基于塞尔维斯特准则的二次型标量函数的正定性判断
- 格式:doc
- 大小:118.15 KB
- 文档页数:8
李雅普诺夫稳定性方法李雅普诺夫第一方法又称间接法,它是通过系统状态方程的解来判断系统的稳定性。
如果其解随时间而收敛,则系统稳定;如果其解随时间而发散,则系统不稳定。
李雅普诺夫第二方法又称直接法,它不通过系统状态方程的解来判断系统的稳定性,而是借助李雅普诺夫函数对稳定性作出判断,是从广义能量的观点进行稳定性分析的。
例如有阻尼的振动系统能量连续减小(总能量对时间的导数是负定的),系统会逐渐停止在平衡状态,系统是稳定的。
由于李雅普诺夫第一方法求解通常很烦琐,因此李雅普诺夫第二方法获得更广泛的应用。
李雅普诺夫第二方法的难点在于寻找李雅普诺夫函数。
迄今为止,尚没有通用于一切系统的构造李雅普诺夫函数的方法。
对于系统[]t ,f x x= ,平衡状态为,0e =x 满足()0f e =x 。
如果存在一个标量函数()x V ,它满足()x V 对所有x 都具有连续的一阶偏导数;同时满足()x V 是正定的;则 (1)若()x V 沿状态轨迹方向计算的时间导数()dt /)(dV Vx x = 为半负定,则平衡状态稳定;(2) 若()x V 为负定,或虽然()x V 为半负定,但对任意初始状态不恒为零,则平衡状态渐近稳定。
进而当∞→∞→)(V x x 时,,则系统大范围渐近稳定;(3) 若()x V为正定,则平衡状态不稳定。
判断二次型x x x P )(V τ=的正定性可由赛尔维斯特(Sylvester )准则来确定,即正定(记作V(x)>0)的充要条件为P 的所有主子行列式为正。
如果P 的所有主子行列式为非负,为正半定(记作V(x)≥0);如果-V(x)为正定,则V(x)为负定(记作V(x)<0);如果-V(x)为正半定,则V(x)为负半定(记作V(x)≤0)。
例:[]正定。
则)(V 01121412110,041110,010x x x 1121412110x x x )(V 321321x x >---->>----=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ 例:)x x (x x x )x x (x x x 22212122221121+--=+-=(0,0)是唯一的平衡状态。
第四章系统稳定性及其李雅普诺夫稳定4-1 稳定性一般概念对于一个实际的控制系统,其工作的稳定性无疑是一个极其重要的问题,因为一个不稳定的系统在实际应用中是很难有效地发挥作用的。
从直观上看,系统的稳定性就是一个处于稳态的系统,在某一干扰信号的作用下,其状态偏离了原有平衡位置,如果该系统是稳定的,那么当干扰取消后有限的时间内,系统会在自身作用下回到平衡状态;反之若系统不稳定,则系统永远不会回到原来的平衡位置。
系统的稳定一般有外部稳定和内部稳定两种。
外部稳定又称作输出稳定,也就是当系统在干扰取消后,在一定时间内,其输出会恢复到原来的稳态输出。
输出稳定有时描述为系统的BIBO稳定,即有限的系统输入只能产生有限的系统输出。
系统内部稳定主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响。
当扰动信号取消后,系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。
在经典控制论中,研究对象都是用高阶微分方程或传递函数描述的单输入单输出(SISO)系统,反映的仅是输入输出的关系,不会涉及系统内部的状态。
因此经典控制论中只讨论系统的输出稳定问题。
系统的稳定性是系统本身的特性,与系统的外部输入(控制)无关。
在经典控制论中,我们通过研究线性定常系统的特征根的情况来判断系统的输出稳定性:如果系统的特征根都有负的实部(即都在复平面的左部),则系统输出稳定。
对于n阶线性连续系统,其特征方程为:…………………………(4-1)当n≥4时,要求出其所有特征根是非常困难的,从而要想通过解出高阶系统的特征根来判别系统稳定性也是不现实的。
所以1877年劳斯(Routh)和1895年霍尔维茨(Hurwitz)分别提出了有名的劳斯-霍尔维茨稳定判据,它可以通过线性定常系统特征方程的系数的简单代数运算来判别系统输出稳定性,而不必求出各个特征根。
有关Routh-Hurwitz判据的详细内容请参阅有关经典控制论教材。
当系统不是线性定常系统时,或者对于系统内部状态稳定问题,经典控制论中的方法就不好解决了,这就需要下面介绍的李雅普诺夫(Lyapunov)稳定性的理论。