信号处理与数据分析 邱天爽作业答案(Part2)
- 格式:pdf
- 大小:264.02 KB
- 文档页数:4
一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。
但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。
2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。
3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。
就是说滤波器结构与特性没有必然的联系。
4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。
轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。
四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。
习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。