【高中数学竞赛专题大全】 竞赛专题7 解析几何(50题竞赛真题强化训练)解析版+原卷版
- 格式:doc
- 大小:4.85 MB
- 文档页数:55
高中数学联赛(预赛题锦)解析几何板块(天津卷2)2.设,B C 是定点且都不在平面π上,动点A 在平面π上且1in 2s ABC ∠=.那么,A 点的轨迹是( )(A )椭圆 (B )抛物线 (C )双曲线 (D )以上皆有可能(天津卷8)8.设M 是椭圆22143x y +=上的动点,又设点F 和点P 的坐标分别是()1,0和()3,1,则2MF MP -的最大值是__________.(天津卷15)在平面直角坐标系中,设,,A B C 是曲线1xy =上三个不同的点,且,,D E F 分别是,,BC CA AB 的中点.求证:DEF ∆的外接圆经过原点O .(河北卷6)6.圆O 的方程为221xy +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .(河北卷12)12. (本题满分14分)在椭圆中定义:过焦点且垂直于长轴的直线被椭圆截得的弦,叫做椭圆的通径.如图,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,其离心率为12,通径长为3.(Ⅰ)求椭圆的方程;(Ⅱ)过1F 的直线交椭圆于A B 、两点,12I I 、分别为1212F BF F AF ∆∆、的内心,延长2BF 交椭圆于点M .(ⅰ)求四边形1221F I F I 与2AF B ∆的面积的比值p ; (ⅱ)在x 轴上是否存在定点C ,使CM CB ⋅为常数? 若存在,求出点C 的坐标;若不存在,说明理由.(山西卷2)若自椭圆中心到焦点,长轴顶点,以及到准线的距离之长可以组成一个直角三角形。
则该椭圆的离心率是(吉林卷8)8.椭圆22221x y a b +=(0)a b >>的四个顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆半径等于椭圆焦距的66,则椭圆的离心率为 ______.1F M 2F 1I BxA2I y o(山东卷12)12.(本小题满分15分)已知椭圆22143x y +=的内接平行四边形的一组对边分别过椭圆的焦点12,F F ,求该平行四边形面积的最大值.(福建卷12)12.已知A 、B为抛物线C :24y x =上的两个动点,点A 在第一象限,点B 在第四象限。
备战2021年高中数学联赛之历年真题汇编(1981-2020)专题17平面解析几何C 辑历年联赛真题汇编1.【2020高中数学联赛A 卷(第01试)】在平面直角坐标系中,点A ,B ,C 在双曲线xy =1上,满足△ABC 为等腰直角三角形.求△ABC 的面积的最小值. 【答案】3√3【解析】不妨设等腰直角△ABC 的顶点A,B,C 逆时针排列,A 为直角顶点. 设AB ⃗⃗⃗⃗⃗ =(s,t),则AC⃗⃗⃗⃗⃗ =(−t,s)且△ABC 的面积S △ABC =12|AB ⃗⃗⃗⃗⃗ |2=s 2+t 22.注意到A 在双曲线xy =1上,设A(a,1a),则B(a +s,1a+t), C(a −t,1a+s).由B,C 在双曲线xy =1上,可知(a +s)(1a+t)=(a −t)(1a+s)=1,这等价于:s a+at =−st① −ta+as =st .②由①、②相加,得s−t a+a(t +s)=0,即a 2=t−s t+s. ③由①、②相乘,并利用③,得−s 2t 2=(s a +at)(−t a +as)=(a 2−1a 2)st +s 2−t 2=(t −s t +s −t +s t −s ]⋅st +s 2−t 2=4st s 2−t2⋅st +s 2−t 2 =(s 2+t 2)2s 2−t 2.所以由基本不等式得:(s 2+t 2)4=−s 2t 2(s 2−t 2)2=14⋅2s 2t 2⋅2s 2t 2⋅(s 2−t 2) ⩽14⋅(2s 2t 2+2s 2t 2+(s 2−t 2)23]3=(s 2+t 2)6108,④故s 2+t 2⩾√108=6√3.以下取一组满足条件的实数(s,t,a),使得s 2+t 2=6√3(进而由s,t,a 可确定一个满足条件的△ABC ,使得S △ABC =s 2+t 22=3√3).考虑④的取等条件,有2s 2t 2=(s 2−t 2)2,即s 2t 2=2±√3.不妨要求0<s <t ,结合s 2+t 2=6√3,得s =√3(√3−1), t =√3(√3+1). 由①知a <0,故由③得a =−√t−s t+s,其中t =√√3+1√3−1=√3+1√2,从而有a =−√√3+1−√2√3+1+√2.综上, △ABC 的面积的最小值为3√3.2.【2020高中数学联赛B 卷(第01试)】在椭圆Γ中,A 为长轴的一个端点,B 为短轴的一个端点, F 1,F 2为两个焦点.若AF 1⃗⃗⃗⃗⃗⃗⃗ ⋅AF 2⃗⃗⃗⃗⃗⃗⃗ +BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求tan∠ABF 1⋅tan∠ABF 2的值. 【答案】−15【解析】由对称性,设椭圆Γ的方程为x 2a2+y 2b 2=1(a >b >0),A(a,0),B(0,b), F 1(−c,0),F 2(c,0),其中c =√a 2−b 2.由条件知AF 1⃗⃗⃗⃗⃗⃗⃗ ⋅AF 2⃗⃗⃗⃗⃗⃗⃗ +BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BF 2⃗⃗⃗⃗⃗⃗⃗ =(−c −a)(c −a)+(−c 2+b 2)=a 2+b 2−2c 2=0.所以a 2+b 2−2c 2=−a 2+3b 2=0,a =√3b,c =√2b . 记O 为坐标原点,则tan∠ABO =a b=√3, tan∠OBF 1=tan∠OBF 2=cb=√2.所以tan∠ABF 1tan∠ABF 2=tan(∠ABO +∠OBF 1)⋅tan(∠ABO −∠OBF 1) =√3+√21−√3⋅√2√3−√21+√3⋅√2=−15.3.【2019高中数学联赛A 卷(第01试)】在平面直角坐标系xOy 中,圆Ω与抛物线Γ:y 2=4x 恰有一个公共点,且圆Ω与x 轴相切于Γ的焦点F .求圆Ω的半径. 【答案】4√39【解析】易知的焦点F 的坐标为(1,0).设圆的半径为r (r >0).由对称性,不妨设Ω在x 轴上方与x 轴相切于点F ,故Ω的方程为(x −1)2+(y −r)2=r 2. ①将x =y 24代入①并化简,得(y 24−1)2+y 2−2ry =0.显然y >0,故r =12y[(y 24−1)2+y 2]=(y 2+4)232y②根据条件,②恰有一个正数解y ,该y 值对应Ω与Γ的唯一公共点. 考虑f(y)=(y 2+4)232y(y >0)的最小值.由平均值不等式知y 2+4=y 2+43+43+43⩾4√y 2⋅(43)34,从而f(y)⩾132y⋅16√y 2⋅(43)3=4√39.当且仅当y 2=43,即y =2√33时,f (y )取到最小值4√39.由②有解可知r ⩾4√39.又假如r >4√39,因f (y )随y 连续变化,且y →0+及y →+∞时,f (y )均可任意大,故②在(0,2√33)及(2√33,+∞)上均有解,与解的唯一性矛盾.综上,仅有r =4√39满足条件(此时(13,2√33)是Ω与Γ的唯一公共点).4.【2019高中数学联赛B 卷(第01试)】在椭圆中,F 为一个焦点,A 、B 为两个顶点若|F A |=3,|FB|=2,求AB 的所有可能值. 【答案】答案见解析【解析】不妨设平面直角坐标系中椭圆Γ的标准方程为x 2a2+y 2b 2=1(a >b >0),并记c =√a 2−b 2.由对称性,可设F 为Γ的右焦点.易知F 到Γ的左顶点的距离为a +c ,到右顶点的距离为a -c ,到上下顶点的距离均为a .分以下情况讨论: (1)A 、B 分别为左、右顶点.此时a +c =3,a -c =2,故|AB|=2a =5(相应地,b 2=(a +c )(a -c )=6,Γ的方程为4x 225+y 26=1).(2)A 为左顶点,B 为上顶点或下顶点.此时a +c =3,a =2,故c =1,进而b 2=a 2−c 2=3, 所以|AB|=√a 2+b 2=√7(相应Γ的方程为x 24+y 23=1).(3)A 为上顶点或下顶点,B 为右顶点.此时a =3,a -c =2,故c =1,进而b 2=a 2−c 2=8, 所以|AB|=√a 2+b 2=√17(相应Γ的方程为x 29+y 28=1).综上可知,|AB |的所有可能值为5,√7,√17.5.【2018高中数学联赛B 卷(第01试)】如图所示,在平面直角坐标系xOy 中,A 、B 与C 、D 分别是椭圆Γ:x 2a2+y 2b 2=1(a >b >0)的左、右顶点与上、下顶点.设P ,Q 是Γ上且位于第一象限的两点,满足OQ ∥AP ,M是线段AP 的中点,射线OM 与椭圆交于点R .证明:线段OQ ,OR ,BC 能构成一个直角三角形. 【答案】证明见解析【解析】设点P 坐标为(x 0,y 0).由于OQ ⃗⃗⃗⃗⃗⃗ //AP ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ;OR ⃗⃗⃗⃗⃗ //OM ⃗⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ =12(OP ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ),故存在实数λ、μ,使得OQ ⃗⃗⃗⃗⃗⃗ =λ(OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),OR ⃗⃗⃗⃗⃗ =μ(OP⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ). 此时点Q 、R 的坐标可分别表示是(λ(x 0+a ),λy 0),(μ(x 0−a ),μy 0). 由于点Q 、R 都在椭圆上,所以λ2((x 0+a )2a 2+y 02b2)=μ2((x 0−a )2a 2+y 02b 2)=1.结合x 02a2+y 02b 2=1知,上式可化为λ2(2+2x 0a)=μ2(2−2x 0a)=1,解得λ2=a2(a+x 0),μ2=a2(a−x 0),因此|OQ|2+|OR|2=λ2((x 0+a )2+y 02)+μ2((x 0−a )2+y 02)=a 2(a +x 0)((x 0+a )2+y 02)+a 2(a −x 0)((x 0−a )2+y 02)=a (a +x 0)2+ay 022(a +x 0)+a (a −x 0)2+ay 022(a −x 0)=a 2+ay 022(1a +x 0+1a −x 0)=a 2+ay 022⋅2a a 2−x 02 =a 2+a 2⋅b 2(1−x02a2)a 2−x 02=a 2+b 2=|BC|2.从而线段OQ 、OR 、BC 能构成一个直角三角形.6.【2017高中数学联赛B 卷(第01试)】在平面直角坐标系xOy 中,曲线C 1:y 2=4x ,曲线C 2:(x −4)2+y 2=8.经过C 1上一点P 作一条倾斜角为45°的直线l ,与C 2交于两个不同的点Q 、R ,求|PQ|⋅|PR|的取值范围. 【答案】[4,8)∪(8,200)【解析】设P (t 2,2t ),则直线l 的方程为y =x +2t -t 2, 代入曲线C 2的方程得(x −4)2+(x +2t −t 2)2=8, 化简可得2x 2−2(t 2−2t +4)x +(t 2−2t )2+8=0①由于l 与C 2交于两个不同的点,故关于x 的方程①的判别式△为正. 计算得,Δ4=(t 2−2t +4)2−2[(t 2−2t )2+8]=(t2−2t)2−8(t2−2t)+16−2(t2−2t)2−16=−(t2−2t)2+8(t2−2t)=−(t2−2t)(t2−2t−8)=−t(t−2)(t+2)(t−4),因此有t∈(−2,0)∪(2,4)②设Q、R的横坐标分别为x1,x2,由①知,x1+x2=t2−2t+4,x1x2=12[(t2−2t)2+8],因此,结合的倾斜角为45°可知,|PQ|⋅|PR|=√2(x1−t2)⋅√2(x2−t2)=2x1x2−2t2(x1+x2)+2t4 =(t2−2t)2+8−2t2(t2−2t+4)+2t4=t4−4t3+4t2+8−2t4+4t3−8t2+2t4 =t4−4t2+8=(t2−2)2+4③由②可知,t2−2∈(−2,2)∪(2,14),故(t2−2)2∈[0,4)∪(4,196),从而由③得,|PQ|⋅|PR|=(t2−2)2+4∈[4,8)∪(8,200).注1利用C2的圆心到l的距离小于C2的半径,列出不等式|2√2|<2√2,同样可以求得②中t的范围.注2更简便的计算|PQ|⋅|PR|的方式是利用圆幂定理.事实上,C2的圆心为M(4,0),半径r=2√2,故|PQ|⋅|PR|=|PM|2−r2=(t2−4)2+(2t)2−(2√2)2=t4−4t2+8.7.【2015高中数学联赛(第01试)】在平面直角坐标系xOy中,F1,F2分别是椭圆x22+y2=1的左、右焦点.设不经过焦点F1的直线l与椭圆交于两个不同的点A,B,焦点F1到直线l的距离为d.如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围【答案】(√3,2)【解析】由条件知,点F1,F2的坐标分别为(-1,0)和(1,0).设直线l的方程为y=kx+m,点A,B的坐标分别为(x1,y1)和(x2,y2),则x1,x2满足方程x22+(kx+m)2=1,即(2k2+1)x2+4kmx+(2m2−2)=0①由于点A,B不重合,且直线l的斜率存在,故x1,x2是方程①的两个不同实根,因此有式①的判别式Δ=(4km)2−4⋅(2k2+1)⋅(2m2−2)=8(2k2+1−m2)>0即2k2+1>m2②由直线AF1,l,BF1的斜率y1x1+1,k,y2x2+1依次成等差数列知y1x1+1+y2x2+1=2k.又y1=kx1+m,y2=kx2+m,所以(kx1+m)(x2+1)+(kx2+m)(x1+1)=2k(x1+1)(x2+1).化简并整理得(m−k)(x1+x2+2)=0,假如m=k,则直线l的方程为y=kx+k.即l经过点F1(-1,0),不符合条件.因此必有x1+x2+2=0.故由方程①及韦达定理知4km2k2+1=−(x1+x2)=2,即m=k+12k③由式②与③知2k2+1>m2=(k+12k )2,化简得k2>14k2,这等价于|k|>√22.反之,当m,k满足式③及|k|>√22时,l必不经过点F1(否则将导致m=k,与式③矛盾),而此时m,k满足式②,故l与椭圆有两个不同的交点A,B,同时也保证了AF1,BF1的斜率存在(否则x1,x2中的某一个为-1,结合x1+x2+2=0知x1=x2=−1,与方程①有两个不同的实根矛盾).点F2(1,0)到直线l:y=kx+m的距离为d=√2=√2|2k+12k|=√1k2+1(2+12k2).注意到|k|>√22,令t=√1k2+1,则t∈(1,√3),上式可改写为d=1t⋅(t22+32)=12(t+3t)④考虑到函数f(t)=12⋅(t+3t)在[1,√3]上单调递减,故由式④得f(√3)<d<f(1),即d∈(√3,2).8.【2014高中数学联赛(第01试)】平面直角坐标系xOy中,P是不在x轴上的一个动点,满足条件:过P可作抛物线y2=4x的两条切线,两切点连线l与PO垂直.设直线l与直线PO,x轴的交点分别为Q,R.(1)证明R是一个定点;(2)求|PQ||QR|的最小值.【答案】(1)证明见解析;(2) 2√2.【解析】(1)设点P的坐标为(a,b)(b≠0),易知a≠0.记两切点A,B的坐标分别为(x1,y1),(x2,y2),则P A,PB的方程分别为yy1=2(x+x1)①yy 2=2(x +x 2)②而点P 的坐标(a ,b )同时满足式①与②,故A ,B 的坐标(x 1,y 1),(x 2,y 2)均满足方程by =2(x +a)③故式③就是直线AB 的方程.直线PO 与AB 的斜率分别为ba与2b,由PO ⊥AB 知ba⋅2b=−1,故a =-2.从而式③即为y =2b(x −2).故AB 与x 轴的交点R 是定点(2,0).(2)因为a =-2,故直线PO 的斜率k 1=−b2,直线PR 的斜率k 2=−b4.设∠OPR =α,则α为锐角,且|PQ||QR|=1tanα=|1+k 1k 2k 1−k 2|=|1+(−b 2)(−b4)−b 2+b 4|=8+b 22|b|⩾2√8b 22|b|=2√2.当b =±2√2时,|PQ||QR|的最小值为2√2.9.【2013高中数学联赛(第01试)】在平面直角坐标系xOy 中,椭圆的方程为x 2a2+y 2b 2=1(a >b >0),A 1,A 2分别为椭圆的左、右顶点,F 1,F 2分别为椭圆的左、右焦点,P 为椭圆上不同于A 1和A 2的任意一点.若平面中两个点Q ,R 满足QA 1⊥PA 1,QA 2⊥PA 2,RF 1⊥PF 1,RF 2⊥PF 2,试确定线段QR 的长度与b 的大小关系,并给出证明.【答案】答案见解析【解析】令c =√a 2−b 2,则A 1(−a,0),A 2(a,0),F 1(−c,0),F 2(c,0), 设P (x 0,y 0),Q (x 1,y 1),R (x 2,y 2),其中x 02a 2+y 02b 2=1 (y ≠0),由QA 1⊥PA 1,QA 2⊥PA 2可知A 1Q ⃗⃗⃗⃗⃗⃗⃗ ⋅A 1P ⃗⃗⃗⃗⃗⃗⃗ =(x 1+a )(x 0+a )+y 1y 0=0 ① A 2Q ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅A 2P ⃗⃗⃗⃗⃗⃗⃗ =(x 1−a )(x 0−a )+y 1y 0=0①将式①与②相减,得2a (x 1+x 0)=0,即x 1=−x 0,将其代入式①,得−x 02+a 2+y 1y 0=0,故y 1=x 02−a 2y 0,于是Q (−x 0,x 02−a 2y 0).根据RF 1⊥PF 1,RF 2⊥PF 2,同理可得R (−x 0,x 02−c 2y 0),因此|QR|=|x 02−a 2y 0−x 02−c 2y 0|=b 2|y 0|.由于|y 0|∈(0,b],故|QR|⩾b (其中等号成立的充分必要条件是|y 0|=b ,即点P 为(0,±b )).10.【2012高中数学联赛(第01试)】在平面直角坐标系xOy中,菱形ABCD的边长为4,且|OB|=|OD|=6.(1)求证:|OA|⋅|OC|为定值;(2)当点A在半圆M:(x-2)2+y2=4(2≤x≤4)上运动时,求点C的轨迹.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)因为|OB|=|OD|,|AB|=|AD|=|CB|=|CD|,所以O,A,C三点共线.如图,联结BD,则BD垂直平分线段AC,设垂足为K.于是,有|OA|⋅|OC|=(|OK|−|AK|)(|OK|+|AK|)=|OK|2−|AK|2=(|OB|2−|BK|2)−(|AB|2−|BK|2)=|OB|2−|AB|2=62−42=20(定值)(2)设C(x,y),A(2+2cosα,2sinα),其中α=∠XMA(−π2⩽α⩽π2),则∠XOC=α2,因为|OA|2=(2+2cosα)2+(2sinα)2=8(1+cosα)=16cos2α2,所以|OA|=4cosα2,由情形(1)的结论,得|OC|cosα2=5,所以x=|OC|cosα2=5,从而y=|OC|sinα2=5tanα2∈[−5,5].故点C的轨迹是一条线段,其两个端点的坐标分别为(5,5),(5,-5).11.【2011高中数学联赛(第01试)】作斜率为13的直线l与椭圆C:x236+y24=1交于AB两点(如图所示),且P(3√2,√2)在直线l的左上方.(1)证明:△P AB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△P AB的面积.【答案】(1)证明见解析;(2)117√349.【解析】(1)设直线l:y=13x+m,A(x1,y1),B(x2,y2),将y=13x+m代入x236+y24=1中,化简整理得2x2+6mx+9m2−36=0,于是有x1+x2=−3m,x1x2=9m2−362,k PA=1√2x−3√2,k PB=2√2x−3√2,则k PA+k PB=1√2x−3√22√2x−3√2=1√2)(x2√2)+(y2√2)(x1√2)(x−3√2)(x−3√2),因此(y1−√2)(x2−3√2)+(y2−√2)(x1−3√2)=(13x1+m−√2)(x2−3√2)+(13x2+m−√2)(x1−3√2) =23x1x2+(m−2√2)(x1+x2)−6√2(m−√2)=23⋅9m2−362+(m−2√2)(−3m)−6√2(m−√2)=3m2−12−3m2+6√2m−6√2m+12=0.从而k PA+k PB=0.又P在直线l的左上方,因此,∠APB的角平分线是平行于y轴的直线,所以△P AB的内切圆的圆心在直线x= 3√2上(2)若∠APB =60°时,结合情形(1)的结论可知k PA =√3,k PB =−√3, 直线P A 的方程为y −√2=√3(x −3√2),代入x 236+y 24=1中,消去y 得14x 2+9√6(1−3√3)x +18(13−3√3)=0, 它的两根分别是x 1和3√2,所以x 1⋅3√2=18(13−3√3)14,即x 1=3√2(13−3√3)14,所以|PA|=√1+(√3)2⋅|x 1−3√2|=3√2(3√3+1)7,同理可求得|PB|=3√2(3√3−1)7,所以S △PAB =12⋅|PA|⋅|PB|⋅sin60°=12⋅3√2(3√3+1)73√2(3√3−1)7⋅√32=117√349.12.【2010高中数学联赛(第01试)】已知抛物线y 2=6x 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【答案】143√7【解析】解法一设线段AB 的中点为M (x 0,y 0),则x 0=x 1+x 22=2,y 0=y 1+y 22,k AB =y 2−y 1x 2−x 1=y 2−y 1y 226−y 126=6y 2+y 1=3y 0,线段AB 的垂直平分线的方程是y −y 0=−y 03(x −2)①易知x =5,y =0是式①的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为(5,0). 由式①知直线AB 的方程为y −y 0=3y 0(x −2),即x =y 03(y −y 0)+2②将式②代入y 2=6x 得y 2=2y 0(y −y 0)+12,即y 2−2y 0y +2y 02−12=0③依题意,y 1,y 2是方程③的两个实根,且y 1≠y 2,所以Δ=4y 02−4(2y 02−12)=−4y 02+48>0,所以−2√3<y 0<2√3,|AB|=√(x 1−x 2)2+(y 1−y 2)2=√[1+(y 03)2](y 1−y 2)2=√(1+y 029)[(y 1+y 2)2−4y 1y 2]=√(1+y 029)[4y 02−4(2y 02−12)]=23√(9+y 02)(12−y 02).定点C(5,0)到线段AB的距离ℎ=|CM|=√(5−2)2+(0−y0)2=√9+y02,S△ABC=12|AB|⋅ℎ=13√(9+y02)(12−y02)⋅√9+y02=13√12(9+y02)(24−2y02)(9+y02)⩽13√12(9+y02+24−2y02+9+y023)3=143√7.当且仅当9+y02=24−2y02,即y0=±√5,A(6+√353,√5+√7),B(6−√353,√5−√7),或A(6+√353,−(√5+√7)),B(6−√353,−√5+√7)时等号成立.所以,△ABC面积的最大值为143√7.解法二同解法一,线段AB的垂直平分线与x轴的交点C为定点,且点C坐标为(5,0)设x1=t12,x2=t22(t1>t2,t12+t22=4),则S△ABC=12|501t12√6t11t22√6t21|的绝对值,则:S△ABC2=(12(5√6t1+√6t12t2−√6t1t22−5√6t2))2=32(t1−t2)2(t1t2+5)2=32(4−2t1t2)(t1t2+5)(t1t2+5)⩽32(143)3,所以S△ABC⩽143√7,当且仅当(t1−t2)2=t1t2+5且t12+t22=4,即t1=√7−√5√6t2=√7+√5√6,A(6+√353,√5+√7),B(6−√353,√5−√7),或A(6+√353,−(√5+√7)),B(6−√353,−√5+√7)时等号成立.所以,△ABC面积的最大值是143√7.13.【2009高中数学联赛(第01试)】设直线l:y=kx+m(其中k,m为整数)与椭圆x216+y212=1交于不同两点A,B ,与双曲线x 24−y 212=1交于不同两点C ,D ,问是否存在直线l 使得向量AC ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ =0,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【答案】答案见解析【解析】由{y =kx +mx 216+y 212=1消去y ,化简整理得(3+4k 2)x 2+8kmx +4m 2−48=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−8km 3+4k 2,Δ1=(8km)2−4(3+4k 2)(4m 2−48)>0 ①由{y =kx +m x 24−y 212=1消去y ,化简整理得(3−k 2)x 2−2kmx −m 2−12=0,设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=2km 3−k 2,Δ2=(−2km)2+4(3−k 2)(m 2+12)>0②因为AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =0,所以(x 4−x 2)+(x 3−x 1)=0,此时(y 4−y 2)+(y 3−y 1)=0. 由x 1+x 2=x 3+x 4得−8km 3+4k 2=2km 3−k 2,所以2km =0或−43+4k 2=13−k 2,由上式解得k =0或m =0,当k =0时,由式①与②得−2√3<m <2√3, 因m 是整数,所以m 的值为−3,−2,−1,0,1,2,3,当m =0,由式①和②得−√3<k <√3,因k 是整数,所以k =-1,0,1. 于是满足条件的直线共有9条.14.【2008高中数学联赛(第01试)】如图,P 是抛物线y 2=2x 上的动点,点B ,C 在y 轴上,圆(x -1)2+y 2=1内切于△PBC ,求△PBC 面积的最小值.【答案】8【解析】设P (x 0,y 0),B (0,b ),C (0,c ),不妨设b >c .直线PB 的方程为y −b =y 0−b x 0x ,化简得(y 0−b )x −x 0y +x 0b =0,又因为圆心(1,0)到PB 的距离为1,即00√(y 0−b )+x 0=1,故(y 0−b )2+x 02=(y 0−b )2+2x 0b (y 0−b )+x 02b 2,易知x 0>2,上式化简得(x 0−2)b 2+2y 0b −x 0=0, 同理有(x 0−2)c 2+2y 0c −x 0=0,所以b +c =−2y 0x 0−2,bc =−x 0x 0−2,则(b −c)2=4x 02+4y 02−8x 0(x 0−2)2,因为P (x 0,y 0)是抛物线上的点,有y 02=2x 0,则(b −c)2=4x 02(x 0−2)2,即b −c =2x 0x 0−2,所以S ΔPBC =12(b −c)⋅x 0=x 0x 0−2⋅x 0=(x 0−2)+4x 0−2+4⩾2√4+4=8,当(x 0−2)2=4时取等号,此时x 0=4,y 0=±2√2, 因此S △PBC 的最小值为8.15.【2007高中数学联赛(第01试)】已知过点(0,1)的直线l 与曲线C:y =x +1x (x >0)交于两个不同点M 和N .求曲线C 在点M ,N 处的切线的交点轨迹. 【答案】答案见解析【解析】设点M ,N 的坐标分别为(x 1,y 1)和(x 2,y 2),曲线C 在点M ,N 处的切线分别为l 1,l 2,其交点P 的坐标为(x p ,y p ).若直线l 的斜率为k ,则l 的方程为y =kx +1, 由方程组{y =x +1x y =kx +1 消去y ,得x +1x=kx +1, 即(k −1)x 2+x −1=0,由题意知,该方程在(0,+∞)上有两个相异的实根x 1,x 2,故k ≠1, 且Δ=1+4(k −1)>0 ①x 1+x 2=11−k>0 ② x 1x 2=11−k >0③由此解得34<k <1, 对y =x +1x 求导,得y ′=1−1x 2,则 y ′|x=x 1=1−1x 12, y ′|x=x 2=1−1x 22,于是,直线l 1的方程为y =y 1=(1−1x 12)(x −x 1),即y −(x 1+1x 1)=(1−1x 12)(x −x 1),化简后得直线l1的方程为y=(1−1x12)x+2x1④同理可求得直线l2的方程为y=(1−1x22)x+2x2⑤④-⑤得(1x22−1x12)x p+2x1−2x2=0,因为x1≠x2,故有x p=2x1x2x1+x2⑥将②,③两式代入式⑥得x p=2,④+⑤得2y p=(2−(1x12+1x22))x p+2(1x1+1x2)①其中1x1+1x2=x1+x2x1x2=1,1x12+1x22=x12+x22x12x22=(x1+x2)2−2x1x2x12x22=(x1+x2x1x2)2−2x1x2=1−2(1−k)=2k−1,代入式⑦得2y p=(3−2k)x p+2,而x p=2,得y p=4−2k,又由34<k<1得2<y p<52,即点P的轨迹为(2,2),(2,52)两点间的线段(不含端点).16.【2006高中数学联赛(第01试)】给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对于任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.【答案】证明见解析【解析】因为y2=nx−1与y=x的交点为x0=y0=n±√n2−42,显然有x0+1x0=n,若(x0m,y0m)为抛物线y2=kx−1与直线的一个交点,则k=x0m+1x0m,记k m=x0m+1x0m ,则k m+1=k m(x0+1x0)−k m−1=nk m−k m−1(m⩾2)①由于k1=n是整数,且k2=x02+1x02=(x0+1x0)2−2=n2−2也是整数,所以根据数学归纳法,通过式①可证明对于一切正整数m,k m=x0m+1x0m是正整数.现在对于任意正整数m,取k=x0m+1x0m,使得y2=kx−1与y=x的交点为(x0m,y0m).17.【2005高中数学联赛(第01试)】过抛物线y=x2上的一点A(1,1)作抛物线的切线,分别交x轴于D,交y轴于B.点C在抛物线上,点E在线段AC上,满足AEEC =λ1;点F在线段BC上,满足BFFC=λ2,且λ1+λ2=1,线段CD与EF交于点P.当点C在抛物线上移动时,求点P的轨迹方程.【答案】y =13(3x −1)2 (x ≠23)【解析】解法一过抛物线上点A 的切线斜率为y ′= 2x |x=1=2,故切线AB 的方程为y =2x −1. 于是B ,D 的坐标分别为B(0,−1),D (12,0),所以D 是线段AB 的中点.设P(x,y),C (x 0,x 02),E (x 1,y 1),F (x 2,y 2),则由AE EC=λ1知x 1=1+λ1x 01+λ1,y 1=1+λ1x 021+λ1,由BF FC=λ2得x 2=λ2x 01+λ2,y 2=−1+λ2x 021+λ2,所以,EF 所在直线方程为y−1+λ1x 021+λ1−1+λ2x 021+λ2−1+λ1x 021+λ1=x−1+λ1x 01+λ1λ2x 01+λ2−1+λ1x 01+λ1,化简得[(λ2−λ1)x 0−(1+λ2)]y=[(λ2−λ1)x 02−3]x +1+x 0−λ2x 02① 当x 0≠12时,直线CD 的方程为y =2x 02x−x 022x 0−1②联立式①与②解得{x =x 0+13y =x 023, 消去x 0,得点P 轨迹方程为y =13(3x −1)2.当x 0=12时,EF 方程为−32y =(14λ2−14λ1−3)x +32−14λ2,CD 方程为x =12,联立解得(x,y)=(12,112)也在点P 的轨迹上.因C 与A 不能重合,x 0≠1,x ≠23,所以所求轨迹方程为y =13(3x −1)2 (x ≠23).解法二由解法一知,AB 的方程为y =2x −1,B(0,−1),D (12,0),故D 是AB 的中点.令γ=CD CP,t 1=CA CE=1+λ1,t 2=CB CF=1+λ2,则t 1+t 2=3,因为CD 为△ABC 的中线,所以S ΔCAB =2S △CAD =2S △CBD ,而1t1t2=CE⋅CFCA⋅CB=SΔCEFS△CAB=SΔCEP2S△CAD+SΔCFP2S△CBD=12(1t1γ+1t2γ)=t1+t22t1t2γ=32t1t2γ,所以γ=32,故P是△ABC的垂心.设P(x,y),C(x0,x02),因点C异于A,则x≠1,故重心P的坐标为x=0+1+x03=1+x03(x≠23),y=−1+1+x023=x023,消去x0,得y=13(3x−1)2,故所求轨迹方程为y=13(3x−1)2(x≠23).18.【2004高中数学联赛(第01试)】在平面直角坐标系xOy中,给定三点A(0,43),B(−1,0),C(1,0),点P到直线BC的距离是该点到直线AB,AC距离的等比中项.(1)求点P的轨迹方程;(2)若直线l经过△ABC的内心(设D),且与点P的轨迹恰好有3个公共点,求l的斜率k的取值范围.【答案】(1) 8x2−17y2+12y−8=0;(2) {0,±12,±2√3417,±√22}.【解析】(1)直线AB,AC,BC的方程依次为y=43(x+1),y=−43(x−1),y=0,点P(x,y)到AB,AC,BC的距离依次为d1=15|4x−3y+4|,d2=15|4x+3y−4|,d3=|y|,依设d1d2=d32得116x2−(3y−4)2|=25y2,即16x2−(3y−4)2+25y2=0或16x2−(3y−4)2−25y2=0,化简得点P的轨迹方程为:圆S:2x2+2y2+3y−2=0与双曲线T:8x2−17y2+12y−8=0.(2)由前知,点P的轨迹包含两部分:圆S:2x2+2y2+3y−2=0①与双曲线T:8x2−17y2+12y−8=0②因为B(-1,0)和C(1,0)是适合题设条件的点,所以点B和点C在点P的轨迹上,且点P的轨迹曲线S与T的公共点只有B,C.△ABC的内心D也是适合题设条件的点,由d1=d2=d3解得D(0,12),且知它在圆S上.直线l经过D,且与点P的轨迹有3个公共点,所以,的斜率存在,设l的方程为y=kx+12③(i)当k=0时,l与圆S相切,有唯一的公共点D.此时,直线y=12平行于x轴,表明l与双曲线有不同于D的2个公共点,所以l恰好与点P的轨迹有3个公共点.(ii)当k≠0时,l与圆S有2个不同的交点.这时,l与点P的轨迹恰有3个公共点只能有两种情况:情况1:直线l经过点B或点C,此时l的斜率k=±12,直线l的方程为x=±(2y−1),代入方程②得y(3y−4)=0,解得E(53,43)或F(−53,43).表明直线BD与曲线T有2个交点B,E;直线CD与曲线T有2个交点C,F.故当k=±12时,恰好与点P的轨迹有3个公共点.情况2:直线l不经过点B和C(即k≠±12),因为l与S有2个不同的交点,所以与双曲线T有且只有1个公共点,即方程组{8x2−17y2+12y−8=0y=kx+12有且只有1组实数解,消去y并化简得(8−17k2)x2−5kx−254=0,该方程有唯一实数解的充要条件是8−17k2=0④或(−5k)2+4(8−17k2)254=0⑤解方程④得k=±2√3417,解方程⑤得k=±√22.综合得直线l的斜率k的取值范围是有限集{0,±12,±2√3417,±√22}.19.【2002高中数学联赛(第01试)】已知点A(0,2)和抛物线y2=x+4上两点B,C使得AB⊥BC,求点C的纵坐标的取值范围.【答案】y≤0或y≥4.【解析】设点B坐标为(y12−4,y1),点C坐标为(y2−4,y).显然y12−4≠0,故k AB=y1−2y12−4=1y1+2.由于AB⊥BC,所以k BC=−(y1+2),从而y−y1=−(y1+2)[x−(y12−4)],y2=x+4,消去x,注意到y≠y1,得(2+y1)(y+y1)+1=0,所以y12+(2+y)y1+(2y+1)=0,由△≥0解得y≤0或y≥4.当y=0时,点B的坐标为(-3,-1);当y=4时,点B的坐标为(5,-3),均满足题意.故点C的纵坐标的取值范围是y≤0或y≥4.20.【2001高中数学联赛(第01试)】设曲线C1:x2a2+y2=1(a为正的常数)与C2:y2=2(x+m)在x轴上方有一个公共点P.(1)求实数m的取值范围(用a表示);(2)O为原点,若C与x轴的负半轴交于点A,当0<a<12时,试求△OAP的面积的最大值(用a表示).【答案】(1) −a<m<a;(2) (SΔDAP)max={12a√1−a2(0<a⩽13)a√a−a2(13<a<12).【解析】(1)可将曲线C1与C2的公共点的个数问题转化为研究它们的方程组成的方程组解的个数问题.由{x2a2+y2=1y2=2(x+m),所以x2+2a2x+2a2m−a2=0①问题转化为方程①在区间(-a,a)上有唯一解或两个相等的实根.设f(x)=x2+2a2x+2a2m−a2,当△=0,即m=a 2+12时,由−a<−a2<a得0<a<1,这时方程①有等根.当f(−a)=f(a)<0,即−a<m<a时,方程①在区间(-a,a)内有一个根(另一个根在区间外).当f(−a)=0,即m=a时x p=a−2a2,由−a<a−2a2<a得0<a<1,这时方程①在区间(-a,a)内有唯一解;当f(a)=0,即m=−a时,x p=−a−2a2,由−a<−a−2a2<a得a∈∅,故综上所述,当0<a<1时,m=a 2+12或−a<m⩽a,当a≥1时,−a<m<a.(2)因为A (-a ,0),所以S ΔoAP =12ay p ,当0<a <12时,由情形(1)知−a <m ⩽a ,由方程①得x p =−a 2+a√a 2+1−2m , 显然,x p >0,从而y p =√1−x p2a 2,要使y p 最大,则x p 应最小.易知,当m =a 时,(x p )min =a −2a 2,从而(y p )max =2√a −a 2, 故(S ΔOAP )max =a√a −a 2. 当m =a 2+12时,x p =−a 2,从而y p =√1−a 2,故S △OAP =12a√1−a 2.下面比较a√a −a 2与12a√1−a 2的大小.因为(√a −a 2)2−(12√1−a 2)2=⋯=−14(3a −1)(a −1),所以当0<a ⩽13时,a√a −a 2⩽12a√1−a 2,当13<a <12时,a√a −a 2>12a√1−a 2,(S ΔDAP )max ={12a√1−a 2(0<a ⩽13)a√a −a 2(13<a <12). 21.【2000高中数学联赛(第01试)】已知C 0:x 2+y 2=1和C 1:x 2a2+y 2b 2=1(a >b >0).试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为顶点,与C 0外切,与C 1内接的平行四边形?并证明你的结论 【答案】答案见解析【解析】利用极坐标解决:以坐标原点为极点,x 轴为极轴建立极坐标系, 则椭圆的极坐标方程为1ρ2=cos 2θa 2+sin 2θb 2①显然此平行四边形ABCD 必为菱形,设A (ρ1,θ),则B (ρ2,90°+θ). 代入式①相加1ρ12+1ρ22=1a 2+1b 2,由于该菱形必与单位圆相切,故原点到AB 的距离为1,所以ρ1ρ2=1⋅√ρ12+ρ22,从而1ρ12+1ρ22=1,所以1a2+1b 2=1.22.【1999高中数学联赛(第01试)】给定A (-2,2),已知B 是椭圆x 225+y 216=1上的动点,F 是左焦点,当|AB|+53|BF|取最小值时,求B 的坐标.【答案】B (−52√3,2)【解析】记椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,离心率为e , 则a =5,b =4,c =√a 2−b 2=√52−42=3,e =c a=35,左准线为x =−253,如图,过点B 作左准线x =−253的垂线,垂足为N ,过A 作此准线的垂线,垂足为M .由椭圆的定义|BN|=|BF|e=53|BF|,于是|AB|+53|BF|=|AB|+|BN|⩾|AN|⩾|AM|.等号成立当且仅当B 是AM 与椭圆的交点时,此时B (−52√3,2).23.【1998高中数学联赛(第01试)】已知抛物线y 2=2px 及定点A (a ,b ),B (-a ,0)(ab ≠0,b 2≠2pa ),M 是抛物线上的点,设直线AM ,BM 与抛物线的另一交点分别为M 1,M 2.求证:当点M 在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.【答案】证明见解析【解析】设M,M 1,M 2的坐标分别为(y 022p,y 0),(y 122p,y 1),(y 222p,y 2),由A,M,M 1共线,得y 122p −y 022py 1−y 0=y 022p−ay 0−b,化简得y 1y 0=b (y 1+y 0)−2pa , 所以y 1=by 0−2pa y 0−b①同理,由B,M,M 2共线,得y 2=2pa y 0−b②设(x ,y )是直线M 1M 2上的点,则y 1y 2=y (y 1+y 2)−2px③由式①,②和③消y1,y2得(by0−2pa)2pay0−b =y(by0−2pay0−b+2pay0)−2px,整理得y02(2px−by)+y0⋅2pb(a−x)+2pa(by−2pa)=0.由于方程组{2px−by=0a−x=0by−2pa=0有解x=a,y=2pab,所以,动直线M1M2恒过定点(a,2pab).24.【1993高中数学联赛(第01试)】设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使之与抛物线y2=x有四个不同的交点,当这四点共圆时,求这种直线l与m的交点P的轨迹.【答案】直线x=a+b2除去与y=0或y2=x的三个交点.【解析】设l的方程为y−kx+ka=0,m的方程为y-k'x+k'b=0.于是,过l,m与y2=x的四个不同交点的二次曲线,应有方程(y2−x)+λ(y−kx+ka)(y−k′x+k′b)=0.即(1+λ)y2−λ(k+k′)xy+λkk′x2+λ(ka+k′b)y−(λkk′(a+b)+1)x+λkk′ab=0.它成为圆的充要条件是{k=−k′1+λ=λkk′,即{k=−k′λ=−11+k2.所以,直线l:y−kx+ka=0与直线m:y−k′x+k′b=0的交点P(x0,y0)的坐标为{x0=a+b2y0=k2(b−a).即点P在线段AB的中垂线上.所以点P的轨迹是直线x=a+b2除去与y=0或y2=x的三个交点.25.【1991高中数学联赛(第01试)】设O为抛物线的顶点,F为焦点,且PQ为过F的弦,已知OF=a,PQ= b,求△OPQ的面积.【答案】a√ab【解析】以F为极点,F x为极轴建立极坐标系,则抛物线的方程为l=2a1−cosθ.设点P的极角为θ(θ∈(0,π)),则点Q的极角为π+θ.所以|PQ|=l P+l Q=2a1−cosθ+2a1−cos(π+θ)=4asin2θ.即4asin2θ=b.所以sinθ=2√ab.又S△opF=12a|FP|sinθ,SΔoor=12a|FQ|sinθ,所以SΔOPQ=SΔOPF+SΔOQF=12a(|FP|+|FQ|)sinθ=12absinθ=12ab⋅2√ab=a√ab.优质模拟题强化训练1.易知椭圆E:x2a2+y2b2=1(a>b>0),其短轴为4,离心率为e1.双曲线x2m−y2n=1(m>0,n>0)的渐近线为y=±x,离心率为e2,且e1⋅e2=1.(1)求椭圆E的方程;(2)设椭圆E的右焦点为F,过点G(4,0)斜率不为0的直线交椭圆E于M、N两点设直线FM和FN的斜率为k1,k2,试判断k1+k2是否为定值,若是定值,求出该定值;若不是定值,请说明理由.【答案】(1)x 28+y24=1(2)是定值,k1+k2=0.【解析】(1)由题意可知:2b=4,b=2,nm =1,双曲线的离心率e2=√1+nm=√2,则椭圆的离心率为e1=√22.椭圆的离心率e1=ca=√1−b2a2=√22,则a=2√2.所以椭圆的标准方程:x 28+y24=1.(2)k1+k2是定值,证明如下:如图,设直线MN的方程为y=k(x−4)(k≠0).联立{y=k(x−4)x2+2y2=8消去y整理得(1+2k2)x2−16k2x+32k2−8=0.设M(x1,y1),N(x2,y2),则x1+x2=16k22k2+1,x1x2=32k2−82k2+1,k1+k2=y1x−2+y2x−2=k(x1−4)x−2+k(x2−4)x−2=k ⋅(x 1−4)(x 2−2)+(x 2−4)(x 1−2)(x 1−2)(x 2−2)=k ⋅2x 1x 2−6(x 1+x 2)+16(x 1−2)(x 2−2).将x 1+x 2=16k 22k 2+1,x 1x 2=32k 2−82k 2+1,代入上式得2x 1x 2−6(x 1+x 2)+16=0,即k 1+k 2=0.2.如图,椭圆C 1:x 24+y 2=1,抛物线C 2:x 2=2py(p >0),设C 1,C 2相交于A 、B 两点,O 为坐标原点.(1)若△ABO 的外心在椭圆上,求实数p 的值; (2)若△ABO 的外接圆经过点N(0,132),求实数p 的值. 【答案】(1)7−√136;(2)3【解析】(1)由抛物线、椭圆和圆的对称性可知,△AB 的外心为椭圆的上顶点M (0,1).则有MA =MB =MO =1.设B (x 0,y 0)(x 0>0),则有{x 02=2py 0x 024+y 02=1x 02+(y 0−1)2=1,解得{x 02=4(2√13−5)9y 0=−1+√133p =7−√136.(2)因为O 、A 、N 、B 四点共圆,设AB 与y 轴相交于C(0,y 0),由相交弦定理得AC •CB =CN •CO ,即y 0(132−y 0)=x 0x 0=2py 0, 解得y 0=132−2p ①代入x 02=2y 0,解得x 02=2p(132−2p). ② 将①、②代入椭圆方程得13p−4p 24+(132−2p)2=1,解得p =3.3.如图所示,设k >0且k ≠1,直线l :y =kx +1与l 1:y =k 1x +1关于直线y =x +1对称,直线l 与l 1分别交椭圆E :x 24+y 2=1于点A 、M 和A 、N .(1)求k⋅k1的值;(2)求证:对任意的实数k,直线MN恒过定点.【答案】(1)1;(2)证明见解析【解析】(1)直线l与l1的交点为A(0,1)设点P(x,y)是直线l上异于点A(0,1)的任意一点,点P0(x0,y0)是点P关于直线y=x+1的对称点.由y+y02=x+x02+1得y−x=x0−y0+2①由y−y0x−x0=−1得y+x=y+x0②联立①②解得{x=y0−1y=x0+1.代入直线l:y=kx+1可得x0=k(y0−1).又由点P0(x0,y0)在直线l1:y=k1x+1上,有y0=k1x0+1,则y0−1=k1x0.所以有x0=kk1x0,从而由x0≠0可得kk1=1.(2)设点M、N的坐标分别为(x1,y1)与(x2,y2).由{y1=kx1+1x124+y12=1可得(4k2+1)x12+8kx1=0.所以有x1=−8k4k2+1,y1=1−4k24k2+1.同理求得x2=−8k14k12+1,y2=1−4k124k12+1.由kk1=1可得x2=−8k4+k2,y2=k2−44+k2.则直线MN的斜率为k MN=y1−y2x1−x2=1−4k24k2+1−k2−44+k2−8k4k2+1−−8k4+k2=8−8k48k(3k2−3)=−k2+13k.所以直线MN的方程为y−1−4k 24k2+1=−k2+13k(x−−8k4k2+1),化简得y=−k 2+13kx−53.因此,对任意的k,直线MN恒过定点(0,−53).4.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,右顶点为A ,P 为椭圆C 上任意一点.已知PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的最大值为3,最小值为2. (1)求椭圆C 的方程;(2)若直线l :y =kx +m 与椭圆C 相交于M 、N 两点(M 、N 不是左右顶点),且以MN 为直径的圆过点A .求证:直线l 过定点,并求出该定点的坐标. 【答案】(1)x 24+y 23=1.(2)证明见解析,定点(27,0)【解析】(1)因为P 是椭圆C 上任一点,所以|PF 1|+|PF 2|=2a 且a −c ⩽|PF 1|⩽a +c ,y =PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |cos∠F 1PF 2=12(|PF 1|2+|PF 2|2−4c 2) =12[|PF 1|2+(|2a −|PF 1|)2−4c 2] =(|PF 1|−a)2+a 2−2c 2.当|PF 1|=a 时,y 有最小值a 2-2c 2;当|PF 1|=a -c 或a +c 时,y 有最大值a 2−c 2.所以{a2−c 2=3a 2−2c 2=2,解得{a 2=4c 2=1,故b 2=a 2−c 2=3. 因此椭圆的方程为x 24+y 23=1.(2)设M(x 1,y 1),N(x 2,y 2),将y =kx +m 代入椭圆方程得(4k 2+3)x 2+8kmx +4m 2−12=0, 所以x 1+x 2=−8km 4k 2+3,x 1x 2=4m 2−124k 2+3.因为y 1=kx 1+m, y 2=kx 2+m ,所以y 1y 2=k 2x 1x 2+km(x 1+x 2)+m 2. 又因为以MN 为直径的圆过点A ,所以AM ⃗⃗⃗⃗⃗⃗ ⋅AN ⃗⃗⃗⃗⃗⃗ =0,故7m 2+16km +4k 2=0. 所以m =−27k 或m =-2k ,都满足△>0若m =-2k ,直线l 恒过定点(2,0),不合题意舍去 若m =−27k ,直线l:y =k(x −27)恒过定点(27,0). 5.已知椭圆C:x 2a2+y 2b 2=1过点M(0,2),且右焦点为F(2,0).(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于A,B 两点,交y 轴于点P .若PA =mAF,PB =nBF ,求证:m +n 为定值; (3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值. 【答案】(1)x 28+y 24=1(2)见解析(3)163【解析】(1)由题意b=2,c=2,所以a 2=8,椭圆C 的方程为x 28+y 24=1.(2)设A 、B 、P 的坐标分别为(x 1,y 1),(x 2,y 2),(0,t). 由PA =mAF 知x 1=2m 1+m ,y 1=t1+m . 又点A 在椭圆C 上,则(2m1+m )28+(t1+m )24=1,整理得2m 2+8m −t 2+4=0. 由PB =nBF ,同理得到 2n 2+8n −t 2+4=0.由于A 、B 不重合,即m ≠n ,故m 、n 是二次方程2x 2+8x −t 2+4=0的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为x 2+y t =1,即y =−t2(x −2),与椭圆C 的方程联立,消去y 并整理,得 (2+t 2)x 2−4t 2x +4t 2−16=0,Δ=16t 4−4(2+t 2)(4t 2−16)=32t 2+128>0, 所以x 1+x 2=4t 22+t2,x 1⋅x 2=4t 2−162+t 2,而 S ΔQAB =12⋅|2t|⋅|x 1−x 2|=|t|⋅|x 1−x 2| S ΔQAB 2=t 2(x 1−x 2)2=t 2[(x 1+x 2)2−4x 1x 2]=t 2[16t 4(2+t 2)2−16t 2−642+t 2]=t 2⋅32t 2+128(2+t 2)2.=32[1−4(2+t 2)2]由已知,点P 不在椭圆C 的内部,得|t|⩾2,即t 2⩾4,所以S ΔQAB 2的最小值为32×89=2569,故三角形QAB 面积的最小值为163. 6..。
2020 年全国高中数学联合竞赛解析几何试题分类汇编一、选择题1(. 00,3)已知点 A 为双曲线 x 2y 2 1 的左顶点,点 B 和点 C 在双曲线的右支上, ABC是等边三角形,则ABC 的面积是( A )3 (B ) 3 3 (C )3 3(D )6 3325 x 42.( 00, 5)平面上整点(纵、横坐标都是整数的点)到直线y的距离中的最小3 5值是( A )34 (B )34 ( C )1 117085 20( D )303.( 02, 2)若实数 x, y 满足 (x + 5) 2 +(y –12)2=142,则 x 2+y 2的最小值为(A) 2(B) 1(C) 3(D) 24.(02,4)直线xy 1 椭圆 x 2y 2 1 相交于 A ,B 两点,该圆上点 P ,使得⊿ PAB43 16 9面积等于 3,这样的点 P 共有(A)1 个 (B)2 个(C)3个 (D)4 个5.( 03, 2)设 a , b ∈ R ,ab ≠ 0,那么直线 ax - y + b =0 和曲线 bx 2+ay 2= ab 的图形是y y yyxx x xA B C D6.( 03, 3)过抛物线 y 2= 8(x + 2)的焦点 F 作倾斜角为 60o的直线,若此直线与抛物线交 于 A 、 B 两点,弦 AB 的中垂线与 x 轴交于 P 点,则线段 PF 的长等于16 8 16 3A .B .C .D .8 3 3337.( 05, 5)方程 x 2y 22 sin 3cos2 1 表示的曲线是sin cos 3A. 焦点在 x 轴上的椭圆B. 焦点在 x 轴上的双曲线C. 焦点在 y 轴上的椭圆D. 焦点在 y 轴上的双曲线二、填空题x 2 y 2 1(a b0) 中,记左焦点为 F ,右顶点为 A ,短轴上方8.( 00, 10)在椭圆2b2a的端点为 B 。
若该椭圆的离心率是51,则 ABF =。
历年全国高中数学联赛《解析几何》专题真题汇编1、已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( C )(A) 33 (B) 233 (C) 33 (D) 633、若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A) 2 (B) 1 (C) 3 (D)2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是( )【答案】B6、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于( ) (A)163 (B) 83 (C) 1633 (D) 8 3 【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点yxO Ox yO xyyx O A. B. C.D.在y=pk =43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是( )A.[-62,62] B.(-62,62) C.(-233,233] D.[-233,233] 【答案】A【解析】点(0,b)在椭圆内或椭圆上,⇒2b2≤3,⇒b∈[-62,62].选A.8、方程13cos2cos3sin2sin22=-+-yx表示的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【答案】C9、设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()【答案】A【解析】设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是212rrc+和||221rrc-的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
高中数学联赛解析几何专题练习(详解版)一、单选题1.已知12F F 、分别为双曲线()222210,?0x y a b a b-=>>的左、右焦点,P 为双曲线右支上任一点。
若212PF PF 的最小值为8a ,则该双曲线的离心率e 的取值范围是( )。
A .(1, 3] B .(1,2] C .[2,3] D .[3,十∞) 2.对0b a >>,取第1象限的点(),k k k A x y ()1,2,,k n =L ,使a ,1x ,2x ,L n x ,b 成等差数列,而a ,1y ,2y ,L ,n y ,b 成等比数列.则各点1A 、2A 、L 、n A 与射线():0l y x x =>的关系为( ).A .各点均在射线l 的上方B .各点均在射线l 上C .各点均在射线l 的下方D .不能确定 3.若直线4x π=被曲线C :()()()()arcsin arccos arcsin arccos 0x a x a y a y a --+--=所截得的弦长为d ,当a 变化时d 的最小值是( ).A .4πB .3πC .2πD .π4.直线l 在平面上α,直线m 平行于平面α,并与直线l 异面.动点P 在平面上α,且到直线l 、m 的距离相等.则点P 的轨迹为( ).A .直线B .椭圆C .抛物线D .双曲线5.已知1F 、2F 为椭圆与双曲线的公共焦点,P 为它们的一个公共点,且1260F PF ∠=o .则该椭圆与双曲线的离心率之积的最小值为().A.3 B.2 C .l D6.过椭圆2212x y +=的右焦点2F 作倾斜角为45︒的弦AB .则AB 为( ). A.3 B.3 C.3 D.37.点P (0,2)关于直线210x y +-=的对称点坐标是A .(-2,0)B .(-1,0)C .(0.-1)D .62,55⎛⎫-- ⎪⎝⎭. 8.以双曲线2214x y m-=的离心率为半径、右焦点为圆心的圆与双曲线的渐近线相切.则m =( )A .32B .43C .54D .65 9.记()()()223,03x F x y x y y y ⎛⎫=-++≠ ⎪⎝⎭.则(),F x y 的最小值是( ). A .125 B .165 C .185 D .410.设1A 、2A 为椭圆()222210x y a b a b+=>>的左、右顶点.若在椭圆上存在异于点1A 、2A 的点P ,使得20PO PA ⋅=u u u v u u u u v ,其中,O 为坐标原点,则椭圆的离心率e 的取值范围是( ).A .10,2⎛⎫ ⎪⎝⎭B .⎛ ⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .⎫⎪⎪⎝⎭二、填空题11.若实数x 、y 满足x -=,则x 的取值范围是______.12.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数⑤存在恰经过一个整点的直线13.抛物线22y x =的一条弦被()4,2A 平分,那么这条弦所在的直线方程是__________. 14.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过点1F 作圆222x y a +=的切线,与双曲线的右支交于点P ,且1245F PF o ∠=。
高中数学竞赛与强基计划试题专题:解析几何一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A .B .CD .上述三个选项都不对3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对5.(2022·贵州·高二统考竞赛)如图,1C ,2C 是离心率都为e 的椭圆,点A ,B 是分别是2C 的右顶点和上顶点,过A ,B 两点分别作1C 的切线1l ,2l .若直线1l ,2l 的斜率分别为1k ,2k ,则12k k 的值为()A .2eB .21e -C .21e -D .21e 6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y +=的中心作两条互相垂直的弦AC 和BD ,顺次连接,,,A B C D 得一四边形,则该四边形的面积可能为()A .10B .12C .14D .167.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C 上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A .最大值为4B .最大值为4C .最小值为4-D .最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F和l 为其对应的焦点及准线,过F 作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C 上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.28.(2022·新疆·高二竞赛)如图,已知ABC 内接于抛物线2:=E x y ,且边,AB AC 所在直线分别与抛物线2:4=M y x 相切,F 为抛物线M 的焦点.求证:(1)边BC 所在直线与抛物线M 相切;(2)A ,C ,B ,F 四点共圆.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y+=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l 与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.29.若点(0,P Q ,求P Q +、2P 以及100P 的坐标.30.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.高中数学竞赛与强基计划试题专题:解析几何答案一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对【答案】A【分析】算出椭圆内与切点弦不相交的点的边界的方程,从而可求区域的面积.【详解】设圆224x y +=上一点为(2cos ,2sin )P θθ,则对应切点弦所在直线l 的方程为2cos 2sin 12xy θθ⋅+⋅=即cos 2sin 1x y θθ+=,1≥,故椭圆C 内不与任何切点弦相交的区域面积即为椭圆2241x y +=围成的面积,其面积为1ππ122⨯⨯=.2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A.B.CD .上述三个选项都不对【答案】D【分析】求出椭圆的极坐标方程,设内接于椭圆22149x y +=的菱形为ABCD ,()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,分别求出22,OA OB ,再根据222AB OA OB =+,结合三角恒等变换化简,再根据三角函数的性质求出AB 的最大值和最小值,即可得解.【详解】解:由22149x y +=,得229436x y +=,化为极坐标方程为223645cos ρθ=+,设内接于椭圆22149x y +=的菱形为ABCD ,则OA OB ⊥,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,则22123645cos OA ρθ==+,22222363645sin 45cos 2OB ρπθθ==+⎛⎫++ ⎪⎝⎭,所以2221222363645cos 45sin AB ρρθθ=+=+++2223613361325162025sin cos 36sin 24θθθ⨯⨯==+++,当2sin 20θ=时,2AB 取得最大值,即AB所以菱形的周长的最大值为当2sin 21θ=时,2AB 取得最小值,即AB 的最小值为13,所以菱形的周长的最小值为13,所以内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是1313=.3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=【答案】C【分析】根据四边形OMPN 是平行四边形,得到2222PM PN OM ON +=+为定值,然后将取特殊位置(),0P a ,()0,P b 求解.,易知由四边形OMPN 是平行四边形,所以2222PM PN OM ON +=+为定值,取点(),0P a 时,由()1212y x a y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得24a x a y ⎧=⎪⎪⎨⎪=-⎪⎩,所以,24a a M ⎛⎫- ⎪⎝⎭,由对称性得:,24a a N ⎛⎫ ⎪⎝⎭,所以22258OM ON a +=,取点()0,P b 时,由1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2x bb y =-⎧⎪⎨=⎪⎩,所以,2b M b ⎛⎫- ⎪⎝⎭,由对称性得:,2b N b ⎛⎫ ⎪⎝⎭,所以22252OM ON b +=,所以225582a b =,即2a b =,4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对【答案】B【分析】联立直线方程和椭圆方程后消元,利用公式可求面积的表达式,再利用基本不等式可求面积的最大值.【详解】由22312516y x m x y =+⎧⎪⎨+=⎪⎩可得22241150254000x mx m ++-=,()22222500424125400160024116000m m m ∆=-⨯-=⨯->,故m而241241AB ==,故1122ABOS AB ==△2224120210241m m+-⨯==,当且仅当m=等号成立,故OAB面积的最大值为10,5.(2022·贵州·高二统考竞赛)如图,1C,2C是离心率都为e的椭圆,点A,B是分别是2C的右顶点和上顶点,过A,B两点分别作1C的切线1l,2l.若直线1l,2l的斜率分别为1k,2k,则12k k的值为()A.2e B.21e-C.21e-D.21e【答案】C【详解】不妨设22122:1x yCa b+=,222222:x yCa bλ+=(0,1)a bλ>>>,∴,(,0)(0,)A aB bλλ,11:()l y k x aλ=-代入1C的方程得:()2222322422211120b a k x a k x a k a bλλ+-+-=,()()()23222224222111Δ240a kb a k a k a bλλ=--+-=,化简得()221221bkaλ=-.22:l y k x bλ=+代入22221x ya b+=得()22222222222220b a k x a bk x a b a bλλ+-+-=.()()()222222222222Δ240a bkb a k a b a bλλ=-+-=.化简得()222221bkaλ-=.∴422124bk ka=,∴222212221b a ck k ea a-===-,6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y+=的中心作两条互相垂直的弦AC和BD,顺次连接,,,A B C D得一四边形,则该四边形的面积可能为()A.10B.12C.14D.16【答案】B【分析】设()11,A x y,()22,B x y,设x轴正方向旋转到与向量OA 同向所转过的角为α,利用三角函数的定义表示,A B的坐标,代入椭圆方程,求得223636,OA OB关于α的函数表达式,进而得到223636OA OB关于α的函数表达式,利用三角函数恒定变形化简,然后利用三角函数的性质求得其取值范围,进而得到四边形面积的取值范围,从而做出选择.【详解】设()11,A x y ,()22,B x y ,设x 轴正方向旋转到与向量OA同向所转过的角为α,并根据题意不妨设OA 到OB 为逆时针旋转π2,则11cos ,sin .x OA y OA αα⎧=⎪⎨=⎪⎩,22cos sin ,2sin cos .2x OB OB y OB OB πααπαα⎧⎛⎫=+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+= ⎪⎪⎝⎭⎩22149x y +=,229436x y +=,2222369cos 4sin 5cos 4OA ααα=+=+, 22223694cos 5sin 4sin OBααα=+=+,2222236362516925cos sin 36sin 23636,44OA OBααα⎡⎤=+=+∈⎢⎥⎣⎦,∴36136,2OA OB ⎡⎤∈⎢⎥⎣⎦,1442,1213ABCD S OA OB ⎡⎤=∈⎢⎥⎣⎦,当4πα=时取到最小值14413,当0α=时取得最大值12.只有选项B 中的12在此范围内7.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.,121⎛⎫⎪ ⎪⎝⎭D.⎝⎭【答案】D【详解】由322c N ⎛⎫ ⎪ ⎪⎝⎭在椭圆的内部,得22229142c c a b +<,即222222924b c a c a b +<,从而422441590a a c c -+>,得到4291540e e -+>,因此()()2231340e e -->.因为0<e <1,所以3e 2-4<0,故3e 2<1,得到0e <<.又由112||MF MN F +<恒成立,即22||a MN MF +-<恒成立,等价于()2max2||a MN MF +-<,亦即22a NF +<,等价于2a ,即2a e >.e <<二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线【答案】ABC【详解】建立如图的直角坐标设(),P x y ,则(2,0)M x ,(0,2)N y ,0x >,0y >,对于A ,当Rt △AMN 面积为定值()20k k >时,12222x y k ⋅⋅=,∴(0)x y k k ⋅=>轨迹为双曲线一支,所以A 正确.对于B ,若2(0)MN d d =>,则222222444x y d x y d +=⋅+=,(0,0)x y >>是一圆弧,所以B 正确.对于C ,当2(0)AM AN t t +=>时,222(0,0)x y t x y +=>>,即(0,0)x y t x y +=>>为空端点线段,所以C 正确.对于D ,当Rt △AMN 的周长为定值2C 时,则222x y C ++,即(0,0)x y C x y +=>>,()C x y =-+,∴22222222x y C Cx Cy xy x y +=--+++,所以2(22)2x C y Cx C -=-,2222Cx C y x C-=-轨迹为双曲线一支,所以D 错误.9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值【答案】AC【分析】利用三角换元得到P 的坐标为2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,利用斜率公式可求,αβ与θ的关系,化简后可得,αβ的关系,故可判断AB 的正误,根据面积公式可求S (用θ表示),故可判断CD 的正误.【详解】不妨设2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,则tan sin tan 22(1cos )(2)cos θθαθθ==+--,tan sin tan 22(1cos )2cos θθβθθ=-=---,1||tan 2tan 2S AB θθ=⋅⋅=,因此2114tan ,tan ,221t t S t t αβ==-=-,其中tan 2t θ=.对于选项A ,1tan tan 4αβ=-为定值.对于选项B ,由于22224tantan22tan tan 1tan tan tantan 2222αβαβαβαβ=⎛⎫-++ ⎪⎝⎭,因此若tantan22αβ为定值,则tantan 22αβ+为定值,从而tan 2α和tan 2β是确定的值,矛盾,对于选项C ,D ,有()2112122tan()115122t t t t t tαβ--+==-+⋅,因此tan()S αβ⋅+是定值,cot()S αβ⋅+不是定值.10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A.最大值为4B.最大值为4C.最小值为4-D.最小值为4【答案】BD【分析】利用椭圆的定义可求||||PA PQ +的最值.【详解】注意到Q 为椭圆的右焦点,设其椭圆的左焦点为(1,0)Q '-,则()()||||||44||PA PQ PA PQ PA PQ +=+-=-''+,而||PA PQ -'的取值范围是,AQ AQ ''-⎡⎤⎣⎦,即[,因此所求最大值为4,最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F 和l 为其对应的焦点及准线,过F作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.【答案】⎫⎪⎪⎭【详解】由双曲线方程可知其焦准距为3,则椭圆Γ的焦准距23b c=(同侧焦点和准线),如图,设椭圆中心为O,建立平面直角坐标系,设F :()222210x y a b a b+=>>,()11,A x y ,()22,B x y ,直线AB方程:)y x c =+,联立直线AB 和椭圆Γ可得:()222222223630b a x a cx a c a b +++-=,由韦达可得:212222212226+=-+33=+3a x x b a a c x x b a ⋅⎧⎪⎪⎨⎪⎪⎩,由椭圆中心O 位于以AB 为直径的圆外,则有12120OA OB x x y y ⋅=+>,结合韦达定理可得:222242222422222233330333a c a b b a c a b b b a b a b a----+=>+++,所以422441030a a c c -+<,即423e 10e 40-+<,e 1<<,12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.【答案】2212016x y +=【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-.由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=.两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-,整理得225a bc =.①本号资料全部来源于微信公#众号:数学第六感因为()11,A x y ,()22,C x y 在直线65280x y --=上,所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=,整理得18556c b +=.②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.【答案】4【详解】令||,|3|,|3|=-=+=z a z b z c ,则27-=a bc .由复数的几何意义知222218+=+b c a .所以由前两式知2()32-=b c,即||-=b c ,故||3||3||6--+=<z z .因此z6的双曲线,14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2:a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t ≥15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.【答案】4【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCD AOB S S = △,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上,如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD Y 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --.将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:00814x y ⎧=⎪⎪⎨⎪=-⎪⎩或00814x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪=⎪⎩.故242||21ABCDADB AOB A B S S S OP x x ===⋅-=⨯⨯YV V.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.【答案】(1)((22=149x x -+.(2)【详解】(1)如图所示,将椭圆C绕其左焦点()F 逆时针旋转90 ,得到椭圆'C,注意到在正方形FPAB 中,点B 可以看成也是由点P 绕点F 逆时针旋转90 而形成的,由于点P 在椭圆C 上运动,则点B 在椭圆'C 上运动.求B 的轨迹方程,也就是求椭圆'C 的方程.注意到椭圆'C的中心坐标为(,从而'C的方程为((22=149x x +.(2)如图所示,|||||PQ PFQF +≥当且仅当,,P F Q 三点共线,即P 运动到1P 位置时,等号成立.记椭圆C 的右焦点为)E,注意到()||||=||2||=||||6PQ PF PQ a PE PQ PE ++--+,显然有||||||=PQ PE QE -≤从而||||6PQ PF +≤+,当且仅当,,P E Q 三点共线,即P 运动到2P 位置时,等号成立.||||6PQ PF ≤+≤即PQ PF+的取值范围17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.【答案】((()()201520152014201411112411y x -⎛⎫=⋅- ⎪⎝⎭-【详解】易知抛物线焦点1,04P ⎛⎫⎪⎝⎭.设()1:1,2,4i i l y k x i ⎛⎫=-= ⎪⎝⎭ ,并与2y x =联立知点i A 、i B 的横坐标i A x 、i B x 满足关于x 的方程()2222120216i i i k k x k x -++=且i i A B x x ≠.则i ii i A B A B x =-=221i i k k +=.从而,当2i≥时,有1111i i k k -==+.记{}n F 满足121F F ==及递推关系21n n n F F F ++=+则{}n F 为斐波那契数列其通项公式为n nn F ⎡⎤⎛⎥=- ⎥⎝⎭⎝⎭⎦.下面证明:1i i iF k F +=对一切正整数i 成立.由2111F k F ==,知i=1时结论成立.设i=t 时结论成立.则121111111t t t t t t t t t F F F F k k F F F +++++++=+=+==即i=t+1时结论也成立.由数学归纳法知1i i iF k F +=对一切正整数i 成立.特别地,201520142014F k F =.从而,2014l的解析式为((()()201520152014201411112411y x +-⎛⎫=⋅- ⎪⎝⎭-.【注】本题亦可用不动点方法求数列{}i k 的通项.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.【答案】(1)22143x y +=(2)()21y x =-【详解】设()1,0F c -,()2,0F c .由12F PF的垂心为53H ⎫-⎪⎪⎝⎭,得12F H PF ⊥.所以12531F H PF k k -⋅==-,224593c -=,解得21c =.由点P ⎫⎪⎪⎝⎭在椭圆C 上,得2224119a b +=.结合2221a b c -==,解得24a =,23b =.所以椭圆C 的方程为22143x y +=.(2)由(1)知()2,0A -,()21,0F .若l 的斜率不存在,则由对称性,知120k k +=,不符合要求.若l 的存在,设为k ,则l 的方程为()1y k x =-.由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.①设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+.所以()()1212121212112222k x k x y y k k x x x x --+=+=+++++()()()12121234331122222x x k k x x x x ⎡⎤++⎛⎫=-+-=⋅-⎢⎥⎪++++⎢⎥⎝⎭⎣⎦()()221222121222834344322412824244343k x x k k k k k x x x x k k ⎡⎤⎛⎫+⎢⎥ ⎪⎡⎤+++⎝⎭⎢⎥=⋅-=⋅-⎢⎥⎢⎥-+++⎢⎥⎣⎦+⨯+⎢⎥++⎣⎦()222222238161221122412161612k k k k k k k k k k ⎡⎤++⎛⎫+⎢⎥=⋅-=⋅-=- ⎪-+++⎢⎥⎝⎭⎣⎦.又1212k k +=-,因此2k =,直线l 的方程为()21y x =-.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.【答案】252064x y -=【详解】用a 、b 、c 分别表示椭圆的半长轴、半短轴及半焦距之长度,则5a =,3b =,4c =,右焦点为()4,0F ,且准线方程为2a x c=,由21AFca a x c=-,22CF c a a x c=-,得1455AF x =-,2455CF x =-,根据等差性质,2AF CF BF +=,而95BF =,即12441855555x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以128x x +=.①设线段AC 的中点为D ,则其坐标为124,2y y D +⎛⎫ ⎪⎝⎭,又设点T 的坐标为()0,0T x ,则AC 的中垂线DT 的方程为()12121242y y x xy x y y +--=---.因()0,0T x 在此直线上,故有()1212012042y y x xx y y +--=---,即()221201242y y x x x --=-.②又根据A 、B 在椭圆上,得()221192525y x =-,()222292525y x =-,所以()()22121212925y y x x x x -=-+-,据①,即有()22121236225y y x x -=--.③再据②③得06425x =,即点T 的坐标为64,025T ⎛⎫⎪⎝⎭,于是直线BT 的方程为252064x y -=.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.【答案】(1)()201y x x =≤<(2)11,132⎧⎫+⎪⎪⎛⎤-⎨⎬⎥⎝⎦⎪⎪⎩⎭ 【详解】(1).设()(),,1,P x y M t -,易知01x ≤<.因为OP 平分MON ∠,所以OM MP PN ON==,所以)11,x x +-①)0y t y -=-.②由①②可得21y t x =-,代入①得到11x x +=-E 的方程为()201y x x =≤<.(2).记()()1,1,1,1A B -,则11,3QA QB k k ==-.直线l 的方程为1122y k x ⎛⎫+=+ ⎪⎝⎭,与抛物线方程2y x =联立,消去x 得()21102ky y k -+-=当直线l 与抛物线2y x =相切于点T 时,()1210k k ∆=--=,解得1,2k =当1k k ==T y =T 在曲线E 上;当212k k ==时,T y =,切点T 不在曲线E 上.若直线l 与曲线E 恰好有一个公共点,则有QB QA k k k <≤或k =,故所求k的取值范围为1,13⎛⎤-⋃ ⎥⎝⎦⎪⎪⎩⎭.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.【答案】(1)24()(0)y p x p y =-≠;(2)证明见解析.【详解】(1)抛物线22y px =的焦点为(,0)2p ,设l 的直线方程为()(0)2p y k x k =-≠.由得222y pxp y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得222221(2)04k x pk p x p k -++=.设M 、N 的横坐标分别为12x x 、,由21222pk p x x k ++=,得22122222,()2222P Px x pk p pk p p px y k k k k+++===-=,而PQ l ⊥,故PQ 的斜率为1k -,PQ 的方程为2212()2p pk py x k k k +-=--.代入0Q y =得222223222Q pk p pk px p k k ++=+=.设动点R 的坐标为(),x y ,则:21()21()22p Q P Qp x x x p k p y y y k ⎧=+=+⎪⎪⎨⎪=+=⎪⎩,因此222()4(0)p p x p y y k-==≠,故PQ 中点R 的轨迹L 的方程为24()(0)y p x p y =-≠.(2)显然对任意非零整数t ,点2((41),)p t pt +都是L 上的整点,故L 上有无穷多个整点.反设L 上有一个整点(),x y 到原点的距离为整数()0m m ≥,不妨设0,0x y >>,则:22224()x y m y p x p ⎧+=⎨=-⎩①②,因为p 是奇质数,于是|p y ,从②可推出|p x ,再由①可推出|p m .令111,,x px y py m pm ===,则有22211121141x y m y x ⎧+=⎨=-⎩③④,由③,④得2211114x x m -+=,于是2211(81)(8)17x m +-=,即()()111181881817x m x m +++-=,于是111181817,8181x m x m ++=+-=,得111x m ==,故10y =,有10y py ==,但L 上的点满足0y ≠,矛盾!因此,L 上任意点到原点的距离不为整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ的方程;若不存在,请说明理由.【答案】存在,PQ的方程为(260x y +-+-=.【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦,整理得()()()()22221111111210r x ryx y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r yx y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x ryr -+-+-=,即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x r y r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y +-+-=.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+,直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=,故12121200424AB MN y y k k x x y y b y y '-=====-++,因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++,即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||))24MNABy y a S d AB MN '-=⋅+=⋅,其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=+3183⎛≤ ⎝⎭当22001(4)9b y y b a '-=-时取到最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而求出离心率.【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a k k a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x ax ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+,于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭.所以直线OD 的方程为()221a x y a k =--.设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l 直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭,由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey Fa b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭,比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,22D a ⎛- ⎪ ⎪⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C上,故22222311a a ⎛⎛⎫ ⎪ ⎝⎭⎝⎭+=-,解得a =于是1C的离心率为3c e a ==.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.【详解】(1)由题意b=2,c=2,所以28a =,椭圆C 的方程为22184x y +=.(2)设A 、B 、P 的坐标分别为()()()1122,,,,0,x y x y t .由PA mAF = 知121m x m =+,11ty m=+.又点A 在椭圆C 上,则22211184m t m m ⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,整理得222840m m t +-+=.由PB nBF =,同理得到222840n n t +-+=.由于A 、B 不重合,即m n ≠,故m 、n 是二次方程222840x x t +-+=的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为12x yt+=,即()22t y x =--,与椭圆C 的方程联立,消去y 并整理,得()2222244160t xt x t +-+-=,()()42221642416321280t t tt ∆=-+-=+>,所以221212224416,22t t x x x x t t -+=⋅=++,而1212122QAB S t x x t x x ∆=⋅⋅-=⋅-()()22222121212=4QAB S t x x t x x x x ∆⎡⎤=-+-⎣⎦()42222216166422t t tt t ⎡⎤-⎢⎥=-⎢⎥++⎣⎦()2222321282t t t +=⋅+.()2243212t ⎡⎤⎢⎥=-⎢⎥+⎣⎦由已知,点P 不在椭圆C 的内部,得2t ,即24t ,所以2QAB S ∆的最小值为82563299⨯=,故三角形QAB 面积的最小值为163.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.【答案】43t =【详解】设(),P x y 为圆O 上任意一点,则由题意知PA k PB=.即222PA k PB =,于是()()()()22222x m y n k x s y p ⎡⎤-+-=-+-⎣⎦,整理得()()()()22222222222222111k s m kp nmn k s p x y x y k k k --+-++--=---.因此点P 的轨迹是一个圆.因为(),P x y 为圆上任意一点,所以此圆与圆22:4O x y +=必为同一个圆,于是有()22201k s m k --=-,()22201k p nk --=-,()()22222241mn k s p k +-+=-,整理得20k s m -=,20k p n -=,所以()()()()()22222424222222222411m n k s p k sk p k s p ks p k k +-++-+==+=--.因为s ,*p N ∈,所以21s ≥,21p ≥,从而22242k s p =≤+.又因为1k >,所以1s p ==,22k =,2m n ==.因此将()2,2A ,()1,1B ,代入3y x t =-,得43t =.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.【答案】(1)2211612x y +=(2)0,2⎛ ⎝⎭【详解】(1)由椭圆C 的离心率为12,知12c a =,于是112BF a c OF ===,所以1=30F BO ∠︒,1=60BFO ∠︒,11=120BF A ∠︒,又AB ===,且11BA F ∆所以11==2sin sin1203AB BF A ∠⨯︒,解得=2c ,因此,=4a,b =所以,椭圆C 的方程为2211612x y +=.(2)如图,易知直线l 斜率不为0,设l 方程为x ty m =+,由22=++=11612x ty m x y ⎧⎪⎨⎪⎩,得()2223463480t y mty m +++-=,设()11,P x y ,()22,Q x y ,则122634mt y y t -+=+,212234834m y y t -=+,由(1)知,()14,0A -,()24,0A ,所以122211111222111134441643PA PA y y y y k k k k x x x y ⋅=⋅=⋅===-+---,同理,123434OA QA k k k k ⋅=⋅=-,因为()142353k k k k +=+,所以()2323335443k k k k --=+,()2323233543k k k k k k +-⋅=+,由l 与x 不垂直可得230k k +≠,所以23920k k =-,即22920PA QA k k ⋅=-,所以121294420y y x x ⋅=---,()()1212209440y y ty m ty m ++-+-=,于是()()()()22121292094940t y y t m y y m ++-++-=,()()()222223486920949403434m mt t t m m t t --+⋅+-⋅+-=++,整理得2340m m --=,解得1m =-或=4m ,因为P 、Q 在x 轴的两侧,所以2122348034m y y t -=<+,44m -<<,又1m =-时,直线l 与椭圆C 有两个不同的交点,因此1m =-,直线l 恒过点()1,0D -,。
学习必备 欢迎下载高中数学解析几何问题研究x 2 y 21题 1. Let point M movealong the ellipse 98,and point F be itsright focus, then for fixed point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of M is. (ellipse 椭圆; focus 焦点; coordinate 坐标 ) (第十四届高二第二试第 18 题)x 2 y 2译文:点 M 是椭圆91上一点,点 F 是椭圆的右焦点,点 P (6,2),那8么 3|MF|-|MP| 的最大值是,此时点 M 的坐标是.x 2y 2 1y在椭圆98解中 ,MMQ D a29,b28 ,则 c 21, c 1 ,PG 所以椭圆的右焦点 F 的坐标Fc 1-3O 1369 xea 3 ,l为(1,0),离心率a 2 9l : x右准线c,显然点x 2y 21P (6,2)在椭圆98的外部 . 过点 P 、M 分别作 PG ⊥ l于 G ,MD ⊥ l于 D ,过点 P 作 PQ ⊥MD 于 Q ,由椭圆的定义知,3|MF|-|MP|=|MD|- |MP|≤|MD|-|MQ|=|QD|=|PG|=9-6=3 ,当且仅当点 P 位于线段MD 上,即点 P 与 Q 点重合时取等号 . 由点 P 位于线段 MD 上,MD ⊥ l及点 P (6,2),x 02 41 知点 M 的纵坐标为 2,设 M 的横坐标为x 0,即 M (x 0,2),则有98 ,解3 23 2x 02,因此 3|MF|-|MP| 的最大值是 3,此时点 M 的坐标是( 2 ,2). 得评析 若设点 M 的坐标为 (x,y) ,则可将 3|MF|-|MP| 表示成 x 、y 的二元无理函数,然后再求其最大值,可想而知,这是一件相当麻烦的事,运用椭圆的定义,将3|MF|-|MP| 转化为 ||MD|-|MP| ,就把无理运算转化为有理运算, 从而大大简化了解题过程 .拓展 将此题引伸拓广,可得x 2y 2 1(a b0)定理 M 是椭圆 E : a 2b 2上的动点, F 是椭圆 E 的一个焦点, c为椭圆 E 的半焦距, P ( m,n )为定点 .1a 2m若点 P 在椭圆 E 内,则当 F 是右焦点时, e |MF|+|MP| 的最小值是 c;当 F是左焦1a 2m点时, e |MF|+|MP| 的最小值是 c.若点 P 在椭圆 E 外,则a 21a 2mF 是右焦点,且 0≤m ≤ c ,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2F 是右焦点,且 m>cc .,|n| ≤b 时, |MP|- e|MF| 的最小值是a 21a 2F 是左焦点,且mc ≤m ≤0,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2 F 是左焦点,且 m ≤c,|n| ≤b 时, |MP|- e|MF| 的最小值是 c .1简证 1 、如图 1,作 MN ⊥右准线 l 于 N ,PQ ⊥l 于 Q ,由椭圆定义, |MN|= e|MF|.1a 2mm∴ e |MF|+|MP|=|MN|+|MP| ≥|PQ|=c,当且仅当 P 、M 、Q 三点共线,且 M1a 2在 P 、Q 之间时取等号 . 如图 2,同理可证 e|MF|+|MP||=|MN|+|MP|≥|PQ|= mc ,y当且仅当 P 、M 、Q 三点共线,且MNyNMP M QQMPOm FxlF mOxl图 1图 2M 在 P 、Q 之间时取等号 .1a 2如图 3, e|MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= m,当且仅当 Pc位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 4,|MP|- e|MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|= m,当且仅当 P 位于直c 线 MN 上,即点 P 与 Q 重合时取等号 .yyMm MN QMMR NPQPOFmxOF m xll图 3 图 41a 2m如图 5, e |MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= c,当且仅当 P位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 6,|MP|- e |MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|=mc,当且仅当 P 位于yyN R MMQ NMMQPPmF O xmF O xll图 5图 6直线 MN 上,即点 P 与 Q 重合时取等号 .题 2 已知双曲线 x2y2k关于直线 x-y=1 对称的曲线与直线 x+2y=1 相切,则 k 的 值 等 于( )2454A 、3B 、 3C 、4D5(第十五届高二培训题第 19 题)解 设点 P (x0,y0 )是双曲线 x 2y 2k上任意一点,点 P 关于直线 x-y=1 的对称点为x x 0y y 0 1y y 01P ’( x,y ), 则 22①,又 xx 0②,解①、②联立方程组得x 0y 1y 0 x1③. ∵P 点在双曲线x 2y2k 上,∴x 02y 02 k④. ③代入④,得( y 1) 2 (x 1) 2k ⑤,此即对称曲线的方程,由 x+2y=1,得 x=1-2y`, 代入⑤并整理,得 3 y 242 y k 1 0. 由题意,△ =4-12 ( k-1 )=0,解得 k= 3,故选 B.评析 解决此题的关键是求出对称曲线的方程 . 由于对称曲线与直线相切,故由 △=0 便可求得 k 的值 . 拓展 关于直线的对称,我们应熟知下面的 结论 1 、点( x0,y0 )关于 x 轴的对称点是( x0,-y0 ). 2、点( x0,y0 )关于 y 轴的对称点是( -x0, y0 ). 3、点( x0,y0 )关于 y=x 的对称点是( y0,x0 ). 4、点( x0,y0 )关于 y=-x 的对称点是( -y0,-x0 ). 5、点( x0,y0 )关于 y=x+m 的对称点是( y0-m,x0+m ). 6、点( x0,y0 )关于 y=-x+n 的对称点是( n-y0,n-x0 ) .7、点( x0,y0 )关于直线 Ax+By+C=0的对称点是( x,y ),x,y 是方程组 Ax 0 x 1By 0 y 1c 022A( y 0 y 1 ) B( x 0 x 1 )的解 .根据以上结论,不难得到一曲线关于某直线对称的曲线的方程,比如曲线 f(x,y)=0 关于直线 y=x+m 对称的曲线的方程是 f(y-m,x+m)=0.3.F 1, F2是双曲线x 23y23的左、右焦点,A, B两点在右支上, 且与F2在同一条直线上,则F 1 A F 1B的最小值是y____________. CA(第四届高二第二试第 15 题)x 22NM双曲线 x23y23,即 3y1解,如图,OF2xF1BDlA, B在双曲线右支上,AF 1AF 2 2 3 ,BF 1BF 2 2 3, 故当 AF 2BF 2 取得最小值时, AF 1 BF 1 也取最小值 . 设l是双曲线对应于 F2的准线,ACl , BDl, 垂足为C, D,则由双曲线定义可知AF 2e AC , BF 2eBD,而ACBD 2 MN,其中 MN 是梯形 ACDB 的中位23 122 ,这时,AF2BF2取得最小值线,当ABF 1F2时, MN 取最小值2e MN24 2 143 , 从而AF1BF133取最小值 33.评析 解决此题的关键是灵活运用双曲线的第一、第二定义,发现 AF 2BF2,即e( ACBD ),亦即2eMN最小时, F 1AF 1 B也最小,并能知道 AB F 1F 2时MN最小(这点请读者自己证明) . 本题虽然也有其他解法, 但都不如此法简单,双曲线定义及平几知识的运用在简化本题解题过程中起了决定性的作用.拓展 将本题中的双曲线一般化,便得x 2 y 21F1、F2是双曲线 a2b2A, B两点在右支上,且与F2定理的左、右焦点,4a2b 2a .在同一条直线上,则F 1 A F 1B的最小值是 仿照本题的解法易证该定理(证明留给读者) .43 2 1214 3 用此定理可知本题中的最小值为33.题4.方 程 x 2 2y 2 2| x y 3 | 表 示的曲线是( )A 、直线B、椭圆C、双曲线D、抛物线(第十二届高二培训题第23 题)解法1 由x 22y 2 2| x y3 |的两边平方并整理得2xy 10x 2 y 1 0 . 令 xu v, y uv,则2 u v uv 10 u v 2 u v 1 0,整 理 得2u 2 8u 8 2v 2 12v 18 9 ,即 2 u 2 2 2 v 3 2 9,故已知方程表示双曲线,选 C. x 2 y 22 | x y 3 |2 2解法 2 已知方程就是 2 ,由双曲线的第二定义,可知动点 P x, y到定点(2,2)的距离与到定直线x y 3 0的距离比为 2 ,因为2 1,所以选 C.评析根据选择支,可知解决本题的关键是将已知方程化为某二次曲线的标准方程或直线方程 . 显然,平方可去掉根号与绝对值符号,但却出现了乘积项xy . 如何消去乘积项便成了问题的关键. 解法 1 表明对称换元是消去乘积项的有效方法 .解法 2 从已知方程的结构特征联想到两点距离公式与点线距离公式,发现方程表示的曲线是到定点( 2,2)的距离与到定直线x y30的距离之比为2的动点x, y的轨迹,根据双曲线定义选 C.显示了发现与联想在解题中的作用 .拓展将此题一般化,我们有下面的定理若x a 2 y b 2 | Ax By C |( A、B、 C、 a、 b 为常数,且 A、 B不全为零),则(1)当0A2 B 2 1时,方程表示a, b为一个焦点,直线Ax ByC 0为相应准线的椭圆 .( 2)当 A2 B2 1时,方程表示a,b为一个焦点,直线Ax By C 0为相应准线的双曲线 .(3)当 A2 B2 1 且 Aa Bb c 0 时,方程表示过点a,b且与直线Ax By C 0垂直的直线 .(4)当 A2 B2 1 且 Aa Bb c0 时,方程表示a, b为焦点,直线Ax By C 0为准线的抛物线 .读者可仿照解法2,运用二次曲线的第二定义自己证明该定理 .1,则动点 A x1, x 1题 5. 已知xxx与点 B( 1, 0)的距离的最小值是_________.(第七届高二第一试第 23 题)ABx 12x1 0211 22解法 1由已知得xxx21 211 27142 x2 321xx xx22xxx将此式看作以1x1, 1 1xx2x2, 这表明该二次函数的定x为自变量的二次函数,xx1 2义域是2,.该函数在 2,x上是增函数,当x时 ,272 2 211, AB m i n 1ABm i n22 .x tan ,x 1tan1 22csc22解法 2x tansin2令42,则x 1x1 2 , x1 tan1 2 2cot 2 .x xtantan 22AB2csc 222cot 2 28csc 22 4csc 238 csc 21 7.1421 2ABmin71当 csc21,即8 124时,4.x1tty1t解 法 3设t( t1),两式平方并相减,得yB x 2y 24(x 2, y 0), 即动点 A 的轨迹是双曲线x2 y 24O1 2x的 右半支在 x 轴上方的部分(含点( 2,0)),由图知 |AB|min=1.评析 所求距离 |AB| 显然是 x 的函数,然而它是一个复杂的分式函数与无理函数的复合函数,在定义域 1,上的最小值并不好求,解法 1 根据 |AB| ≥0,通过平方,先求| AB |m2| AB |min2 ,并将x1in,再求 |AB|min=x看作一个整体,将原问题化为求二次函数在 2,上的最值问题;解法 2 通过三角换元,把求 |AB|min的问题转化为求关于csc2的二次函数在2,的最小值问题,整体思想、转化思想使得问题化繁为简,化生为熟; 解法 3 则求出点 A 的轨迹,从图形上直观地看出答案,简捷得让人拍案叫绝,这应当归功于数形结合思想的确当运用 . 许多最值问题,一旦转化为图形,往往答案就在眼前 .题 6. 抛物线yx 2 上到直线x y 2 0的距离最小的点的坐标是________.(第九届高二培训题第 27 题)解法 1 设抛物线 yx 2 上的点的坐标是 x, x 2 ,则它到直线x y 2 0的距离是x x 22 (x 1 )27d22 2 4x1y1时 d最小,此时,当 2 4. 故所求点的坐标1 , 1是24.解法 2 如图,将直线xy 20 平移至与抛物线yx 2 相切,则此时的切点即为 所 求 点 . 设 切 线方 程 为yx k , 代 入 y x 2 ,得y1x2xk 0 . 由o , 即 14k 0 , 得k4. 解y=x2 yx 2x 12-2Ox111 , 1y x y-24 得4. 故所求点的坐标是2 4 .解法 3设所求点的坐标为 Px 0, y 0,则过点 P 的抛物线的y y 0 x 0 x,故 2x 01 ,切线应与直线 x y 2平行 . 而其切线方程为2x 01 y 0 x 02 1故所求点的坐标为 1 , 12 .4 . 2 4 .评析 解法 1 由点线距离公式将抛物线上的任意一点 x, x 2到直线x y2 0的距离 d表示成 x的二次函数,再通过配方求最值,体现了函数思想在解析几何中的运用 .解法 2 运用数形结合思想发现与直线 xy 2 0 平行的抛物线 y x 2的切线的切点就是所求点,设切线方程为yxk后运用方程思想求出k,进而求出切点坐标 .解法 3 则设切点为 P x 0 , y0 ,直接写出过二次曲线f x, y 0 上一点 P x 0, y 0的 切线方程,由切线与已知直线平行 . 两斜率相等,求出切点坐标 . 解法 2、3 不仅适用于求抛物线上到直线的距离最小的点的坐标,同样也适用于 求椭圆、双曲线上到直线的距离最小的点的坐标,故为通法.解法 3 涉及到过抛物线上一点的抛物线的切线方程, 下面用导数证明一般情形的 结论:定理 过抛物线 yax 2 bx c 上一点 P x 0 , y 0的切线方程是yy 0 ax x b xx 0 c2 02 .证 明设过点 Px 0 , y 0 的抛物线 y ax 2bx c的切线的方程为y y 0 k x x 0 ①.y /2ax b ,k y / xx 02ax 0 b ,代入①得 yy 02ax 0 b xx 0 ,yy 0 2ax 0 b x x 02 y 0y y 0x x 02bx②. 点222 , 2ax 0 x b 2y 0 ax 0x 0 , y 0 在抛物线yax 2 bxc上, y 0ax 02 bx 0c , y 0ax 02bx 0c,代y y 0 ax 0 x b x x 0 c入②,得切线方程为 22 .拓展 观察切线方程的特征,就是同时将曲线方程中的x2, y 2x 0 x,分别换成y 0 y,把 x, y 分别换成x 0x , yy2 2 便得切线方程 . 事实上,对于一般二次曲线,有下面的定理 .定理过二次曲线Ax 2Bxy Cy 2 Dx EyF 0 上一点 Ρ x 0 , y 0 的该曲线Ax xBx 0y xyCyyDxx EyyF 0的切线方程是20 22.运用该定理必须注意点 Ρx 0, y在曲线上 .例 求过点2,3 的曲线 2x23xy 4 y 2 4 x 8 y 30的切线的方程 .解 经验证,点 2,3 在曲线 2x23xy 4 y24x 8 y 30上,根据上面的定理,所求切线方程为2 2x 32 y 3x4 3 y 4 2 x 83 y30 0222, 即13 x 22 y 92 0.题 7在抛物线y2 4x 上恒有两点关于直线 y kx3 对称 , 则 k 的取值范围是.(第十五届高二培训题第 71 题)解法 1设两点 Bx 1, y1、Cx 2, y2关于直线ykx3对称,直线 BC 的方程为xky m,将其代入抛物线方程y24x ,得 y24ky4m 0. 若设 BC 的中点y 1 y 22ky 02. 因为 M 在直线ykx 3上,所以为 Mx 0, y,则k 2k2m 3.m2k 3 2k 22k 32k 32kkk,因为 BC 与抛物线相交 于两个不同点,所以16k 216 m. 再将m的式 子代 入, 经 化 简得k 3 2k3k,即k 1 k 2k 3k0 ,因为 k2k 3,所以 1 k 0 .y 1 y 28k 38k 12 解 法 2 由 解 法 1 , 得 y 1y24mk. 因 为4k ,y 1 2y2y 1 y 2 4k28k 38k 1221 k 0 .,所以k,解得解法 3设 Bx 1, y1、Cx 2, y2是抛物线 y24x上关于直线ykx 3对称的两点,且 BC 中点为 Mx 0, y 0.因为y124x 1 , y 2 2 4 x2,所以y22y 1 24 x 2x1,y 2y 1 y 1 y 2 412 y 04, y 02k即 x 2x 1kx 03,所以, 所 以 k. 又 y 0x 02k 3在抛 物线 y24x 的内部,所以 y24x,即k, 因为 Mx 0, y2k 2 42k3k,解得 1 k 0 .解法 4 设 B 、C 是抛物线 y24x上关于直线ykx3对称的两点, M 是 BC中点 . 设 M x 0 , y 0 , B x, y , C 2x 0x,2 y 0y , 则 y24x ① ,2 y 0y 24 2x 0 x ②. ①- ②,得 2x y 0 y y 022x 00 ③. 因为点 M x 0 , y 0 在直 线ykx 3 上 ,y 0kx 0 3④.④代入③得直线 BC 的方程为px 0 ,2x 02x kx 0 3 ykx 03 22x 0 0,故直线 BC 的方向向量为kx 0 3 ,同理得直线ykx3的方向向量vx 0 , kx 0 . 因为直线 BC 与直线ykx3垂2x 0直,所以 p v 0,即 x 0 ,kx 03 x 0 , kx 0 0,化简得 x 0 2 kx 0 2k32kx 0 3,得kx2k 3或x(舍去) . 显然k,解得x 02k 3, y 0kx 0 32k . 因为 M x 0 , y 0 在抛物线 y24x的内部,所以k2k 24 2k 3k 32k 3 0, ( k1)(k 2k 3)y 0 24x, 即0,k,kk又k 2k 3,所以 1 k 0 .评析 定(动)圆锥曲线上存在关于动(定)直线对称的两点,求直线(圆锥曲 线)方程中参数的取值范围 . 这是解析几何中一类常见的问题 . 解决这类问题的关 键是构造含参数的不等式,通过解不等式求出参数的范围.解法 1 运用二次方程根的判别式,解法 2 运用均值不等式,解法 3、4 运用抛物线弦的中点在抛物线内部,分别成功地构造了关于k的不等式,这其中,韦达定理、曲线与方程的关系、两垂直直线的方向向量的数量积为零等为构造关于 k 的不等式起了积极作用 .练习 若抛物线 yax 21上总存在关于直线xy对称的两个点,则实数a的 取 值范围是 ( )1 ,3 ,0,11 , 3A 、4B 、4C、 4D、4 4答案: B题 8 抛物线 y24x的一条弦的倾斜角是, 弦长是4csc 2, 那么这种弦都经过一定点 , 该定点是 .(第十三届高二培训题第 73 题)解法 1 设弦过点M (a,0),则弦所在的直线是yk( xa),k tan, 90 ,yy 2 a)k y 2 y akk(,即4代入抛物线方程,消去 x得 4.(弦2cot 24 16a1 cot 21616a长)2=(1 )ktan 2csc 2 16cot 216a=16 csc4,即 16cot216a 16csc 216 16cot 2,由此得 a1 .x ax a 当90 时,弦所在直线方程为x a (a0) ,弦长为 4.由 y 24x ,得 y2 a或x ay2a.又由弦长4a4 ,得 a1 .综上,这些弦都经过点( 1,0).解法 2 由题意,对任意 都得同一结论,故运用特殊化思想解.4csc 24x a (a 0) ,代入令2,则弦长为2,此时弦所在直线方程为y24x ,得 y 24a , y2 a.由题设, 4 a 4,即 a 1 .所以2时,弦所在直线方程为x 1.4csc 28y b x 1 ,得再令4,则弦长为 4,设此时弦所在直线方程为x y 1 b , 代 入 y 24x 并 整 理 , 得 y24y 4b4 0,弦长1 1 ( y1 y2 ) 2 4 y1 y2 2 16 4(4b 4) 8,解得 b0,所以 4x 1时,弦所在直线方程为y x 1.解y x 1,得定点为( 1,0).评析题目本身反映了对于一条确定的抛物线,若确定,则以为其倾斜角的弦的长也确定,变化,则以为其倾斜角的弦的长也变化.但不论怎样变化,这样的弦都过一个定点,这反映了客观世界运动变化中的相对不变因素的存在.由题设可知0 ,故解法 1 设弦过点( a,0) ,并分直线的斜率存在与不存在两类情形,根据弦长是4csc2 ,直接求出 a 1 .从而说明不论为何值,弦总过定点( 1,0).这是合情合理的常规思维.然而,根据题意,这些弦过定点肯定是正确的,这就意味着满足题设的任意两弦的交点就是所求定点.这就具备了运用特殊化思想解题的前提.解法 2 分别令2 与 4 ,得到两个相应的弦所在直线的方程,解其联立方程组得其交点为 (1,0) ,即为所求.这种解法的逻辑依据是“若对一般正确,则对一般中的特7 3殊也正确.”至于解法2中为什么令2 与 4 ,而不令13与25,主要是为了计算的方便,这也是用此法解题时应当十分注意的.应当指出,凡解某种一般情形下某确定结论是什么的问题都可用这种方法解.拓展原题中弦长 4 csc2 中的 4 恰好为抛物线方程中的2 p,而答案中的定点(1,0) 又恰好为抛物线 y2 4x的焦点.这是偶然的巧合,还是普遍规律呢?经研究,这并非巧合,而是一个定理 .定理若抛物线 y 2 2 px ( p 0)的弦 PQ 的倾斜角为,则 PQ 2p csc2 的充分必要条件是 PQ经过抛物线的焦点F (p, 0)2 .证明先证必要性 :由已知,可设 PQ 的方程为y k ( xa) (k tan , 90 ) ,代入 y2 2 px ,得k 2 x22( k2 a p)x k 2 a 2 0 ①.由已知及弦长公式得2(1 k 2 ) (x1 x2 ) 2 4 x1x2② .将①的两根之和与积代入②,得PQ241 k2 22p csck4p 2apk,从而得 p 2 csc 4tan 4sec2( p22ap tan 2 ),a pF (p, 0)90时,结论也成立.解得2 ,即知 PQ过焦点2.容易验证当再证充分性:yk( xptan, 90 )由已知可设PQ的方程为 ) ( ky 22 px ,得2,代入4k 2 x 2 4 p( k 2 2) xk 2 p 2③,将③的两根之和与积代入②得PQ 2 p csc 2.容易验证当90时,结论也成立.应用该定理,可解决下面的问题:1.斜率为 1 的直线经过抛物线 y 24x的焦点,与抛物线相交于 A 、B 两点,求线段 AB 的长.2.PQ是经过抛物线y 2 4ax (a 0)焦点 F 的弦,若 PQb ,试求△ POQ 的面积( O是坐标原点).(91 年全国高中联赛题)3.PQ是经过抛物线y 2 4x焦点 F 的弦, O 是抛物线的顶点,若△POQ的面积为 4,求PQ的倾斜角.(98 年上海高考题)答案: 1. 8 2.aab3. 30 或 150题 9 长为 l (l1)的线段 AB 的两端在抛物线yx 2 上滑动,则线段 AB 的中点 M到 x轴的最短距离等于.(第 13 届高二第二试第 20 题)解 设 AB 的中点为 M (x, y),点 A 的坐标为(x, y),由对称性知 B 的坐y( x )2① ,)2y( x② ,22( l )2标为x, y,于是有以下关系成立:③ .2①+② , 得 y x22④,-②,得2 x ⑤.将④、⑤代入③,得22l 2yl 2 x21 [l 22)1]( yx )(1 4x )4 x 2 )4x 2 )(1 4x4 , 即4(14 (1, 因 为u xa 2(a x1 4x 2l (l0, x 0),a时, u 有最小值 , 当x a时 ,u是单调增加的 . 又当xl 21), y 关于 x2是单调增加的 , 所以 , 当x 0时 , y取得最小值 4.评析 点 M 到 x轴的最短距离显然就是点 M 的纵坐标的最小值 . 巧妙利用对称性,设出点 M 、A 、B 的坐标后,利用曲线与方程的关系及平几知识,可以得到三个关系式,这又有何用处呢?我们要求的是y的最小值,现在却出现了四个变量x 、 y 、 、 ,能否消去、从而得到y f (x),再求其最小值呢?果然,可以、yl 2 x 2 消去 ,得到4(1 4x 2 ) ⑥(这里用到了“设而不求”及函数的思想方法) . 若变形为yl 2 4x 216x 4x 24 16 x2,再令u,得到y l 2 4u 16u 216u 2(4 16 y)u l 2 4y0(u0)⑦,则可由方程⑦有非4 16u负实数解求出 y的最小值,但方程⑦有非负实数解的充要条件很复杂 . 能否用别的 什 么 方 法 呢 ? 考 虑 到 ⑥ 式 中 的1 4x2,故将⑥式变形为1 l 22l 2y4[1 4x 2(1 4x ) 1]⑧,由于14x 2 与 1 4x 2的积是定值,故当l 2l时, 有 y 最小值 .. 然而,因为l1 4 x 2=14x2 ,即14x21,所以 1 4x 2l ,0时,yminl 2即 1 4x 2取不到 l,故由函数⑧为x 2的单调增函数,可知当x4 .f (x) xa 2 ( a 0)0, 则当 x a 时 ,f ( x)取得最小值注:形如x的函数,若x2a ; 若xa (b b0 ), 则f ( x)单 调 递 增 ,f ( x)minf (ab) ; 若0 xab( 0 b , a) f ( x)则单调递减, f (x) minf (a b).( 请读者自己证明该结论 )拓展 将此题推广,可得定理 1 长为l的线段 AB 的两端在抛物线x22 py( p0)上滑动,线段 AB 的中点 M到x轴的距离为d,则0 l 2 p时, d min l 2;当8 p当 l 2p时, d min lp, d max l 22 8 p .证明由题意,直线 AB 的斜率k存在 . 设A( x1 ,x12), B( x2,x22 ), M ( x0 , y0 ),2 p 2 p 则x12 x22kAB 2 p 2px1 x2x2 2pyx1 x2 x0y y0 x0(x x0 ) y y0x0(x x0 )2p p,所以直线 AB的方程为p p,由,2x02,因为点 M在抛物线的内部,即yx02消去y,得 x2 2 x0 x 2 py0 2p ,所以(4 2py0 x02) 0,又x1 x2 2 ,x0 x1 2 x22 x20所p 0 y,以2l 1 x2 | x1 x2 | p1 p2 x02 ( x1 x2 )2 4x1x2 2 p2 x02 2 py0 x02p p . 于是d y0 p 2 l x02 ,8( p2 x 2 ) x02 p对求导数,得0' pl 2( 2 ) x12xx20[1 )p2l 22]2dx08 p 1 x0 ( 0p0 2 2 22 p 4( p x0 )x0x02 )2 [2( p 2 2 pl ][ 2( p 24p( p2 x0 ) x02 ) pl ] .(1)若0l2p(抛物线的通径长),令dx',得x,易知x,是 ddminl 2x 0AB y 8 p的唯一极小值点,所以当(即 轴)时,;',得xx 02 p(l 2 p),易知当x 0 0时,( 2)若l22 p,令d x0 或l 2 x 02 p(l2 p) lpdmax2时, dmin2 .8 p ;当l 2令定理中的 2 p 1 ,由定理的结论( 1)可知本赛题的答案为 4.此定理尽管也可以用均值不等式加以证明,但配凑的技巧性很强 . 这里,运用高中数学的新增内容导数进行证明,显得较为简洁 . 用导数研究函数的最值问 题,顺理成章,不必考虑特殊技巧,易被大家接受,应当加以重视并大力提倡 .此定理还可进一步拓广到椭圆、双曲线的情形,便得如下:x 2 y 2 1(a b0)定理 2已知 A 、 B 两点在椭圆a 2b2上滑动, |AB| =l,线段 AB 的中点 M 到 y 轴的距离为 d,则当 2b 2 l 2a 时, d max a( 2a l )a 2 a 2b 2( 1);( 2)当 l2b 2 时, d maxa 4b 2 l 2 .a2bx 2 y21(a,b 0)定理 3已知 A 、B 两点同在双曲线a 2b 2的右(或左)分支上滑动, |AB| = l ,线段 AB 的中点 M 到 y 轴的距离为 d,则当l 2b 2 时, d mina(2a l )( 1)a2 a 2 b 2 ;l2b 2 时, d mina 4b 2 l 2( 2)当a2b.为证定理 2、3,可以先证引理 在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短 .ep l证明 设圆锥曲线的极坐标方程为1ecos,其中 e表AOFxBx示圆锥曲线的离心率,p表示焦点 F 到对应准线 l的距离,设 AB 是圆锥曲线过焦点 F 的弦,且 A ( 1,), B( 2 ,) ,epepep1,2ecos ,所以 | AB | 1因为1 ecos1 ecos() 1 2ep ep2ep1 ecos + 1 ecos= 1 e 2 cos 2 . 当2 ,即当 AB 与对称轴 x轴垂直时,| AB |min2ep,故在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短.下面运用引理证明定理 2 .xa 2 证明 (1)不妨设椭圆的右焦点为 F (c,0),A 、M 、B 三点到右准线 c 的距离分别是t 1、 t 、 t 2,则 t t 1t2,由 椭 圆 的 第 二 定 义 知 : |AF|=et1,2|BF|= et 2 (e c )a ,|AF|+|BF||AB|= l,所以 t l2b 2 ,当 l 2b 2 时,2e. 又过焦点的弦最小值为aa线段lAB 可 以 过 焦 点 F , 当 AB 过 焦 点 F 时 , t有 最 小 值2e, 因 此a2la(2a l ) a( 2a l )d m a x2 a 2 b 2c2e2c.当 l2b 2 时,a( 2)线段 AB 不可能过焦点 F ,但点 M总可以在过 F 垂直于 x轴的椭圆的弦的右侧, 如右图,在△ AFM 中,设 ∠AMF= ,由余弦定理知| AF |2 | FM |2 | AM |22 | FM || AM |cosyAt1FOM t xBt2| FM |21l21l 2 cos在 △BFM42, 中 ,|BF|2|FM |21 l2 1l 2cos|AF |2| BF |2 2 | FM |21l 242,所以2,所以1(2|AF| 222| FM | ta 2 cb 2|FM || BF | ) lcc,所以2,又t1 22) l 2b 2(2|AF||BF|2c①,无论线段 AB 在什么位置,不等式①都成立.又(2|AF| 22) l 2(|AF |2l 22(t 1 t 2 ) 2l 22 22, 故|BF | |BF |)e4e tl t2 21 2b 2ta 2a 4b 2l 2e tlcc2b③,当线段 AB 垂4②. 解此不等式,得直 于 x轴 且 在焦 点 F 的 右侧 时, 不等 式 ① 、 ② 、 ③ 都 取等 号, 此时t min a2a 4b 2 l2dmaxa 2( a 2a 4b 2 l 2 ) a4b 2 l 2c2b, cc2b2b. 仿此亦可证明定理 1、3,不再赘述 .题 10动圆 M 过定点 A 且与定圆 O相切,那么动圆M 的中心的轨迹 是( )A 、圆B 、圆,或椭圆C 、圆,或椭圆,或双曲线D 、圆,或椭圆,或双曲线,或直线(第三届高二第二试第 10 题)解 动圆 M 、定点 A 、定圆 O, 这三者的位置关系有 5种可能,如图⑴~⑸:O在情形⑴: A 在圆O上,这时动圆 M 与定圆O相切于 A ,所以 M 点的轨迹是过O, A的一条直线 .在情形⑵: A 与O重合,这时动圆 M 在定圆O的内部,与它内切,所以 M 点的轨迹是以O为圆心,以定圆O的半径的一半为半径的圆 .在情形⑶: A 在定圆O的内部但不重合于 O 点,动圆 M 过 A 且与定圆 O 内切,这时动点 M 与定点 O 、 A 的距离的和是MOMA ( R x)xR(定值),其中的 R 、x分别表示定圆 O 、动圆 M 的半径 . 可知点 M 的轨迹是以 O、A 为焦点,R 为长轴长的椭圆 .在情形⑷: A 在定圆O的外部,动圆M 过 A 且与定圆O外切,这时MO MA(R x) x R(定值) . 可知 M 的轨迹是以 O 、 A 为焦点, R 为实轴长的双曲线的一支 .在情形⑸: A 在定圆O的外部,动圆M 与定圆O内切,这时MAMOx ( xR)R(定值). 可知 M 点的轨迹也是以O, A为焦点 . R 为实轴长的双曲线的一支(和情形 4 对应的另一支) .综上,可知选 D.评析 分类讨论是参加高考与竞赛必须掌握的数学思想 . 分类要注意标准的统一,不可重复,也不能遗漏 . 此题的关键是要搞清全部情形有 5 种,然后再分别求动圆中心的轨迹 . 运用二次曲线的定义大大简化了解题过程 .应当指出,当点 A 在圆O上时,动圆 M 的中心的轨迹是直线OA,但应除去点 O 、A . 另外,讨论完第一种情形后就可排除A, B, C,而选 D,这样就更快捷了.。
2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。
【高中数学竞赛专题大全】 竞赛专题7 解析几何 (50题竞赛真题强化训练)一、填空题1.(2021·全国·高三竞赛)已知ABCD 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD 的面积等于_______.【解析】 【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCDAOB S S =△,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上, 如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --. 将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:0014x y ⎧=⎪⎪⎨⎪=-⎪⎩或0014x y ⎧=⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪⎪⎩.故242||21ABCDADBAOBA B SSSOP x x ===⋅-=⨯=故答案为:36542.(2021·全国·高三竞赛)抛物线2Γ:2(0)y px p =>,设它的某三条切线交于A 、B 、C 三点,设ABC 的外接圆与x 轴相切,切点为(,0)D k ,则k =_______. 【答案】2p k = 【解析】 【分析】先证明A 、B 、C 、F 四点共圆,得出D 、F 重合,进而求出k . 【详解】设Γ的焦点为,02p F ⎛⎫⎪⎝⎭,下面我们证明:A 、B 、C 、F 四点共圆.设直线AB 与Γ切于()11,P x y ,直线BC 与Γ切于()22,Q x y ,直线CA 与Γ切于()33,R x y .则2(1,2,3)2i i y x i p==,于是直线AB 的方程为()11yy p x x =+,直线BC 的方程为22()yy p x x =+,直线CA 的方程为()33yy p x x =+.记i l 为直线()(1,2,3)i i yy p x x i =+=.设F 在直线AB BC CA 、、上的射影分别为123K K K 、、,于是直i FK 的方程为2i y p y x p⎛⎫=-- ⎪⎝⎭,又直线i l 方程为()(1,2,3)i i yy p x x i =+=,则直线i FK 与直线i l 交点为0,(1,2,3)2i y i ⎛⎫= ⎪⎝⎭,所以123K K K 、、均在y 轴上,故123K K K 、、三共线,由Simson 定理逆定理知:A 、B 、C 、F 四点共圆.所以D 、F 重合,于是2p k =. 3.(2021·全国·高三竞赛)设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =.若在Γ的右支上存在一点A ,使得||||OA OF =且3OAB OBA ∠≥∠,则Γ离心率的取值范围为___________. 【答案】2215⎛+ ⎝⎦【详解】在平面直角坐标系xOy 中考虑问题.不妨设A 在第一象限.A 是以O 为圆心,OF 为半径的圆Ω与Γ的交点. 设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即,FAB FBA FA FB ∠≥∠≤.在Ω上取一点C ,使FC FB =,则FC FA ≥. 由双曲线的定义知2CX CF a -≤(a 是实半轴长),即 2222(2)4a CF CX c CF +≥=-(c 是半焦距).代入2c CF FB ==,得2222424c c a c ⎛⎫+≥- ⎪⎝⎭.解得22151,7e ⎛⎤+∈ ⎥ ⎝⎦. 故答案为:22151,7⎛⎤+ ⎥ ⎝⎦4.(2021·全国·高三竞赛)过椭圆221169x y +=上一点M 作圆222x y +=的两条切线,点A 、B 为切点过A 、B 的直线l 与x 轴、y 轴分别交于点P 、Q 两点,则POQ △面积的最小值为___________. 【答案】13【详解】解析:设(4cos ,3sin )M θθ,则l 的方程为(4cos )(3sin )2x y θθ+=,12,2cos 3sin P Q x y θθ==, 11123sin 23P Q S x y θ=⋅=≥,当且仅当4πθ=时等号成立,故答案为:13.5.(2021·全国·高三竞赛)设123A A A △为抛物线24y x =的内接三角形,分别过1A 、2A 、3A 作抛物线的切线1l 、2l 、3l ,设三条切线相交所成的三角形为123B B B .求123A A A △与123B B B 的面积比. 【答案】2 【解析】 【详解】推导一般情况.设222(0),,,1,2,32i i i t y px p A t i p ⎛⎫=>= ⎪⎝⎭.那么过i A 的切线方程为2222i i t x p y t p +⋅=⋅,即2:,1,2,32ii i t l yt px i =+=.联立1l 与2l 的方程:211222,2.2t yt px t yt px ⎧=+⎪⎪⎨⎪=+⎪⎩解得1212,2.2t t x p t t y ⎧=⎪⎪⎨+⎪=⎪⎩ 这表明1l 与2l 的交点3B 的坐标为12123,22t t t t B p ⎛⎫+ ⎪⎝⎭.同理,13132,22t t t t B p ⎛⎫+ ⎪⎝⎭,23231,22t t t t B p ⎛+⎫ ⎪⎭⎝.由面积公式:123123A A AB B B S S =△△2112222331212131323231211221212211222122t t pt t p t t pt t t t p t t t t pt t t t p+++=2211222233121213132323111111t t t t t t t t t t t t t t t t t t +++而222112222332222231213122313111t t t t t t t t t t t t t t t t t t =++---, ()()()()121221313132312132321311232323111t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ++=+++++-++()()222312312123t t t t t t t t t t -+-+232222122331122331t t t t t t t t t t t t =++---,所以211222231212131333232111111t t t t t t t t t t t t t t t t t t +=++,从而1231232A A A B B B SS=.故答案为:2.6.(2021·全国·高三竞赛)双曲线222019x y -=,左右顶点分别为1A 、2A ,P 为双曲线右支上一点,且1210A PA ∠=︒,则12PA A ∠=___________. 【答案】40︒ 【解析】 【详解】设直线12,A P A P 的倾斜角分别为,αβ,则2019tan tan 12019αβ==, 故90αβ+=︒,而10βα-=︒,故40α=︒, 故答案为:40︒.7.(2021·全国·高三竞赛)已知双曲线2213y x -=的左右焦点为1F 、2F ,过2F 的直线与双曲线右支交于A 、B 两点,则12AF F △、12BF F △的内切圆面积之和的取值范围是__________. 【答案】102,3ππ⎡⎫⎪⎢⎣⎭【解析】 【详解】解析:令12AF F △、12BF F △的内切圆心为1I 、2I ,与x 轴切于M ,N ,则12121132F F F A F AF M F N +-===,所以M 、N 重合于双曲线右顶点.过2F 的直线与双曲线右支交于A 、B 两点,令212,33AF F ππα⎛⎫∠=∈ ⎪⎝⎭,内切圆面积和为22221210tan cot 2,223S r r ααπππππ⎛⎫⎡⎫=+=+∈ ⎪⎪⎢⎝⎭⎣⎭.故答案为:102,3ππ⎡⎫⎪⎢⎣⎭.8.(2021·全国·高三竞赛)已知双曲线22221x y a b -=的左右焦点分别为1F 、2F ,过1F 作圆222x y a +=的切线分别交双曲线的左右两支于点B 、C ,若2BC CF =,则双曲线的离心率为__________. 523+【解析】 【详解】根据题意,记12BF F θ∠=,则sin a cθ=,其中c进而由双曲线的焦半径公式和双曲线的定义,可得1112CF BF CF a -=-, 即22cos b a c aθ=+,也即22b a bc a c=⋅+,解得1ba=因此双曲线的离心率c e a ===9.(2021·浙江·高三竞赛)若正方形ABCD 的一条边在直线206y x =+上,另两个顶点在抛物线2yx 上,则该正方形的面积为______.【答案】2178或1250 【解析】 【分析】 【详解】设另一条边所在直线为y x m =+,则20x x m --=, 设两交点的横坐标12,x x,则12x x -=2428424320m m -+=, 解得272m =或156m =,所以22178S ==或1250.故答案为:2178或1250.10.(2021·浙江·高三竞赛)已知点()3,1P ,存在抛物线24x y =上相异的两点A ,B ,使得四边形PAQB 为矩形,则点Q 的轨迹方程是______.【答案】()222395402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】 【分析】 【详解】设()()1122,,,,(,)A x y B x y Q x y ,且22112211,44y x y x ==. 则由四边形PAQB 为矩形知,121231x x x y y y +=+⎧⎨+=+⎩ ,即122212311144x x xx x y +=+⎧⎪⎨+=+⎪⎩, 即122123(3)442x x x x y x x +=+⎧⎪⎨+--=⎪⎩, 且PA PB ⊥,即()()()()12120,33110PA PB x x y y ⋅=--+--=,()()121212123910x x x x y y y y -+++-++=, ()()222212121212113910164x x x x x x x x -+++-++=, 222(3)441(3)443(3)9(1)102162x y x y x y ⎡⎤+--+----++-++=⎢⎥⎣⎦,222(3)441(3)4430244x y x y x y ⎡⎤+--+--++-=⎢⎥⎣⎦,即2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 故点Q 的轨迹方程为2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故答案为:2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 11.(2021·全国·高三竞赛)已知椭圆Γ的方程为22195x y +=,经过Γ的左焦点(2,0)F -,且斜率为1k (1k 存在且不为0)的直线与Γ交于A 、B 两点,设点(1,0)R ,延长AR 、BR 与Γ分别交于点C 、D .直线CD 的斜率为2k ,将2122k k 写成既约分数ab,其中a ,b 是互质的正整数,则2a b +=__________. 【答案】305 【解析】 【分析】 【详解】设()()()()11122334411,,,,,,,,:1AR x A x y B x y C x y D x y l x y y -=+代入椭圆Γ的方程, 消去x 得2112115140x x y y y y --+-=. 由韦达定理得()211311405y y y y x =-≠-, 从而13145y y x =-,代入直线AR 的方程得131595x x x -=-.类似的,242595x x x -=-,24245y y x =-.故()()121212342342145516y x y y x y y y k x x x x --+-==--.因为A 、F 、B 三点共线,所以121222y y x x =++,故()1221212y x y x y y -=-, 所以()()2211212212771616,494449y y a k k k a b x x b k -==⇒==⇒==-. 所以2305a b +=. 故答案为:305.12.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【解析】 【分析】 【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t13.(2021·全国·高三竞赛)已知1F 、2F 是椭圆2222:1(0)x y M a b a b +=>>的焦点,P 是M 上一点,12PF F △的周长是6,且41a c+的值是3,过(4,0)Q -的直线交M 于不同两点A ,B ,则QA QB ⋅的取值范围是_________.【答案】45,124⎛⎤⎥⎝⎦【解析】 【分析】 【详解】 因为12226PF F Ca c =+=,所以3a c +=.由241()(21)a c a c ⎛⎫++≥+ ⎪⎝⎭,413a c +≥,得到2,1a c ==,所以椭圆的方程为22143x y +=.(1)当直线QA 为0y =时,12QA QB =.(2)设直线QA 的方程为4x my =-,联立得22123034m y my ⎛⎫+-+= ⎪⎝⎭, 221(2)43034m m ⎛⎫∆=-⨯⨯+> ⎪⎝⎭,得2m >或2m <-.所以()2212231143m QA QB y y m +⋅=⋅=+.将2m >或2m <-代入,得出QA QB ⋅的取值范围为45,124⎛⎫⎪⎝⎭.由(1)(2)知QA QB 的取值范围为45,124⎛⎤⎥⎝⎦.故答案为:45,124⎛⎤⎥⎝⎦.14.(2021·全国·高三竞赛)已知P 、Q 分别是圆22:(4)8C x y -+=与圆22:(4)5D x y +-=上的点,O 是坐标原点,则PQ 的最小值为__________.【解析】 【分析】 【详解】由22(4)8x y -+=得22880x x y -++=,于是22222828x x y x y -++=+,从而()22221442x x y x y -++=+=等于点P 到点(2,0)M 的距离.所以PQ PQ PM MQ +=+≥,而min MQ =所以PQ15.(2021·全国·高三竞赛)半径为2的球O 放在水平桌面上,该水平桌面所在平面内的一点1A 的竖直正上方有一个点光源A .若1AA 与球O 相切,且16AA =,那么,球O 经过点光源A 照射之后,在该水平桌面上的投影的离心率为_________. 【答案】12 【解析】 【分析】 【详解】考虑过A 、1A 、O 三点的截面,设12A A 的中点为M ,如图:容易求得1228,10,213A A AA AM === 则利用圆锥曲线的定义知,投影的椭圆的长半轴长为42212232AA AA AM +⎛⎫-= ⎪⎝⎭224(23)12-=.故答案为:12.16.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,若椭圆22111x yt t +=+-与双曲线1xy =相切,则t =_________. 5【解析】 【分析】 【详解】设切点为1,m m ⎛⎫⎪⎝⎭.容易求得1xy =在1,m m ⎛⎫⎪⎝⎭处的切线为()211y x m m m =--+,即220x m y m +-=.椭圆22111x y t t +=+-在1,m m ⎛⎫ ⎪⎝⎭处的切线为()1011mx y t m t +-=+-,由以上两条切线为同一条直线,知()2211121m m t m m m t ⎧⋅=⎪+⎪⎨⎪⋅=-⎪⎩,因为1t >,所以由以上方程组容易解得5t = 517.(2021·全国·高三竞赛)设双曲线22221x y a b -=的离心率为e ,过原点的直线与之交于A 、B 两点,若双曲线上存在一点C ,使得直线AC 的斜率与直线BC 的斜率之乘积恰为e ,则e 的值为__________.【解析】 【分析】 【详解】设()()sec ,tan ,sec tan ,sec ,t (n )a A a b B a b C a b ααααββ--﹐, 则222tan tan tan tan 1sec sec sec sec AC BCb b b b b k e a k a a a aβαβαβαβα-+=⨯==--+⋅,因此21e e -=,即e =. 18.(2021·全国·高三竞赛)任作椭圆22221x y a b+=的一条切线与椭圆两条对称轴分别交于点A B 、,若AB 长度的最小值为4b ,则椭圆的离心率为___________.【答案】3【解析】 【分析】 【详解】设切点为()cos ,sin P a b θθ,则切线方程为cos sin 1x y a bθθ+=. 其与x 轴、y 轴交点分别为,0,0,cos sin a b A B θθ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, 所以()2222222222cos sin ()cos sin cos sin a b ab AB a b θθθθθθ⎛⎫⎛⎫⎛⎫=+=++≥+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以4,3,ca b b a b e a +=====. 19.(2021·全国·高三竞赛)已知S 、P (非原点)为抛物线2y x 上不同的两点,点P 处的切线与y 轴交于点R ,若SP PR ⊥,则PSRS的最小值为______________.【解析】 【分析】 【详解】设()200,P x x ,则切线方程:()002y x x x =-,交于y 轴上的点()200,2R x -,切线的垂线:()0012y x x x =--, 与抛物线联立,解点S 的坐标:2000011,22S x x x x ⎛⎫⎛⎫ ⎪--+ ⎪ ⎪⎝⎭⎝⎭, 那么011||||222SPRSSP PR x x =⋅=⋅()2200141=42x x +⋅令02t x =,则:()22114SPRtSt+=⋅()2222111133344t t tt⎛⎫+++ ⎪+⎝⎭==24t ⎛ ⎝⎭≥==最值在213t =时取到.. 20.(2019·山东·高三竞赛)△ABC中,16,9AB BC CA ===.在△ABC 外部,到点B 、C 的距离小于6的点组成的集合,所覆盖平面区域的面积是______ .【答案】54π【解析】 【详解】分别以点B 、C 为圆心,6为半径作圆,交于三角形外一点D ,连结BD 、CD ; 有5353cos ,cos 7272A BDC =∠=-,故A 、B 、D 、C 四点共圆,所以∠ABD +∠ACD =π. 又易知AB 与圆C 相离,故所求的面积为2个圆的面积去掉半个圆的面积再加上△BCD 的面积等于54π+故答案为:54π 21.(2019·重庆·高三竞赛)已知△ABC 为椭圆22194x y +=的内接三角形,且AB 过点P (1,0),则△ABC 的面积的最大值为_______ .【解析】 【详解】提示:经伸缩变换32x X y Y=⎧⎨=⎩得△A 'B 'C '内接于圆X 2+Y 2=1,A 'B '过点1,03P '⎛⎫ ⎪⎝⎭.6ABCA B C SS'''=,设O '到A 'B '的距离为t ,则10,3t A B ''=21(1)A B C S t t '''-⋅+,易知当13t =时,A B C S ''',所以S △ABC .. 22.(2019·全国·高三竞赛)在平面直角坐标系中,若以(r +1,0)为圆心、r 为半径的圆上存在一点(a ,b )满足b 2≥4a ,则r 的最小值为____________ . 【答案】4 【解析】 【分析】根据题意,求得,a r 的不等关系,结合不等式有解,即可求得r 的范围,从而求得最小值. 【详解】由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a =---=---. 即22(1)210a r a r --++.上述关于a 的一元二次不等式有解,故判别式2[2(1)]4(21)4(4)0r r r r --+=-, 解得r ≥4.经检验,当r =4时,(,)(3,a b =满足条件.因此r 的最小值为4. 故答案为:4.本题考圆的方程,以及一元二次不等式的有解问题,属综合中档题.23.(2019·四川·高三竞赛)双曲线22221x y a b-=的右焦点为F ,离心率为e ,过点F 且倾斜角为3π的直线与该双曲线交于点A 、B ,若AB 的中点为M ,且|FM |等于半焦距,则e =_____ .【解析】 【详解】设点()()()112200,,,,,A x y B x y M x y ,则2222112222221,1x y x y a b a b-=-=.两式相减,得()()()()12121212220x x x x y y y y a b +-+--=,所以AB的斜率为20122120b x y y k x x a y -===-又||,3FM c xFM π=∠=,所以M点的坐标为32c ⎛⎫ ⎪ ⎪⎝⎭. 所以22b a=01x =,所以c e a ===二、解答题(共0分)24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b +=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【解析】 【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a kk a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x a x ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+, 于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭. 所以直线OD 的方程为()221a x y a k=--. 设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭, 由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey F a b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,2D ⎛ ⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C 上,故222222123311a a a a ⎛⎫-⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭+=-,解得98a =, 于是1C 的离心率为223c e a ==. 25.(2021·全国·高三竞赛)已知如图椭圆221:14x C y +=的左右顶点为1A 、2A ,上下顶点为1B 、2B ,记四边形1122A B A B 的内切圆为2C .(1)求圆2C 的标准方程;(2)已知P 为椭圆1C 上任意一点,过点P 作圆2C 的切线分别交椭圆1C 于M 、N 两点,试求三角形PMN 面积的最小值.【答案】(1)2245x y +=;(2)85. 【解析】 【详解】(1)因为2A 、1B 分别为椭圆221:14x C y +=的右顶点和上顶点, 则2A ,1B 坐标分别为(2,0),(0,1),可得直线21A B 方程为:22x y +=, 则原点O 到直线21A B 的距离为2512d ==+,即圆2C 的半径5r d ==, 故圆2C 的标准方程为2245x y +=. (2)设直线PM 方程为1mx ny +=,由直线PM 与圆2C 相切,可知原点O 到直线PM 距离225d m n ==+2254m n +=,将直线PM 方程代入椭圆1C 可得222()4x y mx ny +=+, 整理即有()222448410y y n mn m x x ⎛⎫-++-= ⎪⎝⎭,则2212221241411544444y y m m x x n m --===--⎛⎫-- ⎪⎝⎭, 即1OP OM k k ⋅=-,故OP OM ⊥.同理OP ON ⊥,故M 、O 、N 三点共线,则2||||PMNOPMS SOP OM ==.设:OP y kx =代入椭圆方程可得22214x k x +=,则22414x k =+, 故()()222222241114k OP x y kxk+=+=+=+,同理()22222141414114k k OM k k ⎡⎤⎛⎫+-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦==+⎛⎫+- ⎪⎝⎭,则 ()()22222211144544141k k OP OM k k +++=+=++, 则2251124||||OP OM OP OM =+≥,得8||||5OP OM ≥, 则85PMN S OP OM =≥△,当且仅当OP OM ==故三角形PMN 面积的最小值为85.26.(2021·全国·高三竞赛)已知椭圆22:11612x y C +=的右焦点为F .C 上两点A 、B 满足()1A B A B x x x x +=≠,且FA FB ⊥.求证:以AB 为直径的圆恒过异于点F 的一个定点.【答案】证明见解析 【解析】 【详解】设()(),,,A A B B A x y B x y ,由FA FB ⊥可得()()220A B B A x x y y --+=,结合1A B x x +=可得2A B A B x x y y +=-,而以AB 为直径的圆为:()()()()0A B A B x x x x y y y y --+--=,化简可得()2220A B x y x y y y +---+=,该圆过(1,0)-或(2,0)(舍).27.(2021·全国·高三竞赛)已知()()()111222333,,,A x y A x y A x y 、、是抛物线()220y px p =>上三个不同的动点,123A A A △有两边所在的直线与抛物线22(0)x qy q =>相切.证明:123A A A △的重心在定直线上. 【答案】证明见解析 【解析】 【详解】如图,不妨设边13A A 和23A A 所在直线与抛物线22(0)x qy q =>相切,切点分别为1T 和2T .那么切点弦12T T 所在直线方程为()33x x q y y =+.设切点1T 和2T 的坐标分别为211,2t t q ⎛⎫ ⎪⎝⎭和222,2t t q ⎛⎫ ⎪⎝⎭,则切线13A A 的斜率为1t q ,于是有31131y y t x x q -=-,即1312t py y q=+. 把切点1T 的坐标代入直线方程()33x x q y y =+中,可得213132t x t q y q ⎛⎫=+ ⎪⎝⎭,整理即22311322y t t q y p q ⎛⎫=+ ⎪⎝⎭, 再把1312t p y y q =+中的1t 代入该式,可得()223323131222y pqp q q y p y y y y ⎡⎤⋅=+⎢⎥++⎢⎥⎣⎦, 即()2233231312y p q y y y y y =+++,即()213231312y y p q y y y y -=++,可得()213132y y y y p q +=-. 同理,利用切点2T 可以推得()223232y y y y p q +=-.上面两式相减可得1230y y y ++=,所以123A A A △的重心的纵坐标恒为0,从而一定在x 轴(定直线)上.28.(2021·全国·高三竞赛)设椭圆22122:1(0)x y C a b a b +=>>,抛物线222:C x by b +=.(1)若2C 经过1C 的两个焦点,求1C 的离心率;(2)设5(0,),33,4A b Q b ⎛⎫ ⎪⎝⎭,又M 、N 为1C 与2C 不在y 轴上的两个交点,若AMN 的垂心为30,4B b ⎛⎫⎪⎝⎭,且QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程.【答案】(1)22;(2)椭圆方程为2211643x y +=,抛物线方程为224x y +=.【解析】 【详解】(1)已知椭圆焦点(,0)c 在抛物线上,可得:22c b =,由22222a b c c =+=,有221222c e a =⇒=.(2)由题设可知M 、N 关于y 轴对称,设()11,M x y -,()()111,0N x y x >, 由AMN 的垂心为B ,有()21113004BM AN x y b y b ⎛⎫⋅=⇒-+--= ⎪⎝⎭.由点()11N x y ,在抛物线上,有2211x by b +=,解得14by =-或1y b =(舍去).故1,,,,44b b x M N ⎛⎫⎫=-- ⎪⎪⎝⎭⎝⎭,得QMN重心坐标4b ⎫⎪⎭.由QMN 的重心在抛物线上得:2234bb +=,所以112,,22b M N ⎛⎫⎫=-- ⎪⎪⎝⎭⎭,又因为M 、N 在椭圆上可得2163a =, 所以,椭圆方程为2211643x y +=,抛物线方程为224x y +=.29.(2020·浙江·高三竞赛)已知直线l 与椭圆C :22221(0)x y a b a b +=>>交于A 、B 两点,直线AB 不经过原点O .(1)求OAB 面积的最大值;(2)设M 为线段AB 的中点,延长OM 交椭圆C 于点P ,若四边形OAPB 为平行四边形,求四边形OAPB 的面积. 【答案】(1)2ab ;(2. 【解析】 【详解】解法一 当直线AB 的斜率不存在时,由对称性,设直线AB 方程为()0x n n a =<<,则y =122OABS n =⨯⨯=△2222122n n a a ab ab ⎛⎫+- ⎪⎝⎭≤=,当且仅当n =. 设直线l :()0y kx m m =+≠,()11,A x y ,()22,B x y ,联立方程22221x y a b y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:()22222222220ba k x a kmx a m ab +++-=,判别式()()()()2222222222222222440a km b a k a m a b a b b a k m ∆=-+-=+->,则2222b a k m +>,于是AB ==原点O 到AB的距离d =1122OABS AB d ==△()()2222222222m b a k m ab ab ab b a k ++-=≤⋅=+, 当且仅当22222m b a k =+时取等号.(2)不妨设0k >,根据垂径定理得:22AB OM k k b a =-⋅,则OM 的方程为22b y x a k=-.将OM 的方程代入椭圆方程,消去y 得422222a k xb a k =+.注意O 、P 在直线AB 的两侧,所以M x =2222M M b b y x a k a k ⎛⎛⎫=-=- ⎪ ⎝⎭⎝.又点M 在直线ABk m ⎛=+ ⎝,化简得:22224b a k m +=,则22OAPB OAB S S ab ===△解法二 (1)设x x ay y b ⎧=⎪''⎪⎨⎪=⎪⎩,则221x y ''+=,OAB O A B S abS '''=△△.设原点O '到直线A B ''的距离为()()0,1d d ∈,则22122OAB O A B d d abS abS ab A B d ab '''-+''==⋅=≤=△△. (2)要四边形OAPB 为平行四边形,则四边形O A P B ''''为菱形,由(1)知12211sin1202O A B S S S ''''==⨯⨯⨯⨯︒=⇒=△.解法三 (1)设()cos ,sin A a b αα,()cos ,sin B a b ββ,则 ()1cos sin cos sin sin 222OAB ab abS a b a αββααβ=⋅-=-≤△, 当且仅当2k παβπ-=+,k Z ∈时取等号.(2)(cos cos ,sin sin )OP OA OB P a a b b αβαβ=+⇒++,则2222(cos cos )(sin sin )1a a b b a b αβαβ+++=,即22cos()1αβ+-=,移项整理得1cos()2αβ-=-,则()3sin 2αβ-=,故322OAPB OAB S S ab ==△. 30.(2021·全国·高三竞赛)如图,已知抛物线22(0)y px p =>焦点为F ,ABC 三边所在直线与抛物线分别相切,求证:ABC 外接圆过定点.【答案】证明见解析 【解析】 【详解】由对称性,及BC x ⊥轴,可猜测ABC 的外接圆过定点F .设()22,2P pt pt ,切点()2112,2M pt pt ,切点()2222,2N pt pt ,则2:22BC l t y x pt ⋅=+; 211:22AC l t y x pt ⋅=+;222:22AB l t y x pt ⋅=+.则()12122,A pt t pt pt +,()222,B ptt pt pt +,()112,C ptt pt pt +, 所以()()121222,4141CF BF t t t t k k t t tt ++==--,因此()()()()()2112212112212224141tan 2214114141BF CF BF CFt t t t t t k k tt t t CFB t t t t k k t t tt t t ++-----∠===+++⋅++--. 同时12121122tan tan 1114AC AB AB ACk k t t BAC CFB k k t t --∠===-∠+⋅+,所以180BAC BFC ∠+∠=︒,故ABC 外接圆过定点F .31.(2021·全国·高三竞赛)已知A 、B 是抛物线2:4C y x =上的两个动点,点A 在第一象限,点B 在第四象限,直线12l l 、分别过点A ,B 且与抛物线C 相切,P 为12l l 、的交点.设C 、D 为直线12l l 、与直线4x =的交点,求PCD 面积的最小值. 1283【解析】 【详解】设()22121212,,,044y y A y B y y y ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,则1l 方程为12121,2y x y l y =+方程为22212y x y y =+, 联立1l 、2l 方程可得点P 坐标为1212,42y y y y P +⎛⎫⎪⎝⎭,C 、D 的坐标分别为11814,2y y ⎛⎫+ ⎪⎝⎭、22814,2y y ⎛⎫+ ⎪⎝⎭,所以()()1212121212168181||222y y y y CD y y y y y y --⎛⎫⎛⎫=+-+=⎪ ⎪⎝⎭⎝⎭. 于是()()121212121614242PCDy y y y y y Sy y --=-⋅. 设21212(0),y y t t y y m =->-=,由()()2222121212440y y y y y y m t +=-+=-≥知2m t ≥, 当且仅当120y y +=时等号成立,所以()()()()222222222221616216161424216168PCDtmm t t t t t St t t t--⋅+⋅++=+⋅=≥=-.设()2216()8tf t t+=,则()()()()222222221621631616()88t t t t t t f t tt+⋅⋅-+-+=='.所以0t <<时,()0f t '<;t >()0f t '>, ()f t '在区间⎛ ⎝⎦上为减函数;在区间⎫+∞⎪⎪⎣⎭上为增函数.所以t =时,()f t所以当1212160,3y y y y +==-,即12y y ==PCD. 32.(2021·全国·高三竞赛)已知椭圆22223:1(0)x y C a a a+=>,点P 、Q 在椭圆C 上,满足在椭圆C 上存在一点R 到直线OP 、OQ 的距离均为12a ,证明:223a OP OQ ⋅≤.【答案】证明见解析 【解析】 【详解】设cos R a θθ⎛⎫⎪⎝⎭,1:0OP k x y -=,2:0OQ k x y -=, 则根据题意,1k 、2k 是关于k12a =的两个实根,该方程即222111cos sin 0434k k θθ⎛⎫-+-= ⎪⎝⎭, 于是2212221111sin sin 13434133cos sin 44k k θθθθ--⋅===---.OP OQ ⋅=2a =2a =2a =2a ≤223a =, 原命题得证.33.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,已知抛物线2:4C y x =,焦点为F ,A 为抛物线C 上异于顶点的动点,D 为x 轴正半轴上的动点.设直线AF 、AD 分别交抛物线C 于M 、N (不同于点A ),设,AF FM AD DN λμ==.已知FA FD =,且43λμ+=,求直线MN 的方程.【答案】12(1)2y x +=--或12(1)2y x -=-.【解析】 【分析】 【详解】设()20000,,4A x y y x =,则(),M M M x y 满足()002114M M M M y y x x y x⎧=-⎪-⎨⎪=⎩, 消元得()200000411M M y y y y x x --=--, 由根与系数的关系得04M y y =-,2000044M y y y y y λ=-=-=⎛⎫- ⎪⎝⎭. 因为01DF AF x ==+,所以()02,0D x +.()00:22AD y l y x x =--+⎡⎤⎣⎦,则(),N N N x y 满足()002224N N N Ny y x x y x ⎧⎡⎤=--+⎪⎣⎦⎨⎪=⎩,得0024N x y y +=-⨯, 所以()200042N y y y x μ=-=+. 由43λμ+=,得()2200044423y y x +=+,即000423x x x +=+.解得083x =-(舍)或者01x =,所以02y =±.当001,2x y ==时,有(1,2),(9,6)M N --,则1:2(1)2MN l y x +=--.当001,2x y ==-时,有(1,2),(9,6)M N ,则1:2(1)2MN l y x -=-.综上,1:2(1)2MN l y x +=--或12(1)2y x -=-.34.(2021·全国·高三竞赛)已知圆Γ与抛物线2y x 交于A 、B 、C 、D 四个不同的点,且AC为圆Γ的直径,线段AC 和BD 的中点分别为M 、N ,求证:线段MN 在y 轴上的投影长度为定值.【答案】证明见解析. 【解析】 【分析】 【详解】设()()()()222211223344,,,,,,,A x x B x x C x x D x x ,则圆Γ的方程为:()()()()2213130x x x x y x y x --+--=.联立圆Γ和抛物线方程,消去y ,得()()()()222213130x x x x x x x x --+--=,即()()()()131310x x x x x x x x --+++=⎡⎤⎡⎤⎣⎦⎣⎦,从而2x 、4x 是方程()2131310x x x x x x ++++=的两根.由韦达定理知,()24132413,1x x x x x x x x +=-+=+.所以()()2222221313242413242212222x x x x x x x x x x x x +-+-++-=-=. 又22132x x +、22242x x +分别是点M 、N 的纵坐标,所以线段MN 在y 轴上的投影长度为定值1.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y +=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.35.若点(22,0),(0,2)P Q -,求P Q +、2P 以及100P 的坐标.36.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.【答案】35.(2,1),2(2,1),100(0,2)P Q P P +---- 36.存在,311,322P ⎛⎫--- ⎪⎝⎭或311,322P ⎛⎫-+-- ⎪⎝⎭. 【解析】 【分析】(1)利用新定义数形结合直接求解P Q +、2P 以及100P 的坐标(2)利用参数方程假设存在,找出点P 、Q 对应的参数,求出P Q +对应的参数,以及2P ,3P 对应的参数,列方程直接求解.(1)根据新定义P Q +“和”的运算,画图如下:过S 做PQ 的平行线,因为12PQ OS k k ==,所以平行直线过原点,可知P+Q 的坐标与S 关于原点对称,所以(2,1)P Q +--过S 做P 处切线的平行线,可知2P 的坐标2(2,1)P -,以此类推100(0,2)P -(2) 存在.设(cos ,sin ),(cos ,sin ),(cos ,sin ),(cos ,sin )A a b B a b C a b D a b ααββγγθθ则sin sin sin sin //cos cos cos cos b b b b AB CD a a a a αβγθαβγθ--⇔=--2sin cos2sincos22222sin sin 2sin sin2222αβαβγθγθαβαβγθγθ-+-+⋅⋅⇔=-+-+⋅⋅ tantan(mod 2)22αβγθαβγθπ++⇔=⇔+≡+.而(2,1)S 对应的参数为4π,于是,若点P 、Q 对应的参数为αβ、,则P Q +对应的参数γ满足(mod 2)4πγαβπ≡+-.设(cos ,sin )P a b ϕϕ,且对应的参数为ϕ.则2P 对应的参数为2(mod 2),34P πϕπ-对应的参数为3(mod 2)2πϕπ-. 故23(mod 2)2443k ππππϕπϕ-≡⇒=+. 于是,3P 的坐标为2222cos ,2sin 4343k k ππππ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.从而,所求坐标为311,322P ⎛⎫--- ⎪⎝⎭或311,322P ⎛⎫-+-- ⎪⎝⎭.37.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【解析】 【分析】 【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+, 直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=, 故12121200424AB MN y y k k x x y y b y y '-=====-++, 因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++, 即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||)24MNABy y a S d AB MN '-=⋅+=⋅, 其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=3183⎛≤ ⎝⎭= 当22001(4)9b y y b a '-=-时取到最大值.38.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,椭圆T 的中心为原点O ,焦点在x(1,0)C -的直线l 与T 交于两点A 、B 满足2AC BC =.求AOB 面积的最大值以及取到最大值时T 的方程. 【答案】故ABCT 的方程为2235+=x y . 【解析】 【分析】 【详解】设2222:1(0)x y T a b a b +=>>,离心率e = 则222223,:3a b T x y a =+=. 显然,l 不与x 轴重合.若l 垂直于x 轴,则AC BC =,不满足题意.故可设:(1)l y k x =+,即:1y l x k =-,与T 联立得:22213y y a k ⎛⎫-+= ⎪⎝⎭,即22212310y y a k k ⎛⎫+-+-= ⎪⎝⎭. ①设()()1122,,,A x y B x y ,由韦达定理可得:1222221313kky y k k +==++, ② 2122113a y y k -⋅=+. ③ 若点C 在椭圆内部,则1y 、2y 异号,由2AC BC =知122y y =-,代入②知22231ky k -=+,故 12223132231AOBk SOC y y y k =⋅⋅-==+333121323k k kk=≤=+⋅.上式等号成立当且仅当13k k =,即33k =±,此时,2123,23y k y y =-==-. 上式代入③得2212221213a y y y k -⋅=-=+,即2221,536a a --==, 此时①的判别式()222414311246(15)0a k k ⎛⎫∆=-+-=-⨯⨯-> ⎪⎝⎭, ①有两实根,此时方程为2235+=x y .若点C 在椭圆外部,则1y 、2y 同号,由2AC BC =知122y y =, 代入②知()222331ky k =+,故()12221122331AOBk SOC y y y k =⋅⋅-==+ 11331821133||323||||||k k k k =≤=<⎛⎫+⋅⋅⎪⎝⎭.故ABC 面积的最大值为32,此时T 的方程为2235+=x y . 39.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.【答案】存在,PQ 的方程为(26)6360x y ++-.【解析】 【分析】 【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦, 整理得()()()()22221111111210r x r y x y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r y x y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x r y r -+-+-=, 即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x ry r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y ++-.40.(2021·全国·高三竞赛)设F 是椭圆22221(0)x y a b a b +=>>左焦点,过F 作两条相互垂直的直线,与椭圆的四个交点顺次记为A 、B 、C 、D ,设F 在四边形ABCD 的四条边上的射影分别为P 、Q 、R 、S ,求证:P 、Q 、R 、S 四点共圆. 【答案】证明见解析 【解析】 【分析】 【详解】实际上结论对一切非等轴双曲线的圆锥曲线都是成立的(对等轴双曲线则变为四点共线)为证明原结论,我们来说明F 在AB 上的射影P 在定圆上.以F 为原点重新建立平面直角坐标系,设椭圆的离心率为e ,焦准距为p ,不妨设A 在第一象限,AF 与x 轴正半轴夹角为锐角θ,B 在第二象限,于是:,1cos 1sin ep epAF BF e e θθ==-+,从而cos cos sin cos (,),(,)1cos 1cos 1sin 1sin ep ep ep ep A B e e e e θθθθθθθθ---++, 所以sin cos sin cos ,sin cos sin cos AB FP e k k eθθθθθθθθ-++==-+-+ 记FP 与x 轴的夹角为α,再记sin cos t θθ-=,则sin cos θθ+我们有cos αα==另一方面,FP ==,所以2()(22t e ep P e et +-++,不难验证它在圆22222()2e p x y e -+=-上.同理Q 、R 、S 均在此圆上,结论成立.41.(2021·全国·高三竞赛)设a 为正实数.在平面直角坐标系xOy 中,已知直线12:,:l y ax l y ax ==-,过点()2,0M -的直线l 分别与直线12l l 、交于点A B 、,其中点A 在第三象限,点B 在第二象限,点()2,0N .设直线AN 交2l 于点P ,直线BN 交1l 于点Q .若直线l PQ 、的斜率均存在,分别为12k k 、,判断12k k 是否为定值?若为定值.求出该定值;若不为定值,说明理由. 【答案】是,12k k 为定值13-. 【解析】 【分析】 【详解】由题意,直线l 的方程为1(2)y k x =+,其中1k a ≠±,联立方程1(2),,y k x y ax =+⎧⎨=⎩得11()2a k x k -=.解得112Ak x a k =-,则112A ak y a k =-.。