【新整理】:人教版九年级数学全册知识点
- 格式:doc
- 大小:457.50 KB
- 文档页数:21
九年级人教版数学全册知识点一、代数1. 代数式的定义和基本性质2. 一元一次方程及其应用3. 一元一次不等式及其应用4. 线性函数及其应用5. 平方根与二次方程6. 平方根与二次函数7. 分式与分式方程8. 速度与比例二、几何1. 线段比例及其性质2. 相似三角形及其性质3. 直角三角形中的三角函数4. 平面直角坐标系5. 二次函数的图像与性质6. 平面向量三、数据统计与概率1. 统计与统计图2. 等可能事件与概率3. 条件概率与事件独立性4. 排列与组合5. 正态分布与抽样调查四、实数1. 整式的加减运算2. 整式的乘法和因式分解3. 分式的加减运算4. 分式的乘法和除法5. 二次根式的性质和计算五、函数与方程1. 一元二次方程2. 一元二次函数3. 二次函数与二次方程4. 一元二次不等式5. 一元一次不等式六、立体几何与图形1. 空间几何图形2. 直线与点的位置关系3. 平面与空间直线的位置关系4. 空间图形的投影5. 立体图形的计算七、三角函数1. 任意角与弧度制2. 三角函数及其图像性质3. 三角函数的诱导公式4. 三角函数的图像变换5. 三角恒等变换八、二次函数1. 二次函数的定义与性质2. 二次函数的函数图像3. 二次函数的最值与判别式4. 直线与二次函数的交点5. 二次函数的应用九、统计1. 统计调查与参数估计2. 统计图的应用与分析3. 数据的分类与分组4. 数据的比较与分析5. 综合统计应用题以上就是九年级人教版数学全册的知识点概述。
在这些知识点中,我们将学习代数、几何、数据统计与概率、实数、函数与方程、立体几何与图形、三角函数二次函数和统计等内容。
通过系统的学习和练习,我们将能够掌握九年级数学的核心知识,提高数学解题和分析问题的能力。
希望同学们能够认真学习,并在实践中不断提高自己的数学水平!。
人教版九年级全册数学知识点总结1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如, , ..........都不是最简二次根式,而,,5 , 都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2 , =3 ,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+ 与a- , - 与+ ,互为有理化因式。
二次根式的性质:1. (a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。
21.2 二次根式的乘除1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
可编辑修改精选全文完整版人教版初三数学知识点归纳整理学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。
任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级上册数学复习资料考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算考核要求(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表考核要求:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
最新人教版九年级数学上册知识点总结全套数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是指等号两边都是只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
注意以下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax2+ bx + c = 0(a≠0)。
其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三:一元二次方程的根一元二次方程的根是指使方程左右两边相等的未知数的值。
方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程21.2.1 配方法知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a。
2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:①把常数项移到等号的右边;②方程两边都除以二次项系数;③方程两边都加上一次项系数一半的平方,把左边配成完全平方式;④若等号右边为非负数,直接开平方求出方程的解。
21.2.2 公式法知识点一:公式法解一元二次方程一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=b±b2-4ac2a,这个公式叫做一元二次方程的求根公式。
九年级知识点第一单元 二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab (4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
新人教版九年级数学下册知识点总结一、代数运算1.1 代数式的加减法•同类项的加减法•类似于消元法的方法1.2 代数式的乘法•求和乘积公式的应用•二项式定理及其应用1.3 代数式的除法•解代数式的除法•解代数式的分式1.4 方程与方程组•一次方程与一元一次方程组•二次方程的实数解与复数解•对数与指数方程1.5 不等式•一元一次不等式•一元二次不等式•绝对值不等式二、函数初步2.1 函数的概念•种类和性质•同一函数的多种表达式2.2 函数的图像•根据函数式绘制图像•通过给定图像识别函数2.3 函数的初步性质•奇偶性•单调性•函数的最值、零点和交点2.4 一次函数•一次函数的定义和性质•一次函数的图像2.5 二次函数•二次函数的定义和性质•二次函数的图像、顶点、轴、对称性和解析式三、几何初步3.1 相似与全等•相似的判定和性质•全等的判定和性质3.2 三角形•三角形的基本性质•三角形的分类和判定3.3 平面图形的面积与体积•基本图形面积的计算•三棱锥、三棱柱、正棱锥、正棱柱、正方体、正六棱体的侧面积和体积3.4 内角和与逆定理•顶角平分线定理•中线定理•垂线定理3.5 圆•圆的周长•圆的面积•切线与割线四、统计初步4.1 数据汇总与整理•频率表的制作•条形图和折线图的绘制4.2 统计量•平均数、中位数、众数的概念•均值与平均数•离差与标准差4.3 概率•随机事件、样本空间与事件的概念•概率的概念和公式•寻找概率的方法五、解析几何初步5.1 直线的方程•一般式、截距式、斜截式等•方向角和斜率的概念5.2 圆的方程•标准式和一般式•圆的半径、直径等5.3 平面直角坐标系•坐标系的引入•坐标系的应用5.4 向量初步•向量的概念和运算•向量与坐标和距离的关系以上为新人教版九年级数学下册的知识点总结,本文档仅供参考和复习使用,请谨慎参考。
初三数学知识点全总结人教初三数学知识点总结(人教版)一、整数整数是由正整数、负整数和0组成的集合。
整数的四则运算(加法、减法、乘法、除法)以及整数的比较运算。
二、分数分数是表示整体中的一部分的数。
分数的基本概念、分数的加法、减法、乘法和除法运算。
三、小数小数是有整数部分和小数部分的数。
小数的基本概念、小数的读法、小数的加法、减法、乘法和除法运算。
四、代数1. 代数式的基本概念和代数式的运算法则;2. 一元一次方程式的解法;3. 一次关系;4. 一元一次方程式的应用:字母代数字题、几何问题。
五、平方根与三次方根1. 平方根的概念和性质;2. 三次方根的概念和性质。
六、比例与相似1. 比例的概念和性质;2. 相似的概念和性质。
七、图形的认识1. 角的概念和性质;2. 三角形的概念和性质;3. 梯形和平行四边形的概念和性质。
八、图形的运动1. 平移;2. 旋转;3. 对称;4. 识字母的对称轴;5. 线段的中垂线。
九、运算的顺序运算符号“+”、“-”、“×”、“÷”的顺序;括号的应用。
十、比1. 百分数的概念及运用;2. 中学生应学习的几种常见比。
十一、数据的统计和分析1. 统计调查和统计资料的整理与展示;2. 平均数、中位数、众数的概念。
以上是初三数学知识点的总结,希望对你的学习有所帮助。
如有其他问题,欢迎继续提问。
初三数学知识点全总结人教(二):1. 整数的概念和运算- 整数的概念及表示方法- 整数的加减乘除运算- 整数的绝对值和相反数- 整数的大小比较及性质- 整数的混合运算2. 小数的概念和运算- 小数的概念及表示方法- 小数的加减乘除运算- 小数的大小比较及性质- 小数的混合运算3. 分数的概念和运算- 分数的概念及表示方法- 分数的基本性质- 分数的加减乘除运算- 分数与整数的关系- 分数的混合运算4. 百分数的概念和应用- 百分数的概念及表示方法- 百分数与分数、小数的转换- 百分数的加减乘除运算- 百分数在实际生活中的应用5. 有理数的概念和运算- 有理数的概念及表示方法- 有理数的加减乘除运算- 有理数的大小比较及性质- 有理数的混合运算6. 代数式的概念和运算- 代数式的概念及基本性质- 同类项合并与合并同类项- 代数式的加减乘除运算- 代数式的因式分解与乘法公式7. 一元一次方程- 一元一次方程的概念和基本性质- 解一元一次方程的基本方法- 一元一次方程在实际生活中的应用8. 比例与相似- 比与比例的概念和性质- 比例的化简和计算- 相似的概念和性质- 判断图形是否相似的条件及应用9. 数据的概念和统计- 数据的收集和处理- 数据的图表表示和分析- 数据的平均数和中位数10. 三角形的性质和计算- 三角形的概念和性质- 三角形内角和定理及外角和定理- 特殊三角形的性质与判定- 三角形的面积及计算11. 直线与角的相关知识- 直线的概念和性质- 角的概念和性质- 直线与角的关系及计算- 分角线和对顶角的性质和应用12. 不等式的概念和解法- 不等式的概念和性质- 解一元一次不等式的基本方法- 解一元一次不等式组的方法13. 平面图形的性质和计算- 点、线、面的概念和性质- 四边形、多边形的性质和判定- 圆的概念和性质- 平行线和垂直线的性质和证明14. 空间几何的性质和计算- 空间几何的相关概念和性质- 空间图形的表达和计算- 空间几何的投影和旋转15. 算术和几何平均值的求法和性质- 算术平均值的概念和计算- 几何平均值的概念和计算- 平均值的性质及应用以上是初三数学的主要知识点归纳总结。
九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)21.2 降次——解一元二次方程1.一元二次方程的解法(1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0),b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解. (2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根.(3)配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x ⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++,即2)3x (2=+,从而得解. 注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.(2)解一元二次方程时,一般不用此法,掌握这种配方法是重点.(3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++(a ≠0)的形式;②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号);③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义);④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根.△=0⇔方程有两个相等的实数根.△<0⇔方程没有实数根.判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题.3.韦达定理及其应用定理:如果方程0c bx ax 2=++(a ≠0)的两个根是21x x ,,那么a c x x ab x x 2121=⋅-=+,. 当a =1时,c x x b x x 2121=⋅-=+,.应用:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程;(4)已知两数和与积求两数.4.一元二次方程的应用(1)面积问题;(2)数字问题;(3)平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系(包括隐含的);②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.第二十二章二次函数22.1二次函数及其图像二次函数概念一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
二次函数图像是轴对称图形。
对称轴为直线,顶点坐标,交点式为(仅限于与x轴有交点和的抛物线),与x轴的交点坐标是和。
注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
二次函数公式大全二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2aIII.二次函数的图象在平面直角坐标系中作出二次函数y=x??的图象,可以看出,二次函数的图象是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b²;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²;+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
例1,二次函数配方为的形式,则() 用函数观点看一元二次方程1. 如果抛物线y ax bx c =++2与x 轴有公共点,公共点的横坐标是x 0,那么当x x =0时,函数的值是0,因此x x =0就是方程ax bx c 20++=的一个根。
2. 二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
第二十三章 旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(图形的旋转本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。
二、知识要点1、旋转:将一个图形绕着某点O 转动一个角度的变换叫做旋转。
其中,O 叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质① 旋转后的图形与原图形全等② 对应线段与O 形成的角叫做旋转角③ 各旋转角都相等3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质① 平移后的图形与原图形全等② 两个图形的对应边连线的线段平行相等(等于平行距离)③ 各组对应线段平行且相等5、中心对称与中心对称图形①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。
其中,这条轴叫做对称轴。
注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换(1)、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)(2)、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)(3)、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)(4)、关于直线y=x对称两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线y=x的对称点为P'(y,x)(5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(x,y)关于直线y=x 的对称点为P'(-y,-x)注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。