污水SBR工艺
- 格式:docx
- 大小:24.25 KB
- 文档页数:8
污水处理SBR工艺污水处理SBR工艺1. 引言2. SBR工艺的原理SBR(Sequencing Batch Reactor)工艺是一种批处理反应器技术,将不同的污水处理步骤结合在一个反应器中完成。
其主要原理包括:进水、好氧反应、静置、沉淀、出水等几个阶段。
3. SBR工艺的主要步骤本节将介绍SBR工艺的主要步骤及其工艺过程。
3.1 进水污水通过管道进入反应器,进水的流速和污水质量需要进行调整和稳定化处理。
3.2 好氧反应进水污水中的有机物将在好氧条件下由微生物分解,产生二氧化碳和水。
这个阶段需要保持适宜的氧含量、温度和pH值。
3.3 静置好氧反应之后,需要进行静置,使污泥沉降。
3.4 沉淀在静置阶段,底部的沉降污泥会逐渐沉积,形成污泥层。
上层的澄清液则会经过出水口排放。
3.5 出水高质量的水将通过出水口排放,经过进一步处理或直接回收利用。
4. SBR工艺的优点相比其他传统的污水处理工艺,SBR工艺具有以下几个优点:4.1 灵活性SBR工艺具有较好的适应性,能够根据不同的污水特性和需求进行灵活调整。
4.2 处理效果好SBR工艺能够有效去除污水中的有机物、氮磷等污染物,处理效果较好。
4.3 能耗低相比其他工艺,SBR工艺能够在处理污水的过程中实现能量的有效利用,降低了能耗。
4.4 操作简便SBR工艺的操作相对简单,不需要大量的设备和人员。
5. SBR工艺的应用范围SBR工艺广泛应用于城市污水处理、工业废水处理、农村生活污水处理等领域。
其应用范围非常广泛。
6. 研究进展与展望当前,对SBR工艺的研究仍在不断深入,工艺的改进和优化也在不断进行。
SBR工艺将进一步提高处理效率、降低成本,并更好地满足不同污水处理需求。
7. 结论SBR工艺是一种被广泛应用的污水处理工艺,具有灵活性、处理效果好、能耗低和操作简便等优点。
它在城市污水处理领域发挥着重要作用,并有着广阔的应用前景。
参考文献:1. , . 污水处理SBR工艺初探[J]. 水处理技术, 20(): -.2. , , . SBR工艺在城市污水处理中的应用及优化[J]. 环境科技, 20(): -.。
SBR污水处理工艺SBR污水处理工艺简介SBR(Sequencing Batch Reactor)污水处理工艺是一种将生物降解工艺和化学沉淀工艺相结合的污水处理方法。
该工艺采用批处理方式进行,包括了一系列不同的反应阶段,可以有效地去除污水中的有机物质、氮和磷。
工艺原理SBR污水处理工艺的主要原理是通过污水流入反应器,按照一定的时间顺序进行一系列的处理步骤,在各个处理阶段中引入氧气和污泥进行处理。
主要的处理步骤包括:进水阶段、混合阶段、反应阶段、静置阶段和污泥泵出阶段。
1. 进水阶段:将污水通过进水管道进入反应器,开始处理过程。
2. 混合阶段:在这个阶段,通过搅拌设备将污水和污泥混合均匀,促进微生物的生长。
3. 反应阶段:在此阶段,向反应器中注入氧气,刺激微生物的代谢活动,使其分解有机物质。
4. 静置阶段:此阶段是为了让悬浮物沉降到底部形成混合液和淤泥的分离,使沉淀更加完整。
5. 污泥泵出阶段:将处理后的污泥泵出反应器,进行后续处理或处置。
整个处理过程可重复多次,最终达到对污水的有效处理。
工艺优势SBR污水处理工艺具有以下优势:1. 适用广泛:SBR工艺适用于不同类型和规模的污水处理厂,能够处理各种废水类型。
2. 降解效果好:通过不同反应阶段的处理,能够对污水中的有机物、氮和磷进行有效降解和去除。
3. 灵活操作:SBR工艺采用批处理方式,操作灵活,可根据不同情况调整处理过程。
4. 占地面积小:相比其他一体化工艺,SBR工艺的占地面积较小,适合用于有限空间的处理厂。
5. 运行稳定:SBR工艺的处理效果稳定,能够适应波动较大的进水水质和负荷变化。
应用领域SBR污水处理工艺广泛应用于以下领域:1. 市政污水处理:能够处理城市生活污水,净化环境水质。
2. 工业废水处理:适用于不同工业领域的废水处理,例如食品、印染、制药等。
3. 农村生活污水处理:可以应用于农村地区的小型污水处理厂,解决农村生活污水排放问题。
定义与特点反应过程反应原理工作原理适用范围去除固体杂质调节水质水量降低有机物浓度030201预处理生物反应化学反应反应阶段将沉淀下来的污泥回流到反应阶段,以增加微生物量,提高污水处理效果。
沉淀阶段污泥回流泥水分离排放水污泥处理排放阶段反应器的设计应考虑其容积、形状、高度、底部形状、支架和附件等因素,以实现良好的水力性能和稳定性。
反应器一般采用钢结构或钢筋混凝土结构,内部可采用不同的填料或曝气器以实现不同的工艺效果。
反应器是SBR污水处理工艺的核心设备之一,主要作用是进行生物反应。
反应器曝气设备的主要作用是为反应器中的微生物提供氧气,促进微生物的代谢和生长。
曝气设备一般采用空气泵、罗茨风机或离心风机等设备,将空气通过曝气管或曝气盘等装置注入反应器中。
曝气设备应根据工艺需求和反应器大小选择合适的型号和功率,并设置合理的曝气时间和强度。
曝气设备污泥泵的主要作用是将反应器中的污泥抽出,以便进行后续处理或处置。
污泥泵一般采用离心泵、螺杆泵或隔膜泵等类型,其选型应根据反应器的形状、大小和污泥的特性进行选择。
污泥泵的流量和扬程应满足工艺需求,并应设置合适的管路和阀门,以确保污泥的顺利排出。
撇水器的主要作用是将反应器中的水分从污泥中分离出来,以便进行后续处理或排放。
撇水器一般采用堰板式、旋转式或叶片式等类型,其设计应考虑反应器的形状、大小和污泥的特性进行选择。
撇水器的堰板高度、旋转速度或叶片角度等参数应满足工艺需求,以确保水分能够顺利地排出反应器。
高效去除污染物SBR工艺通过在反应器中实现微生物的吸附和降解,能够高效地去除污水中的污染物,包括有机物、氮、磷等。
SBR工艺适用于多种类型的污水,包括生活污水、工业废水和农业废水等,具有广泛的适应性。
SBR工艺可以根据实际需要调整运行方式,例如可以采取间歇运行或连续运行,也可以进行周期性的调节。
SBR工艺采用了高效的反应器,可以在较小的空间内实现污水的处理,从而节省了占地面积。
SBR 污水处理工艺SBR 污水处理工艺1. 简介2. SBR工艺的原理SBR工艺的主要原理是通过在同一个反应器内进行一系列连续的处理步骤,包括进水、搅拌、曝气、静置和出水。
这种周期性的处理方式使得废水可以在同一个反应器内进行有氧和无氧处理,从而达到高效降解污染物的目的。
3. SBR工艺的操作流程SBR工艺的操作流程包括以下几个步骤:3.1 进水,将待处理的污水进入SBR反应器,确保反应器内有足够的水量来进行处理。
3.2 搅拌在进水后,开始进行搅拌步骤,以确保污水中的有机物、悬浮物和其他污染物均匀分布在反应器中。
搅拌时间一般为10-30分钟。
3.3 曝气在搅拌后,启动曝气系统,将空气通过曝气装置导入反应器中。
曝气过程中,氧气使污水中的有机物被微生物降解,产生二氧化碳和水。
3.4 静置在曝气后,关闭曝气系统,进入静置步骤。
静置过程中,污水中的悬浮物逐渐沉淀到反应器底部,形成污泥。
3.5 出水经过静置后,清水从反应器顶部流出,进入下一步处理环节。
从反应器底部排出的污泥可以进行污泥处理。
4. SBR工艺的优点SBR工艺相比传统的污水处理工艺具有以下优点:4.1 灵活性SBR工艺可以根据实际需要进行灵活调整,适应不同水质和水量的处理要求。
4.2 高效性SBR工艺通过周期性的处理方式,使微生物更加充分地降解污染物,提高处理效率。
4.3 强化污泥处理SBR工艺可产生较浓缩的污泥,便于后续处理和利用。
4.4 适合小型污水处理厂SBR工艺不需要大量的设备和占地面积,适合小型污水处理厂的运行。
5.SBR污水处理工艺是一种高效、灵活和适用于小型污水处理厂的处理方法。
其通过连续的操作步骤,将有机物和其他污染物转化为可排放的废水,并产生较浓缩的污泥。
SBR工艺在提高废水处理效率的,也减少了处理成本和空间占用。
SBR工艺有望在污水处理领域发挥更大的作用。
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
SBR具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4) 用地紧张的地方。
5) 对已建连续流污水处理厂的改造等。
6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
污水处理SBR工艺1. 简介污水处理SBR工艺(Sequencing Batch Reactor)是一种基于批次操作的生物处理工艺,广泛应用于城市和工业污水处理中。
该工艺通过控制不同的阶段操作来达到污水的去除有机物和氮磷等污染物的目的。
SBR工艺具有操作简单、适应性强、出水水质稳定等优点,在污水处理中得到了广泛的应用和推广。
2. SBR工艺原理SBR工艺主要包括填料池、曝气池、沉淀池等装置。
其工作流程如下:1. 填料池:主要用于初级沉淀和固液分离,将大颗粒的污染物和悬浮物沉淀到池底,净化水体。
2. 曝气池:通过曝气设备将氧气注入污水中,提供氧气供微生物生长代谢,并加速有机物的氧化分解。
3. 沉淀池:通过控制排水流向,实现沉淀和去除混合液中的污染物,保持污水的水质稳定。
3. SBR工艺优点污水处理SBR工艺相比传统的活性污泥法有着诸多优点,主要包括以下几点:操作灵活:SBR工艺可以根据实际情况对处理过程进行调整和优化,使其适应不同水质和处理要求。
净化效果好:SBR工艺能够有效去除污水中的有机物、氮磷等污染物,出水水质稳定,能够达到一定的回用水标准。
节能环保:SBR工艺采用曝气设备进行氧化分解,相比传统方法更节能环保。
占地面积小:SBR工艺通过设计合理的反应器结构,能够将多个处理单元融合在一起,占地面积小。
4. SBR工艺应用SBR工艺广泛应用于城市污水处理厂、工业废水处理和农村污水处理等领域。
具体应用情况如下:1. 城市污水处理厂:SBR工艺在城市化进程快速发展的今天,成为污水处理的重要工艺之一。
它能够处理具有不同水质和流量的污水,输出的水质稳定,符合排放要求。
2. 工业废水处理:SBR工艺可以适应不同类型的工业废水,能够高效去除废水中的有机物和重金属等污染物,达到排放标准。
3. 农村污水处理:在农村地区,SBR工艺可以用于小型的农村污水处理厂,有效解决农村污水处理问题,提高农村生活环境质量。
5.污水处理SBR工艺作为一种高效、灵活的污水处理方法,具有广泛的应用前景。
序批式活性污泥法(SBR)工艺介绍1、SBR工艺介绍序批式活性污泥法,又称间歇式活性污泥法。
污水在反应池中按序列、间歇进入每个反应工序,即流入、反应、沉淀、排放和闲置五个工序。
2、SBR的工作过程SBR工作过程是:在较短的时间内把污水加入到反应器中,并在反应器充满水后开始曝气,污水里的有机物通过生物降解达到排故要求后停止曝气,沉淀一定时间将上清液排出。
上述过程可概括为:短时间进水-曝气反应-沉淀-短时间排水-进入下个工作周期,也可称为进水阶段-加入底物、反应阶段-底物降解、沉淀阶段-固液分离、排水阶段-排上清液和待机阶段-活性恢复五个阶段。
(1)进水阶段进水阶段指从向反应器开始进水至到达反应器最大容积时的一段时间。
进水阶段所用时间需根据实际排水情况和设备条件确定。
在进水阶段,曝气池在一定程度上起到均衡污水水质、水量的作用,因而,阳R对水质、水量的波动有一定的适应性。
在此期间可分为三种情况:曝气(好氧反应)、搅拌(厌氧反应)及静置。
在曝气的情况下有机物在进水过程中已经开始被大量氧化,在搅拌的情况下则抑制好氧反应。
对应这三种方式就是非限制曝气、半限制曝气和限制曝气。
运行时可根据不同微生物的生长特点、废水的特性和要达到的处理目标,采用非限制曝气、半限制曝气和限制曝气方式进水。
通过控制进水阶段的环境,就实现了在反应器不变的情况下完成多种处理功能。
而连续流中由于各构筑物和水泵的大小规格已定,改变反应时间和反应条件是困难的。
(2)反应阶段是SBR主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。
根据污水处理的要求的不同,如仅去陈有机碳或同时脱氯陈磷等,可调整相应的技术参数,并可根据原水水质及排放标准具体情况确定反应阶段的时间及是否采用连续曝气的方式。
(3)沉淀阶段沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。
停止曝气和搅拌,使混合液处于静止状态,完成泥水分离,静态沉淀的效果良好。
经过沉淀后分离出的上清液即可排放,沉淀的目的是固液分离,污泥絮体和上清液分离。
sbr污水处理工艺流程SBR(Sequential Batch Reactor)污水处理工艺是一种常见的生物处理工艺,可以有效地处理城市污水和工业废水。
下面是对SBR污水处理工艺流程的一个简要介绍,主要分为六个步骤。
1. 水解池:首先,进入的原水进入水解池。
在水解池中,有机物质会通过微生物的作用被分解成可溶性有机物和氨氮。
2. 好氧反应:接下来,水从水解池中流入好氧反应池。
在好氧反应中,溶解氧通过气体进一步氧化和降解有机物质。
此过程中,废水中的有机物质会被细菌吸附降解,并氧化为二氧化碳和水。
3. 混合器:混合器是将水混合均匀的设备,用于确保水中的有机物质均匀分布在反应器中。
4. 沉淀池:经过好氧反应的水进入沉淀池。
在沉淀池中,由于水的流速减缓,使得悬浮物沉降至底部。
悬浮物的沉淀过程中,净化水体逐渐分离出来。
5. 排放和吸附:分离出的净化水经过管道排放出去。
同时,可以使用吸附剂(如活性炭)去除水中的余氯、异味和有机物的残余。
此外,也可以加入混凝剂来进一步净化水质。
6. 水中氨氮的处理:在整个过程中,氨氮一直还存在于废水中。
为了去除氨氮,可以采用生物脱氮工艺或化学沉淀工艺。
生物脱氮工艺通过在反应器中增加亚硝酸盐和硝酸盐的细菌来实现氨氮的氧化和去除。
化学沉淀工艺则通过在水中加入化学剂来与氨氮反应生成沉淀物,然后通过沉淀过程去除氨氮。
以上是SBR污水处理工艺的主要流程,通过这些步骤可以有效地去除废水中的有机物质、悬浮物和氨氮等污染物质,达到处理废水的净化效果。
该工艺流程在实际应用中仍需根据具体情况进行调整和改进,以适应不同废水的处理需求。
设计SBR工艺流程SBR工艺流程是一种适用于污水处理的生物处理技术,可以有效地去除废水中的有机物质和氮、磷等营养物质。
SBR是Sequential Batch Reactor(顺序批处理反应器)的缩写,意味着废水处理的每一个阶段都按照一定的顺序进行。
SBR工艺流程通常包括以下几个步骤:1. 初始注水:系统首先将废水注入反应器。
在这个阶段,废水中的有机物质开始与反应器中的生物体相互作用,生物体会利用有机物质进行酸化和氧化反应。
2. 曝气与昼夜工作:曝气是指通过注入氧气或通过机械方式使废水中的溶解氧增加,以促进生物体的生长和代谢活动。
废水处理器通常会设定白天和黑夜的工作时间,以模拟自然环境中的日夜变化。
3. 混合与沉淀:废水中的生物体和污染物会与反应器中的混合物一起进行混合。
在混合过程中,生物体通过吸附和沉淀的方式去除水中的污染物和悬浮物,使水中的悬浮物得以沉淀。
4. 抽排与消毒:在废水处理的最后阶段,经过生物处理后的废水会被抽出反应器,并进行进一步的消毒处理。
消毒处理可以有效地杀灭水中的细菌和其他微生物,保证废水的质量符合排放标准。
SBR工艺流程有许多优势。
首先,SBR工艺流程具有较小的处理容积需求,可以适应不同规模的废水处理。
其次,SBR系统具有良好的适应性,即使在负荷波动或负荷峰值情况下,其处理效果也能保持较好的稳定性。
此外,SBR工艺还可以实现自动化和远程控制,提高了废水处理的效率和运行的安全性。
然而,SBR工艺也存在一些挑战。
首先,SBR系统的设备和运营成本较高,需要较大的投资。
其次,SBR系统的运行和控制较为复杂,需要有经验的工程师进行操作和维护。
此外,SBR系统也对气候变化和温度波动较为敏感,需要根据实际情况进行调整和优化。
总的来说,SBR工艺流程是一种可行且有效的废水处理技术。
通过按照一定的顺序进行处理,可以去除包括有机物质、氮和磷在内的废水中的污染物。
然而,在实际应用过程中,还需要考虑到具体的工程和环境因素,并结合实际情况进行调整和优化。
污水处理SBR工艺简介: SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4) 用地紧张的地方。
5) 对已建连续流污水处理厂的改造等。
6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
SBR设计要点、主要参数SBR设计要点1、运行周期(T)的确定SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。
充水时间(tv)应有一个最优值。
如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。
当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。
充水时间一般取1~4h。
反应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。
对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。
一般在2~8h。
沉淀排水时间(tS+D)一般按2~4h设计。
闲置时间(tE)一般按2h设计。
一个周期所需时间tC≥tR﹢tS﹢tD周期数 n﹦24/tC2、反应池容积的计算假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n·N。
各反应池的容积为:V:各反应池的容量1/m:排出比n:周期数(周期/d)N:每一系列的反应池数量q:每一系列的污水进水量(设计最大日污水量)(m3/d)3、曝气系统序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。
在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。
常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。
4、排水系统⑴上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。
⑵为预防上清液排出装置的故障,应设置事故用排水装置。
⑶在上清液排出装置中,应设有防浮渣流出的机构。
序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征:1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。
(定量排水)2) 为获得分离后清澄的处理水,集水机构应尽量*近水面,并可随上清液排出后的水位变化而进行排水。
(追随水位的性能)3) 排水及停止排水的动作应平稳进行,动作准确,持久可*。
(可*性)排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。
5、排泥设备设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000在高负荷运行(0.1~0.4 kg-BOD/kg-ss·d)时污泥产量以每流入1 kgSS 产生1 kg计算,在低负荷运行(0.03~0.1 kg-BOD/kg-ss·d)时以每流入1 kgSS 产生0.75 kg计算。
在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。
由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
SBR设计主要参数序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。
用于设施设计的设计参数应以下值为准:项目参数BOD-SS负荷(kg-BOD/kg-ss·d) 0.03~0.4MLSS(mg/l) 1500~5000排出比(1/m) 1/2~1/6安全高度ε(cm)(活性污泥界面以上的最小水深) 50以上序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。
序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下:QS:污水进水量(m3/d)CS:进水的平均BOD5(mg/l)CA:曝气池内混合液平均MLSS浓度(mg/l)V:曝气池容积e:曝气时间比 e=n·TA/24n:周期数 TA:一个周期的曝气时间序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。
进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。
在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。
在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。
因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。
不同负荷条件下的特征有机物负荷条件(进水条件)高负荷运行低负荷运行间歇进水间歇进水、连续运行条件 BOD-SS负荷(kg-BOD/kg-ss·d) 0.1~0.4 0.03~0.1周期数大(3~4)小(2~3)排出比大小处理特性有机物去除处理水BOD<20mg/l 去除率比较高脱氮较低高脱磷高较低污泥产量多少维护管理抗负荷变化性能比低负荷差对负荷变化的适应性强,运行的灵活性强用地面积反应池容积小,省地反应池容积较大适用范围能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施适用于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施SBR设计需特别注意的问题(一)主要设施与设备1、设施的组成本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。
为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。
但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池反应池的形式为完全混合型,反应池十分紧凑,占地很少。
形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。
反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。
②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。
反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。
②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。
反应池的数量,考虑清洗和检修等情况,原则上设2个以上。
在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。
目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。
这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。
缺点操作不方便,排水容易带泥;⑶专用设备滗水器。
滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。
理想的排水装置应满足以下几个条件:①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。
在设定一个周期的排水时间时,必须注意以下项目:①上清液排出装置的溢流负荷——确定需要的设备数量;②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;④在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。
SBR工艺的需氧与供氧SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。
由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。