风力发电基础知识汇总
- 格式:pdf
- 大小:115.40 KB
- 文档页数:3
风电技术培训内容大全一、风力发电机组基础知识1. 风力发电概述:介绍风力发电的基本原理、风能的特点以及风力发电在全球范围内的应用情况。
2. 风力发电机组的基本构成:详细讲解风力发电机组的基本构成,包括风轮、发电机、塔筒等主要部件。
3. 风力发电机组的工作原理:阐述风力发电机组的工作原理,包括风能吸收、风轮转换、发电机发电等过程。
二、风力发电机组结构与原理1. 风轮结构与原理:详细介绍风轮的结构、特点、工作原理以及与发电机组的配合方式。
2. 发电机结构与原理:详细介绍发电机的结构、工作原理以及与风轮的配合方式。
3. 塔筒结构与原理:详细介绍塔筒的结构、特点、工作原理以及与风轮和发电机的配合方式。
三、风力发电机组控制系统1. 控制系统的基本组成:介绍控制系统的基本组成,包括传感器、控制系统硬件和软件等。
2. 控制系统的功能:阐述控制系统的功能,包括对风向、风速的监测和控制,对发电机组的启动、停止、调速等控制。
3. 控制系统的工作原理:详细介绍控制系统的工作原理,包括传感器的工作原理、控制算法的实现等。
四、风力发电机组维护与检修1. 维护与检修的基本知识:介绍维护与检修的基本概念和方法,包括定期维护、故障检修等。
2. 主要部件的维护与检修:详细介绍主要部件的维护与检修方法,包括风轮、发电机、塔筒等的维护与检修。
3. 维护与检修的安全措施:强调维护与检修过程中的安全措施和注意事项。
五、风力发电机组故障排除1. 故障排除的基本流程:介绍故障排除的基本流程,包括故障检测、故障定位、故障修复等。
2. 常见故障及排除方法:列举常见的风力发电机组故障及相应的排除方法。
3. 故障排除的安全措施:强调故障排除过程中的安全措施和注意事项。
六、风力发电机组安全知识1. 安全操作规程:介绍风力发电机组的安全操作规程,包括操作前的准备、操作过程中的注意事项等。
2. 安全防护措施:列举常见的安全防护措施,包括防护设备的使用、安全警示标识的设置等。
风力发电常规知识点总结一、风力发电技术的基本原理1. 风力发电的原理是利用风能转动风机叶片,并通过发电机将机械能转化为电能。
风机叶片受到风的推动后转动,带动发电机发电。
2. 风机的转动受到风的影响,风速越高,风机的转速越快,发电量也会随之增加。
因此,选择风力资源丰富的地区建设风电场是非常重要的。
3. 风力发电技术的核心是风机叶片和发电机的设计和制造。
叶片的形状、长度和材料选择,发电机的转子和定子的设计,都直接影响了风力发电的效率和可靠性。
二、风力发电的发展历史1. 早在2000多年前,古代人类就已经开始利用风能驱动帆船和磨坊,用风力进行生产。
随着科技的进步,风力发电技术也得到了不断改进和完善。
2. 20世纪70年代开始,欧洲国家率先开发和应用风力发电技术,随后美国、中国等国家也相继投入了大量资金和人力资源用于风力发电的研发和建设。
3. 目前,风力发电已经发展成为一种成熟的清洁能源技术,全球各地都有数以万计的风电场在运行,为人们提供清洁电能。
三、风力发电的优势1. 可再生能源:风是一种永不枯竭的资源,因此风力发电是一种可再生能源,不会对环境造成永久性的破坏。
2. 清洁环保:风力发电不会产生任何污染物,对环境影响极小,是非常环保的能源选择。
3. 经济效益:风力发电的成本逐渐下降,与传统火电相比,风电的发电成本已经非常有竞争力,对降低电力成本具有重要意义。
4. 可调度性:虽然风的不确定性会给电网调度带来挑战,但配备合适的调峰设备和技术手段,风电的可调度性并不比传统发电方式差。
四、风力发电的劣势1. 风速不稳定:风力发电受风速的影响较大,风速不稳定会影响风力发电的稳定性和可靠性。
2. 建设成本高:风力发电的初期投资较大,需要大规模的风电场和高效的发电机设备,因此建设成本相对较高。
3. 土地需求大:风电场需要占用大片土地,特别是在风资源丰富的地区,土地成本和占用问题是风力发电面临的一个挑战。
4. 对电网的影响:风力发电的不确定性和间歇性会给电网的调度和运行带来一定难度,需要配备相应的调和技术。
第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。
控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。
现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。
(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。
停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。
(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。
风力发电车知识大全一、风力发电原理风力发电是利用风能驱动风力发电机组转动,进而驱动发电机产生电能的过程。
风能是一种可再生能源,具有清洁、绿色、可持续的优点。
风力发电的基本原理可以归纳为以下几点:1.风的动能驱动风力发电机组转动;2.风力发电机组将机械能转化为电能;3.发电机产生的电能通过电力电子装置整流、逆变等处理后,供给负载使用。
二、风力发电机组构造风力发电机组主要由风轮、齿轮箱、发电机、塔筒等组成。
其中:1.风轮:由叶片和轮毂组成,是风力发电机组中的重要部分,用于捕捉风能并传递给发电机;2.齿轮箱:将风轮的机械能转化为高速旋转的机械能,再传递给发电机;3.发电机:将机械能转化为电能;4.塔筒:支撑整个机组,并可以通过控制偏航系统来追踪最佳风向。
三、风力发电影响因素风力发电的影响因素主要包括风速、风向、温度、湿度、气压等。
其中,风速是最重要的因素之一,因为风速的大小直接决定了风力发电机组的功率输出。
此外,其他因素也会对风力发电产生影响,例如风向不稳定、温度变化等。
四、风力发电优势与局限风力发电具有以下优势:1.可再生能源:风能是一种无尽的可再生能源,与化石能源相比,具有更少的污染和更低的碳排放;2.绿色环保:风力发电不会产生有害物质排放,对环境友好;3.降低能源成本:随着技术的进步和规模效应的显现,风力发电的成本逐渐降低,成为更具竞争力的能源形式;4.灵活性强:风力发电设备可以灵活布置,适应不同的地形和气候条件。
然而,风力发电也存在一些局限:1.风速不稳定:风速的不稳定导致风力发电的电力输出波动较大,对电网稳定运行带来一定挑战;2.地理位置限制:适合建设风力发电的地理位置需要一定的资源条件,如丰富的风能资源和合适的地理环境;3.初始投资成本高:建设风力发电站需要较大的资金投入,包括设备购置、安装、运输等费用。
五、风力发电发展现状与趋势近年来,全球风力发电发展迅速,特别是在欧美国家,风电已成为重要的能源形式之一。
风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。
无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。
本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。
一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。
风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。
风力发电机的核心部分是转子,其外形类似于大风车。
当风力吹向转子时,转子的叶片受到推动,并开始旋转。
转子上设置的发电机可以将旋转转子的运动转化为电力。
二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。
它由塔筒、轮毂、叶片、发电机和变频器等组成。
塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。
轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。
叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。
发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。
变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。
2.电网连接装置电网连接装置包括变电站和输电线路。
变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。
输电线路用于将发电站产生的电能输送到用户端。
三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。
为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。
同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。
2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。
在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。
3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。
风力发电知识点总结大全一、风力发电的原理风力发电的原理是利用风能带动风机叶片旋转,进而带动发电机产生电能。
风机通常由塔架、主轴、叶片和发电机等部件组成。
其中,风机的叶片接收到风的动能,然后带动主轴旋转,主轴通过传动装置驱动发电机产生电能。
在发电过程中,所产生的电能可以被接入电网,也可以储存到电池中供以后使用。
二、风力发电的发展历史风力发电的历史可以追溯到公元前500年的古希腊时期,当时人们已开始使用风车来抽水和磨面。
而真正意义上的现代风力发电可以追溯到19世纪末的美国,当时科学家开发出了第一台风力发电机。
20世纪70年代,丹麦成为风力发电的先锋国家,开始大规模发展风电。
自此以后,风力发电逐渐成为一种主流的可再生能源形式,并在全球范围内得到广泛应用和推广。
三、风力发电的技术分类根据风力发电机的类型和结构,风力发电可以分为多种技术分类,包括水平轴风力发电机、垂直轴风力发电机和混合式风力发电机等。
其中,水平轴风力发电机是目前应用最为广泛的一种类型,它具有结构简单、稳定性好、效率高等特点;而垂直轴风机则具有风向适应性强、噪音小等优点;混合式风力发电机则融合了水平轴和垂直轴的优点,将风能转换成电能。
四、全球风力发电的发展状况目前,全球范围内的风力发电已经成为一种重要的能源形式,并且得到了广泛的推广和应用。
根据国际能源署(IEA)的数据,截至2019年,全球累计安装的风力发电容量已达到了651.7吉瓦,其中中国、美国、德国、印度和西班牙等国家是全球风力发电的主要发展国家。
同时,全球风力发电的装机容量每年都在稳步增长,并且逐渐成为了可再生能源中的主要形式之一。
五、风力发电的优缺点风力发电作为一种清洁的可再生能源,具有许多明显的优势,比如不排放二氧化碳、占地面积小、可再生性好等。
但同时,风力发电也存在一些缺点,比如对风资源的依赖性较强、噪音污染、对鸟类的生存造成影响等问题。
因此,在发展风力发电时,需要综合考虑其优缺点,采取相应的措施来解决其中的问题。
第一章风及风能资源一、风的形成及影响因素1.风的产生:是由地球外表大气层由于太阳的辐射而引起的空气流动,大气压差是风产生的根本原因2.特性:周期性、多样性、复杂性3.风的分类:季风、山谷风、海陆风、台风、龙卷风二、风的测量1.风的测量包括风向和风速两种2.风向测量:风向测量是指测量风的来向风向测量装置:1)风向标:是测量风向最通用的装置,有单翼型、双翼型、流线型2)风向杆(安装方位指向正南)、风速仪(可测风向和风速,一般安装在离地面10米的高度)3.风向表示法:风向一般用16个方位表示,静风记为C。
4.风能密度:单位截面积的风所含的能量称为风能密度,常以W/m2表示。
三、风资源分布1.我国风资分布可划分为:风能丰富区、风能较丰富区、风能可利用区、风能贫乏区1)风能丰富区:有效风能密度>200W/m2。
2)风能较丰富区:有效风能密度为150~200W/m2,3~20m/s风速出现的全年累计时间为4000~5000h。
3)风能可利用区:有效风能密度在50~150W/m2之间,3~20m/s风速出现时数约在2000~4000h之间。
4)风能贫乏区:该区风能密度低于50W/m2,全年时间低于2000h第二章风力机的理论基础一、贝兹理论二、翼型的几何参数三、风车理论四、叶素理论气动效率五、葛劳渥漩涡理论六、葛劳渥轴线推力和扭矩计算有限长的叶片,叶片的下游存在尾迹涡,主要有两个漩涡区:一个在轮毂附近,一个在叶尖。
漩涡诱导速度可看成以下三个漩涡系叠加的合速:①中心涡,集中在转轴上②每个叶片的边界涡③每个叶片尖部形成的螺旋涡七、风力机的相似特性相似准则:所谓模型与风力机实物相似是指风轮与空气的能量传递过程以及空气在风轮内向流动过程相似,或者说它们在任一对应点的同名物理量之比保持常数。
流过风力机的气流属于不可压缩流体,理论上应满足几何相似、运动相似和雷诺数相等。
对风力机而言,后一个条件实际做不到,故一般仅以前两个条件作为模型和风力机实物的相似准则,并计及雷诺数。
风力发电
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。
风力发电的原理,
利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。
风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
风力发电所需要的装置,称作风力发电机组。
这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。
(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。
当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。
桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。
(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。
为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。
铁塔是支承风轮、尾舵和发电机的构架。
它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。
铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。
发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。
小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。
风力发电机由机头、转体、尾翼、叶片组成。
每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。
一般说来,三级风就有利用的价值。
但从经济合理的角度出发,风速大于每秒4米才适宜于发电。
据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。
可见风力愈大,经济效益也愈大。
在我国,现在已有不少成功的中、小型风力发电装置在运转。
我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。
在这些地区,发展风力发电是很有前途的。
中国风能储量很大、分布面广,仅陆地上的风能储量就有约2.53亿千瓦。
2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。
按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。
以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。
风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。
风电的优势在于:能力每增加一倍,成本就下降15%
风力发电的输出
风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。
然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。
一个家庭一年的用电只需20元电瓶液的代价。
风力发电机种类
尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。
优缺点
优点
1、清洁,环境效益好;
2、可再生,永不枯竭;
3、基建周期短;
4、装机规模灵活。
缺点
1、噪声,视觉污染;
2、占用大片土地;
3、不稳定,不可控;
4、目前成本仍然很高。
5、影响鸟类。
发电机结构
风力发电机是将风能转换为机械功的动力机械,又称风车。
广义地说,它是一以大气为工作介质的能量利用机械。
机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。
维护人员可以通过风力发电机塔进入机舱。
机舱左端是风力发电机转子,即转子叶片及轴。
转子叶片:捉获风,并将风力传送到转子轴心。
现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米,而且被设计得很像飞机的机翼。
轴心:转子轴心附着在风力发电机的低速轴上。
低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。
在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。
轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。
它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。
发电机:通常被称为感应电机或异步发电机。
在现代风力发电机上,最大电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。
偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。
图中显示了风力发电机偏航。
通常,在风改变其方向时,风力发电机一次只会偏转几度。
电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。
为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。
液压系统:用于重置风力发电机的空气动力闸。
冷却元件:包含一个风扇,用于冷却发电机。
此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。
一些风力发电机具有水冷发电机。
塔:风力发电机塔载有机舱及转子。
通常高的塔具有优势,因为离地面越高,风速越大。
现
代600千瓦风汽轮机的塔高为40至60米。
它可以为管状的塔,也可以是格子状的塔。
管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。
格状的塔的优点在于它比较便宜。
风速计及风向标:用于测量风速及风向。