正定二次型与正定矩阵
- 格式:ppt
- 大小:451.50 KB
- 文档页数:20
5.4 正定矩阵 5.4.1 正定矩阵[1] 二次型的分类n 个变数的二次型∑===nj i T j iij n x A x x x ax x q 1,1),,( ,其实就是定义在nR 的一个二次齐次函数,对nR 的每个特定向量q x ,0对应一个函数值)(0x q ,依据)(x q 值的符号,在教材184页上给出了二次型的分类定义:1.正定二次型。
若对一切nR x ∈,当0)(0>=⇒≠Ax x x q x T 称二次型)(x q 正定。
显然,正定二次型也就是函数值定正的二次型(当然有唯一的例外,0=x 时,0=q )。
2.正半定(或半正定)二次型。
若对一切nR x ∈,皆有0)(≥=Ax x x q T ,且至少有一 00≠x 能使0)(0=x q .3.负定。
对二次型Ax x x q T =)(,当(-q )为正定时,称q 为负定二次型。
4.负半定(或半负定)。
对二次型Ax x x q T =)(,当(-q )为正半定时,称q 为负半定二次型。
5.不定二次型。
若二次型Ax x q T =既能取正值,又能取负值,称为不定二次型。
容易明白,对标准形的二次型(以下给出的均为充要条件)。
若系数全正为正定二次型;若系数全为非负,且至少有一为0,则为正半定二次型; 若系数全负为负定二次型;若系数全为非正,且至少有一为0,则为负半定二次型; 若系数有正、有负,则为不定二次型。
对于不是标准形的二次型,为确定其类型,可通过化成标准形,并依据惯性律而作出判断。
例19 设n a a a ,,,21 是n 个实数,问它们满足什么条件时,二次型212322221121)()()(),,,(x a x x a x x a x x x x q n n n ++++++= 是正定二次型。
解 乍一看,这是n 个带正系数1的平方项之和,应明显是正定的。
但与定义一对照,发现这并非是二次型的标准形,每一项都是线性型而非单独变换的平方。
5..4 正定二次型一、定义:假设12(,)(),T n f x x x f X X AX == 为实二次型,TA A =,12(,)T n X x x x O =≠ ,则1、如果12(,)()0T n f x x x f X X AX ==> ,则称二次型12(,)()n f x x x f X = 为正定二次型,矩阵A 称为正定矩阵。
2、如果12(,)()0T n f x x x f X X AX ==< ,则称二次型12(,)()n f x x x f X = 为负定二次型,矩阵A 称为负定矩阵。
3、如果12(,)()0T n f x x x f X X AX ==≥ ,则称二次型12(,)()n f x x x f X = 为半正定二次型,矩阵A 称为半正定矩阵。
4、如果12(,)()0T n f x x x f X X AX ==≤ ,则称二次型12(,)()n f x x x f X = 为半负定二次型,矩阵A 称为半负定矩阵。
二、判定定理:1、二次型12(,)n f x x x 正定A ⇔为正定矩阵12(,)()0T n f x x x f X X AX ⇔==> 12(,)n f x x x ⇔ 的标准型2221122n n d y d y d y +++ 中的系数0,1,2i d i n >= 12(,)n f x x x ⇔ 的正惯性指数等于n 12(,)n f x x x ⇔ 的规范性为22212n y y y +++ A ⇔合同于单位矩阵E ⇔存在可逆矩阵C 使得TA C C =A ⇔的顺序主子式全大于零12(,)n f x x x ⇔- 负定。
证明:(1)二次型2221122n nd x d x d x +++ 正定0,1,2i d i n ⇔>= 事实上,如果0,1,2i d i n >= ,则对任意的12(,)n x x x O ≠ , 22211220n n d x d x d x +++> ,即2221122n nd x d x d x +++ 正定。