)效应(如静电引起的着火与爆炸)和电磁效应(如电磁干扰)等的学科。
近年来随着科学技术的飞速发展、微电子技术的广泛应用及电磁环境越来越复杂,对静电放电的电磁场效应如电磁干扰(EMI)及电磁兼容性(EMC)问题越来越重视。
我司ESD保护器件主要是由TVS ARRAY组成,经不同封装而成的器件。
其优点是体积小,结电容低,反应速度快等。
2、工作原理
器件并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。
3、特性曲线
4、主要特性参数
①反向断态电压(截止电压)VRWM与反向漏电流IR:反向断态电压(截止电压)VRWM表示TVS管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。
②击穿电压VBR:TVS管通过规定的测试电流IT时的电压,这是表示TVS管导通的标志电压(P4SMA、P6SMB、1.5SMC、P4KE、P6KE、1.5KE系列型号中的数字就是击穿电压的标称值,其它系列的数字是反向断态电压值)。
TVS管的击穿电压有±5%的误差范围(不带“A”的为±10%)。
③脉冲峰值电流IPP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs波的峰值电流约为其5倍左右),超过这个电流值就可能造成永久性损坏。
在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。
④最大箝位电压VC:TVS管流过脉冲峰值电流IPP时两端所呈现的电压。
⑤脉冲峰值功率Pm:脉冲峰值功率Pm是指10/1000μs波的脉冲峰值电流IPP与最大箝位电压VC的乘积,即Pm=IPP*VC。
5、命名规则
6、产品特点
①反应速度快(小于1ns)
②电容值低(适用于高频高速传输线路)
③体积小、封装多样化(能满足不同产品应用)
④漏电流低(小于1uA)
⑤电压值低(最低可做到2.5V)
7、选型及应用。