信号处理与数据分析 邱天爽作业答案 Part
- 格式:pdf
- 大小:297.63 KB
- 文档页数:4
信号处理行业数据分析与应用考试(答案见尾页)一、选择题1. 信号处理行业数据分析的常用方法有哪些?A. 波斯谱分析B. 小波变换C. 矩阵分析D. 频谱分析2. 在信号处理中,以下哪个参数常用于评估信号质量?A. 信噪比B. 噪声功率C. 线性度D. 传递函数3. 以下哪个选项是频域分析的代表?A. 能量守恒B. 傅里叶变换C. 矩阵对角化D. 最大似然估计4. 信号处理中,以下哪个技术可用于实现信号的分离和识别?A. 卡尔曼滤波B. 神经网络C. 零均值漂移D. 高斯过程5. 在数字信号处理中,以下哪种算法常用于滤波和信号重建?A. 中值滤波B. 巴特沃斯滤波C. 各向异性扩散D. K-均值聚类6. 信号处理行业中,以下哪个软件或工具常用于分析和处理信号?A. MATLABB. PythonC. SPSSD. Excel7. 以下哪个选项是信号处理中的一种线性变换?A. 平方和B. 微分方程C. 积分D. 快速傅里叶变换(FFT)8. 在信号处理中,以下哪个概念常用于描述信号的周期性?A. 相位B. 指数C. 谐波D. 频率9. 信号处理行业中,以下哪个领域的研究最常涉及算法优化?A. 语音识别B. 图像处理C. 机器学习D. 自动驾驶10. 以下哪个选项是信号处理中的一种非线性变换?A. 对数变换B. 线性回归C. 逻辑回归D. 放射变换11. 信号处理行业数据分析的常用方法有哪些?A. 描述性统计B. 假设检验C. 回归分析D. 时间序列分析E. 机器学习12. 在信号处理行业中,以下哪个参数常用于评估信号质量?A. 信噪比B. 码间干扰C. 谐波失真D. 信号衰减E. 频谱宽度13. 以下哪个选项是信号处理在通信系统中的应用?A. 语音识别B. 图像处理C. 音频编码D. 数据压缩E. 机器学习14. 在数字信号处理中,以下哪个算法用于实现快速傅里叶变换(FFT)?A. 欧拉公式B. 复数指数函数C. 离散余弦函数D. 快速傅里叶级数15. 信号处理行业中,以下哪个技术用于模拟信号的数字化?A. 采样B. 滤波C. 量化D. 编码E. 解码16. 在雷达系统中,以下哪个功能用于检测和定位目标?A. 雷达成像B. 雷达成像处理C. 目标检测D. 目标定位E. 雷达成像重建17. 信号处理在生物医学工程中的应用有哪些?A. 心电图(ECG)B. 脑电图(EEG)C. 成像技术(如MRI和CT)D. 超声波治疗E. 医学图像处理18. 在无线通信系统中,以下哪个技术用于确保信号在传输过程中的稳定性?A. 信道编码B. 信道估计C. 扩频技术D. 调制技术E. 频谱管理19. 信号处理在金融领域的应用有哪些?A. 金融信号分析B. 风险管理C. 投资组合优化D. 交易策略开发E. 信用评分20. 在遥感技术中,以下哪个功能用于从卫星获取地表信息?A. 遥感成像B. 遥感图像解译C. 遥感图像增强D. 遥感图像分类E. 遥感图像三维建模21. 信号处理行业的现状及未来发展趋势是什么?A. 信号处理行业正处于快速发展阶段,未来将更加注重创新和智能化。
信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。
习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。
1.(P24,课后习题1.5(a,c,e ))试确定下列系统的(1)记忆性;(2)时不变性;(3)线性;(4)因果性;(5)稳定性。
(a )(t)(t -2)+(1-t)y x x = (c )()(t)sin 2(t)y t x =⎡⎤⎣⎦ (e )()(1)()y n n x n =+
解: (a )记忆,时变,线性,非因果性,稳定性;
(c )无记忆,时变,线性,因果性,稳定性; (e )无记忆,时变,线性,因果性,不稳定性;
备注:本题中关于时变与时不变系统的判定,错误率较高,故特以(a )为例,时变性质解答如下: 设:()0g (t )t x t =-,且有()T (t 2)+(1t)x t x x ⎡⎤=--⎣⎦,则:
()()()()()0000T (t 2)+(1t)t 2+1t =(t 2)+(1t )g t g g x t x t x t x t ⎡⎤=--=--------⎣⎦
又:()()()()00000(t )t 2+1t =(t 2)+1t +y t x t x t x t x t -=------- 显然:()0T (t )g t y t ⎡⎤≠-⎣⎦,故为时变系统。
又注:对于()T g t ⎡⎤⎣⎦,信号先经过系统再做时移;0(t )y t -,信号先做时移动再经过系统。
如果还不理解,做题可以这样判断:只要信号(t)x 中t 的系数不为1,则该系统必定为时变系
统,如本题中(1-t)x ,t 的系数为-1,不是1,时变系统。
此外,若信号(t)x 的系数含有t ,该系统也为时变系统,如()sin 2(t)t x ⎡⎤⎣⎦,系数为()sin 2t 含有t ,为时变系统。
这是我做题自己积累的经验,大家选择性使用。
2.(P24,课后习题1.7)计算卷积并画出结果曲线
-1()(1),()(1)3n
x n u n h n u n ⎛⎫
=--=- ⎪⎝⎭
解:利用定义可知,
1
1
()()()()()
1
()
(1)(1)
31
()(1)31
()(1)
3k k
k k k k
k y n x n h n x k h n k u k u n k u n k u n k ∞
=-∞
∞
-=-∞--=-∞∞
=-=*=
-=
----=--=
+-∑∑∑∑
用p 代替-1k 则,
101
()()()3
p p y n u n p ∞
+==+∑
对于0n ≥,则有
101111
()()13
3213
p p y n ∞
+====-∑
对于0n <,则有
1110
111113()()()()()13333213
n
p n p n p n p y n ∞
∞+-+-+=-=====
-∑∑ 因此:
3,02
()1(),02
n
n y n n ⎧<⎪⎪=⎨⎪≥⎪⎩
n
1/61/2
3.(P24,课后习题1.8)设
1,01
(),
()(/)0, t x t h t x t t
α≤≤⎧==⎨⎩其余,
(1)计算并画出卷积()()()y t x t h t =* (2)若d()d y t
t
仅含有3个不连续点,则?α=
解:
(a )画出()x t 和()h t 的图形如下图所示:01α<<
利用该图形,得到()()()y t x t h t =* 如图所示:
因此,
,0,t 1()1,1(1)0,t t y t t t otherwise
ααααα≤≤⎧⎪≤≤⎪=⎨+-≤≤+⎪
⎪
⎩
(b) 画出()x t 和()h t 的图形如下图所示:1α≥
0 α
h(t)
1
卷积后的图形如下图所示:
1
0 1
α 1+α
所以
,01
1,1t ()1,(1)0,t t y t t t otherwise
αααα≤≤⎧⎪≤≤⎪=⎨+-≤≤+⎪⎪⎩
同理可以得到当1α≤-与10α-≤<时的结果,这里不再详细给出。
(b )通过()y t 的图形可以看出,d ()
dt
y t 在0,α,1,1α+ 处不连续,为保证有三个连续点,需要保证1α=±。
4.( P24,课后习题1.19,对n 的范围进行了限制,必须利用MATLAB 编程并画图) 试利用MATLAB 编程实现
()()(y n x n h n
=*的卷积运算,其中
3()(),()e ()n x n u n h n u n -==,[]8,8n ∈-,
并绘出计算结果的波形图。
解: clear all m=0; for n=-8:1:8 m=m+1; if n<0
x(m)=0; h(m)=0; else
x(m)=1; h(m)=exp(-3*n); end end y=conv(x,h);
m=-(length(y)-1)/2:(length(y)-1)/2; figure,stem(m,y)
00.2
0.4
0.6
0.8
1
1.2
1.4。