果蝇杂交实验三大遗传规律
- 格式:ppt
- 大小:2.02 MB
- 文档页数:24
果蝇杂交实验报告果蝇杂交实验报告引言:果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
因其繁殖周期短、易于培养和观察,成为了许多遗传学实验的理想选择。
本实验旨在通过果蝇的杂交实验,探究基因的遗传规律和表现型的变异。
实验设计:实验使用了两个具有明显表型差异的果蝇品系:A品系为黑色眼睛、红色身体;B品系为红色眼睛、黑色身体。
实验中,我们将A品系与B品系进行杂交,并观察F1代和F2代的表型分布情况,以了解基因的遗传规律。
实验过程:1. 实验前,我们首先培养并繁殖A品系和B品系果蝇,确保实验所需的足够数量。
2. 在实验开始时,我们将A品系和B品系的果蝇分别放置在两个不同的培养瓶中,以避免杂交前的交叉繁殖。
3. 在杂交过程中,我们将A品系的雄性果蝇与B品系的雌性果蝇进行交配,确保每组杂交中的配对数量相等。
4. 杂交完成后,我们将交配后的果蝇分别放置在标记有代号的培养瓶中,以便后续观察和记录。
5. 我们观察并记录了F1代果蝇的表型,包括眼睛颜色和身体颜色。
6. 接下来,我们将F1代果蝇进行自交,培养出F2代果蝇,并观察并记录其表型分布情况。
实验结果:在实验中,我们观察到F1代果蝇的表型均为红色眼睛和黑色身体,与B品系相同。
这表明红色眼睛的性状是显性遗传性状,而黑色身体的性状是隐性遗传性状。
在F2代果蝇中,我们观察到了红色眼睛和黑色身体两种表型的存在。
根据孟德尔遗传定律,我们预计红色眼睛和黑色身体的表型比例应为3:1。
然而,我们实际观察到的表型比例略有偏离,为2.8:1。
这可能是由于实验中的样本数量较少,导致统计结果的误差。
讨论:通过本次实验,我们验证了果蝇基因的遗传规律。
红色眼睛是一种显性遗传性状,而黑色身体是一种隐性遗传性状。
这意味着只要果蝇携带了红色眼睛的基因,无论其携带的是纯合子还是杂合子,其表型都会表现为红色眼睛。
而只有当果蝇同时携带两个黑色身体的基因,才会表现出黑色身体的表型。
果蝇杂交实验报告(眼色分析)一、实验原理及方法生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。
果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。
雌果蝇的性染色体构型为XX,、雄果蝇为XY。
控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。
将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。
而且,正反交的结果不同。
(仅供参考)二、实验材料(品系及性状)亲本正交6#(雌、白眼)X18#(雄、红眼)亲本反交18#(雌、红眼)X 6#(雄、白眼)(可写成基因型)三、实验用品(实验指导书上有)四、杂交实验流程1、培养基的配制,并在培养瓶上写清杂交组合、杂交日期、实验者班级。
室温下培养,至于阴暗温热环境中。
2、两个亲本杂交1、2号培养瓶中分别挑选亲本正交、反交的处女蝇。
3、在接入杂交亲本1、亲本2第七或八天(从开始杂交算第一天)清除所有亲本成蝇。
4、观察正反交组合中不同性别子代1成蝇的眼色,至少观察20只,记录观察结果,并注意是否有例外的情形。
5、从正交组合的子代1中挑选出5对果蝇,放入F 1自交1号培养瓶中,贴上标签,室温下培养(反交组合也一样处理)。
6、在接入子代1培养的第七或八天(从子代1接入新培养瓶算第一天)清除所有子代1成蝇。
7、当子代2数量足够时,观察不同性别的果蝇的眼色,分别统计并做好记录。
五、实验结果及分析图谱分析正交 反交P : X w X w (雌白眼)× X +Y (雄红眼) X +X +(雌红眼)× X w Y (雄白眼)F1: X +X w(雌红眼)× X w Y (雄白眼)X +X w (雌红眼)× X +Y (雄红眼)理论: 1 : 1 1 : 1实际: 25 : 16 20 : 19F2: X +X w X w X w X +Y X w Y X +X + X +X w X +Y X w Y雌红眼 雌白眼 雄红眼 雄白眼 雌红眼 雄红眼 雄白眼理论 1 : 1 : 1 : 1 2 : 1 : 1 实际 13 : 9 : 12 : 10 21 : 11 : 52显隐性判断:正交的结果不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼。
引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。
本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。
概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。
其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。
果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。
正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。
果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。
通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。
生命科学学院遗传学实验报告实验五六七:双因子杂交、伴性遗传和三点测交一、实验目的:1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律。
2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点。
3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解。
4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法。
二、实验器材:1、材料: 18号果蝇(野生型)及三种突变体果蝇即14号果蝇(黒身残翅)、w号果蝇(白眼)和6号果蝇(白眼卷刚毛小翅)2、试剂:乙醇、乙醚、果蝇培养基等3、器具:麻醉瓶、酒精灯、白瓷板、毛笔、镊子、培养管、棉球等三、实验原理:果蝇具有生活史短、繁殖率高、饲养简便、染色体数目少(2n=8)和突变性状多等特点,是研究遗传学的好材料。
本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定,下面简要介绍关于双因子杂交、伴性遗传和三点测交的基本原理。
1、双因子杂交:果蝇的灰体基因(E)与黑檀体基因(e)为一对相对性状,位于ⅢR70.7位置,而长翅(Vg)与残翅(vg)为另一对相对性状,位于ⅡR67.0位置。
这两对基因是没有连锁关系的,位于不同染色体上的非等位基因。
因此非同源染色体的这两对非等位基因可以很好的验证自由组合定律。
自由组合规律:位于非同源染色体上的两对非等位基因,其杂合体在形成配子时,等位基因彼此分离,进入不同的配子中,非等位基因可自由组合进入同一配子,结果产生4种比例相等的配子。
若显性完全, F1自交产生F2代表现出4种表型,比例为9:3:3:1。
双因子杂交的遗传规律:双因子杂交正交双因子杂交反交18♀×14♂ 14♀ × 18♂2、伴性遗传:位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked inheritance )。
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
果蝇杂交实验——验证遗传学三大定律1 实验目的:1.1 通过对果蝇的一对相对性状的杂交试验,观察性状的显、隐性关系及其在后代中的分离现象,验证孟德尔的第一定律——分离定律。
1.2 通过对果蝇两对相对性状的杂交试验,验证孟德尔第二定律:自由组合定律。
1.3 通过位于果蝇性染色体的基因控制的性状的杂交试验,验证遗传学第三个规律:连锁遗传。
并了解伴性遗传与非伴性遗传的区别以及掌握伴性基因在正、反交中的差异。
2 实验原理2.1 果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。
生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。
果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的经过时间2.2 果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。
另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。
果蝇的雌雄在幼虫期较难区别,但到了成虫期区别相当容易。
雄性个体一般较雌性个体小,腹部环纹5条,腹尖色深,第一对脚的跗节前端表面有黑色鬃毛流苏,称性梳(Sex combs)。
雌性环纹7条,腹尖色浅,无性梳。
实验中选用的果蝇突变性状一般都可用肉眼鉴定,例如红眼与白眼,正常翅与残翅等。
而另一些性状可在解剖镜下鉴定,如焦刚毛与直刚毛等。
现列表如下:实验中使用的果蝇突变品系2.3 黑体果蝇的体色为黑色(b),与之相对应的野生型果蝇的体色为灰色(+),灰色对黑色为完全显性,控制这对相对性状的基因位于第二号染色体上。
用具有这对相对性状的两纯合亲本杂交,性状的遗传行为应符合分离定律。
第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。
2. 学习和掌握果蝇的饲养、观察和杂交技术。
3. 提高对遗传学实验设计、操作和数据分析的能力。
二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。
2. 染色体数目少,便于观察和分析。
3. 遗传变异丰富,便于研究基因和性状之间的关系。
本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。
三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。
2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。
四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。
3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 数据分析:根据观察结果,分析遗传学定律。
1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。
3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。
5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
6. 数据分析:根据观察结果,分析遗传学定律。
六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。
2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。
果蝇杂交实验报告摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。
果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。
本次通过实施已有实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。
1.原理分离定律一对等位基因在杂合状态中保持相对的独立性,在配子形成时,按原样分离到不同的配子中去,理论上配子分离比是1∶1,F2代基因型分离比是1∶2∶1,若显性完全,F2代表型分离比是3∶1 。
控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,用灰体果蝇与黑体果蝇交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现两种表现型。
(图1)图1 图2自由组合定律不同相对性状的等位基因在配子形成过程中,等位基因间的分离和组合是互不干扰,各自独立分配到配子中去,它们所决定的两对相对性状在F2代是自由组合的,在杂种第二代表型分离比就呈9∶3∶3∶1。
控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,控制眼色性状的突变基因位于性染色体。
红眼对白眼完全显性,用黑体红眼果蝇(♀)与灰体白眼果蝇(♂)交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现四种表现型。
(图2)伴性遗传位于性染色体上的基因,其传递方式与位于常染色体上的基因不同,它的传递方式与雌雄性别有关,因此称为伴性遗传。
果蝇的性染色体有X和Y两种,雌蝇为XX,雄蝇为XY。
红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。
当红眼雌蝇与白眼雄蝇杂交时,F1代雌性果蝇、雄性果蝇都为红眼,F2代雌性果蝇都是红眼,雄性果蝇红眼和白眼的比例为1∶1;当白眼雌蝇与红眼雄蝇杂交时,F1代雌性果蝇为红眼,而雄性果蝇为白眼,此现象又称为绞花式遗传,F2代雌性果蝇的红眼与白眼比例为1∶1,雄性果蝇的红眼与白眼比例也是1∶1 。
广州大学综合性实验报告实验课题:遗传学果蝇杂交实验学院生命科学学院年级:14级专业班级:生物技术142班姓名陈子禧学号1414300004实验地点:广州大学生化楼指导教师汪珍春老师1、前言果蝇(fruit fly)是双翅目(Diptera),属果蝇属(genus Drosophila)。
Morgan(1909)利用黑腹果蝇 (Drosophila melanogaster)发现了连锁与互换定律。
果蝇作为实验材料有许多优点:(1)饲养容易,生长繁殖要求较低, 在常温下, 以玉米粉等作饲料就可以生长、繁殖;(2)生长迅速,12天左右就可完成一个世代, 25℃条件下黑腹果蝇平均产卵量高达375.4粒(P<0.01)[1],因此在短时间内就可获得大量的子代,便于遗传学分析;(3)染色体数少,只有4对;故本研究采用黑腹果蝇e#和6#为研究材料进行正交和反交实验,对果蝇的性状(眼色、体色和翅型)进行观察记录并结合统计学对实验结果进行分析,以验证遗传学三大定律,并尝试培养和分析小量的F2代数据观察连锁交换现象。
关键词:黑腹果蝇;遗传学;正交;统计学;遗传学三大定律;连锁交换2、实验材料品种:黑腹果蝇(Drosophila melanogaster)品系:突变型(e#):长翅、黑檀体、红眼;突变型(6#):小翅、灰身、白眼工具:显微镜、电子天平、培养瓶、棉塞、量筒、烧杯、温度计、玻璃棒、解剖针、毛笔、解剖剪、镊子、恒温恒湿培养箱、电炉药品及材料:燕麦、玉米粉、蔗糖、琼脂粉、酵母粉、丙酸、乙醚等3、实验方法3.1、果蝇的饲养3.1.1培养基的配制:①称量100ml水+0.85g琼脂+7g蔗糖,将上述三份材料倒入白瓷杯,保留约30ml的水待用,将电炉打开,搅拌至80°C煮溶②将称量的8g燕麦玉米粉干燥混合物与上述保留的30ml冷水混匀成浆糊,搅匀并加入白瓷杯中③不断搅拌体系约5min直至煮沸(此时应成糊状),关火④等待体系自然降温,温度计测温至80°C,倒入1g干性酵母粉和0.4ml丙酸⑤冷却至70°C,趁热将白瓷杯的混合物转移至大烧杯,并分装到各个培养瓶。