云南省2020年中考数学学业水平考试模拟试卷二含解析
- 格式:doc
- 大小:311.95 KB
- 文档页数:14
机密★考试结束前2024年云南省初中学业水平考试数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A. 100米 B. 100-米C. 200米D. 200-米2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为( )A. 45.7810⨯ B. 357.810⨯ C. 257810⨯ D.578010⨯3. 下列计算正确是( )A. 33456x x x += B. 635x x x ÷= C. ()327a a = D.()333ab a b =4.x 的取值范围是( )A. 0x > B. 0x ≥ C. 0x < D. 0x ≤5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )的A. 正方体B. 圆柱C. 圆锥D. 长方体6. 一个七边形的内角和等于( )A. 540︒B. 900︒C. 980︒D. 1080︒7. 甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A. 甲 B. 乙C. 丙D. 丁8. 已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为( )A.32B. 2C. 3D.729. 两年前生产1千克甲种药品成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A. ()280160x -= B. ()280160x -=C ()80160x -= D. ()801260x -=10. 按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A. 2nx B. ()1nn x- C. 1n nx + D.()1nn x +11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )的.A 爱B. 国C. 敬D. 业12. 在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为( )A.45B.35C.43D.3413. 如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=( )A. 9B. 18C. 36oD. 4514. 分解因式:39a a -=( )A. ()()33a a a -+ B. ()29a a + C. ()()33a a -+ D.()29a a -15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为( )A. 700π平方厘米 B. 900π平方厘米C. 1200π平方厘米D. 1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16. 若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.17. 已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.18. 如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________..19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.三、解答题(本大题共8小题,共62分)20. 计算:12117sin3062-⎛⎫++--- ⎪⎝⎭.21. 如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.22. 某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D型车的平均速度.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24. 如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,且AB CD∥,AD BC∥,四边形EFGH是矩形.(1)求证:四边形ABCD是菱形;(2)若矩形EFGH的周长为22,四边形ABCD的面积为10,求AB的长.25. A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26. 已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M的大小.27. 如图,AB 是O 直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.的机密★考试结束前2024年云南省初中学业水平考试数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A. 100米 B. 100-米C. 200米D. 200-米【答案】B 【解析】【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为( )A. 45.7810⨯ B. 357.810⨯ C. 257810⨯ D.578010⨯【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3. 下列计算正确的是( )A. 33456x x x += B. 635x x x ÷= C. ()327a a = D.()333ab a b =【答案】D 【解析】【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4. x 的取值范围是( )A. 0x > B. 0x ≥ C. 0x < D. 0x ≤【答案】B 【解析】【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.在实数范围内有意义,∴x 的取值范围是0x ≥.故选:B5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 正方体B. 圆柱C. 圆锥D. 长方体【答案】D 【解析】【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6. 一个七边形的内角和等于( )A. 540︒ B. 900︒C. 980︒D. 1080︒【答案】B 【解析】【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7. 甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s0.090.650.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A.8. 已知AF是等腰ABC底边BC上的高,若点F到直线AB的距离为3,则点F到直线AC的距离为()A. 32B. 2C. 3D.72【答案】C【解析】【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF平分BAC∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF是等腰ABC底边BC上的高,∴AF平分BAC∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9. 两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A. ()280160x -= B. ()280160x -=C. ()80160x -= D. ()801260x -=【答案】B 【解析】【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10. 按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A. 2nx B. ()1nn x- C. 1n nx + D.()1nn x +【答案】D 【解析】【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,故选:D .11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A. 爱 B. 国C. 敬D. 业【答案】D 【解析】【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不轴对称图形,不符合题意;B 、图形不轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12. 在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为( )A.45B.35C.43D.34【答案】C 【解析】【分析】根据三角函数的定义求解即可.【详解】解:∵90B Ð=°, 34AB BC ==,,∴tan A =43BC AB =,故选:C .【点睛】本题考查了三角函数的求法,解题关键是理解三角函数的意义,明确是直角三角形中哪两条边的比.13. 如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=( )是是A. 9B. 18C. 36oD. 45【答案】B 【解析】【分析】本题考查了弧弦圆心角的关系,圆周角定理,连接OB ,由 AC BC =可得36BOC AOC ∠=∠=︒,进而由圆周角定理即可求解,掌握圆的有关性质是解题的关键.【详解】解:连接OB ,∵ AC BC=,∴36BOC AOC ∠=∠=︒,∴1182D BOC ∠=∠=︒,故选:B .14. 分解因式:39a a -=( )A. ()()33a a a -+ B. ()29a a + C. ()()33a a -+ D.()29a a -【答案】A 【解析】【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为( )A. 700π平方厘米 B. 900π平方厘米C. 1200π平方厘米 D. 1600π平方厘米【答案】C 【解析】【分析】本题考查了圆锥侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为2π3060π⨯=厘米,∴圆锥的侧面积为160π401200π2⨯⨯=平方厘米,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.【答案】1c >##1c <【解析】【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17. 已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.【答案】5【解析】的【分析】本题考查反比例函数图象上点的坐标特征,将点()2,P n 代入10y x=求值,即可解题.【详解】解: 点()2,P n 在反比例函数10y x=的图象上,1052n ∴==,故答案为:5.18. 如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________.【答案】12##0.5【解析】【分析】本题考查相似三角形的判定和性质,证明ACO BDO △∽△,根据相似三角形周长之比等于相似比,即可解题.【详解】解: AC BD ∥,ACO BDO ∴ ∽,∴AC BD=12OA OC AC OB OD BD ++=++,故答案为:12.19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.【答案】120【解析】【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题(本大题共8小题,共62分)20. 计算:12117sin3062-⎛⎫++--- ⎪⎝⎭.【答案】2【解析】【分析】本题考查了实数的混合运算,掌握零指数幂,负整指数幂,特殊角的三角函数值,二次根式的性质,绝对值化简是解题的关键.根据相关运算法则分别进行计算,再进行加减运算,即可解题.【详解】解:12117sin3062-⎛⎫++--- ⎪⎝⎭,1116522=++--,2=.21. 如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【解析】【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22. 某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h 【解析】【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /h x ,根据“乘坐C 型车比乘坐D 型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /h x ,根据题意可得,30030023x x-=,整理得,6600x =,解得100x =,经检验100x =是该方程的解,答:D型车的平均速度为100km/h.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.【答案】(1)见解析(2)2 3【解析】【分析】本题考查利用列表法或画树状图求概率,解题的关键在于根据题意列表或画树状图.(1)根据题意列出表格(或画出树状图)即可解题;(2)根据概率=所求情况数与总情况数之比.由表格(或树状图),得到共有6个等可能的结果,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,再由概率公式求解即可.【小问1详解】解:由题意可列表如下:a ba(),a a(),b ab(),a b(),b bc(),a c(),b c由表格可知,(),x y所有可能出现的结果总数为以上6种;【小问2详解】解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,∴P (七年级年级组、八年级年级组选择研学基地互不相同)4263==.24. 如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长.【答案】(1)见解析 (2【解析】【分析】(1)连接BD ,AC ,证明四边形ABCD 是平行四边形,再利用三角形中位线定理得到GF BD ∥,HG AC ∥,利用矩形的性质得到BD AC ⊥,即可证明四边形ABCD 是菱形;(2)利用三角形中位线定理和菱形性质得到111122BD AC OA OB +=+=,利用lx 面积公式得到210OA OB ⋅=,再利用完全平方公式结合勾股定理进行变形求解即可得到AB .【小问1详解】解:连接BD ,AC ,AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,GF BD ∴∥,HG AC ∥,四边形EFGH 是矩形,HG GF ∴⊥,的∴BD AC ⊥,∴四边形ABCD 是菱形;【小问2详解】解: 四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,12GF EH BD ∴==,12HG EF AC ==, 矩形EFGH 的周长为22,∴22BD AC +=,四边形ABCD 是菱形,即111122BD AC OA OB +=+=, 四边形ABCD 的面积为10,1102BD AC ∴⋅=,即210OA OB ⋅=,()2222121OA OB OA OA OB OB +=+⋅+= ,∴2212110111OA OB +=-=,∴AB ==.【点睛】本题考查了平行四边形性质和判定,矩形的性质和判定,三角形中位线定理,菱形的性质和判定,菱形面积公式,勾股定理,完全平方公式,熟练掌握相关性质是解题的关键.25. A 、B 两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A 、B 两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a 、b 的值;(2)若某公司计划从该超市购买A 、B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.【答案】(1)4050a b =⎧⎨=⎩(2)564【解析】【分析】本题考查了一次函数、一元一次不等式、二元一次方程组的应用,根据题意正确列出方程和函数解析式是解题的关键.(1)根据“购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元”建立二元一次方程组求解,即可解题;(2)根据“且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.”建立不等式求解,得到360607x ≤≤,再根据总利润=A 种型号吉祥物利润+B 种型号吉祥物利润建立关系式,最后根据一次函数的性质即可得到y 的最大值.【小问1详解】解:由题知,8767045410a b a b +=⎧⎨+=⎩,解得4050a b =⎧⎨=⎩;【小问2详解】解: 购买A 种型号吉祥物的数量x 个,则购买B 种型号吉祥物的数量()90x -个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,∴()4903x x ≥-,解得3607x ≥, A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍.∴()290x x ≤-,解得60x ≤,即360607x ≤≤,由题知,()()()4035504290y x x =-+--,整理得3720y x =-+,y 随x 的增大而减小,∴当52x =时,y 的最大值为352720564y =-⨯+=.26. 已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 值;(2)比较M的大小.【答案】(1)3b =-(2)当M =时,M >;当M =时, M <.【解析】【分析】(1)由对称轴为直线2b x a=-直接求解;(2)当M =时,M >;当M =时, M <.【小问1详解】解:∵抛物线21y x bx =+-的对称轴是直线32x =,∴3212b -=⨯,∴3b =-;【小问2详解】解:∵m 是抛物线21y x bx =+-与x 轴交点的横坐标,∴2310m m --=,的∴213m m -=,∴422219m m m -+=,∴42111m m =-,而231m m =+代入得:()41131123310m m m =+-==+,∴()()5423310331033311010933m m m m m m m m m m =⋅=+=+=++=+,∴5331093333109109m m M m -+-===,∵2310m m --=,解得:m =,当M m ==302M -==>∴M >当M m ==时,0M ==<,∴M <.【点睛】本题考查了二次函数的对称轴公式,与x 轴交点问题,解一元二次方程,无理数的大小比较,解题的关键是对5m 进行降次处理.27. 如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析【解析】【分析】(1)直接利用直径所对的圆周角是直角,即可得出结果;(2)证明ABM AMN ∽,得到MAN MAB ∠=∠,根据平角的定义,得到90MAN MAB ∠=∠=︒,即可得证;(3)连接,,OA OD BD ,连接OC 交AD 于点G ,易得OC AD ⊥,圆周角定理得到90ADB ∠=︒,推出OG BD ∥,进而得到AOC ABD ∠=∠,根据三角函数推出HBE ABC ∠=∠,得到,,B E C 三点共线,即可得出结果.【小问1详解】解:∵AB 是O 的直径,点F 是O 上异于A 、B 的点,∴90AFB ∠=︒;【小问2详解】证明:∵AM BM AB MN ⋅=⋅,∴AM MN AB BM=,又∵AMN ABM ∠∠=,∴ABM AMN ∽,∴AMB N ∠=∠,MAN MAB ∠=∠,∵180MAN MAB ∠+∠=︒,∴90MAN MAB ∠=∠=︒,∴OA CA ⊥,∵OA 是半径,∴直线CM 与O 相切;【小问3详解】我认为:CE EB CB +=正确,理由如下:连接,,OA OD BD ,连接OC 交AD 于点G ,如图,则:OA OD =,∴点O 在线段AD 的中垂线上,∵CA CD =,∴点C 在线段AD 的中垂线上,∴OC AD ⊥,∴90OGA ∠=︒,∵AB 是O 的直径,∴90ADB ∠=︒,∴OGA ADB ∠=∠,∴OG BD ∥,∴AOC ABD ∠=∠,∵90AHD ∠=︒,∴90DHB ∠=︒,∴tan DHHBD BH ∠=,tan EHHBE BH ∠=,∵E 为DH 的中点,∴11tan tan 22EHDH HBE HBD BH BH ∠==⋅=∠,∵tan ,tan AC AC AOC ABC AO AB∠=∠=,且12AO AB =,∴11tan tan 22AC ABC AOC OA ∠=⋅=∠,∵AOC ABD ∠=∠,∴tan tan HBE ABC ∠=∠,∴HBE ABC ∠=∠,∴,,B E C 三点共线,∴CE EB CB +=.【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质,解直角三角形,熟练掌握相关知识点,并灵活运用,是解题的关键.。
2020年云南省初中数学学业水平考试模拟试卷(二)一.填空题(满分18分,每小题3分)1.|x﹣3|=3﹣x,则x的取值范围是.2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.4.在函数y=中,自变量x的取值范围是.5.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.6.已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2020个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°11.下列各命题是真命题的是()A.平行四边形对角线互相垂直B.矩形的四条边相等C.菱形的对角线相等D.正方形既是矩形,又是菱形12.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3 B.中位数为3 C.众数为3 D.中位数为x13.已知|a+b﹣1|+=0,则(b﹣a)2019的值为()A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三.解答题15.(6分)已知:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.16.(6分)已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(6分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?19.(7分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y轴交于点B,点B关于x 轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB 上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?22.(9分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.(2019威海中考)(12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.参考答案一.填空题1.解:3﹣x≥0,∴x≤3;故答案为x≤3;2.解:多边形的边数是:360÷72=5.故答案为:5.3.解:12 000 000=1.2×107,故答案是:1.2×107,4.解:由题意,得2x+1≠0,解得x≠﹣.故答案为:x≠﹣.5.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.6.解:设第n个三角形的周长为∁n,∵C1=1,C2=C1=,C3=C2=,C4=C3=,…,∴∁n=()n﹣1,∴C2020=()2019.故答案为:()2019.二.选择题(共8小题,满分32分,每小题4分)7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.故选:B.8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.9.解:A、a6÷a3=a3,故本选项错误;B、=2,故本选项错误;C、1÷()﹣1=1÷=,故本选项正确;D、(a3b)2=a6b2,故本选项错误.故选:C.10.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.11.解:A、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;B、矩形的四边不一定相等,故错误,是假命题;C、菱形的对角线垂直但不一定相等,故错误,是假命题;D、正方形既是矩形,又是菱形,正确,是真命题;故选:D.12.解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从小到大的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.13.解:∵|a+b﹣1|+=0,∴,解得:,则原式=﹣1,故选:B.14.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.三.解答题15.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.16.证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS).17.解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.18.解:(1)当0≤x≤300时,设y=k1x,根据题意得300k1=39000,解得k1=130,即y=130x;当x>300时,设y=k2x+b,根据题意得,解得,即y=80x+15000,∴y=;(2)①当200≤x≤300时,w=130x+100(1200﹣x)=30x+120000;当x>300时,w=80x+15000+100(1200﹣x)=﹣20x+135000;②设甲种花卉种植为am2,则乙种花卉种植(1200﹣a)m2,∴,∴200≤a≤800当a=200 时.W min=126000 元当a=800时,W min=119000 元∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.19.(1)解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△CFP,,∴,解得m1=0,舍去,,②当△COM∽△PFC时,,∴,解得m1=0(舍去),,综合可得P点的横坐标为或.20.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.21.解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.【解答】(1)证明:过E作MN∥AB,交AD于M,交BC于N,∵四边形ABCD是正方形,∴AD∥BC,AB⊥AD,∴MN⊥AD,MN⊥BC,∴∠AME=∠FNE=90°=∠NFE+∠FEN,∵AE⊥EF,∴∠AEF=∠AEM+∠FEN=90°,∴∠AEM=∠NFE,∵∠DBC=45°,∠BNE=90°,∴BN=EN=AM,∴△AEM≌△EFN(AAS),∴AE=EF,∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=CE=EF;(2)解:在Rt△BCD中,由勾股定理得:BD==10,∴0≤x≤5,由题意得:BE=2x,∴BN=EN=x,由(1)知:△AEM≌△EFN,∴ME=FN,∵AB=MN=10,∴ME=FN=10﹣x,∴BF=FN﹣BN=10﹣x﹣x=10﹣2x,∴y===﹣2x2+5x(0≤x≤5);(3)解:y=﹣2x2+5x=﹣2(x﹣)2+,∵﹣2<0,∴当x=时,y有最大值是;即△BEF面积的最大值是.。
云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A ′B ′,若点A ′的坐标为(﹣2,2),则点B ′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019x y ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)【考点】LF :正方形的判定;L5:平行四边形的性质.2019x y ()【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2 B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。
2023年云南省(新中考)初中学业水平模拟考试数学试题卷(三)(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(共12题,每题3分,共36分)1.下列图标是中心对称图形的是()A .B .C .D .2.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1560000000用科学记数法表示为()A .1.56×109B .1.56×108C .15.6×108D .0.156×10103.下列计算正确的是()A .235a a a +=B .32a a a÷=C .326326a a a ⋅=D .()2224a a =++4.学校为了培养学生的践行精神和吃苦品质,每学期以班级为单位申报校内志愿者活动.2020年秋季学期某班40名学生参与志愿者活动情况如下表,则他们参与次数的众数和中位数分别是()参与次数12345人数6171421A .2,2B .17,2C .17,1D .2,35.如图,直线//b a ,直线c 与直线a ,b 分别交于点A ,点B ,AC AB ⊥于点A ,交直线b 于点C .如果134∠=︒,那么2∠的度数为()A .34︒B .56︒C .66︒D .146︒6.若正多边形的一个外角是60︒,则该正多边形的内角和为()A .360︒B .540︒C .720︒D .900︒7.抛物线2y x =向右平移2个单位,向下平移1个单位,所得函数的解析式为()A .221y x x =--B .221y x x =-+C .243y x x =+-D .243y x x =-+8.如图,在Rt ABC 中,∠C =90°,∠A =30°,AB +BC =9cm ,则AB 的长为()A .3cmB .4cmC .5cmD .6cm 9.如图是一个几何体的三视图,则这个几何体的侧面积是()A .48πB .57πC .24πD .33π10.如图,已知AB =AC ,AB =6,BC =4,分别以A 、B 两点为圆心,大于12AB 的长为半径画圆弧,两弧分别相交于点E 、F ,直线EF 与AC 相交于点D ,则△BDC 的周长为()A .15B .13C .11D .1011.下列说法正确的个数是()①2-的相反数是2②各边都相等的多边形叫正多边形③了解一沓钞票中有没有假钞,应采用普查的形式④一个多边形的内角和为720°,则这个多边形是六边形⑤在平面直角坐标系中,点()1,3A -关于原点对称的点的坐标是()1,3--⑥174A .2个B .3个C .4个D .5个12.从-3,-1,23,1,2这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组()137520x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的一元一次方程35ax x +=-有整数解,那么这5个数中所有满足条件的a 的值之和是()A .-2B .12-C .-3D .12二、填空题(共4题,每题2分,共8分)13.函数21y x =+中,自变量x 的取值范围是_____.14.如图,90C D ∠=∠=︒,3AC =,4EC =,4=AD ,则AB =______.15.因式分解:23xy x -=______.16.某校为了丰富学生的校园生活,准备购买一批陶笛.已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,根据题意列出正确的方程是_______________________.三、解答题(共8题,共56分)17.(6分)计算:212sin 6022-⎛⎫︒++ ⎪⎝⎭18.(6分)已知:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,,AC CE ACD B =∠=∠.求证:ABC CDE △≌△.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上值息,解答下列问题:(1)填空a=;b=;c=.(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生整体成绩谁更优异.为落实“垃圾分类”,环保部门要求垃圾要按A ,B ,C ,D 四类分别装袋、投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收物,D 类指其他垃圾.小明、小亮各自投放了一袋垃圾.(1)小明投放的垃圾恰好是C 类的概率是;(2)求小明投放的垃圾与小亮投放的垃圾是同一类的概率.21.(7分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.如图,O 是Rt ABC △的外接圆,90ACB ∠=︒,点E 是弧BC 的中点,过点E 作ED AC ⊥,交AC 的延长线于点D ,连接AE 交BC 于点F .(1)判断ED 与O 的位置关系,并证明你的结论;(2)若cos ∠D ,BF =15,求AE 的长.23.(8分)习近平总书记指出:“扶贫先扶志,扶贫必扶智”.某企业扶贫小组准备在春节前夕慰问贫困户,为贫困户送去温暖.该扶贫小组购买了一批慰问物资并安排两种货车运送.据调查得知;2辆大货车与4辆小货车一次可以满载运输700件;5辆大货车与7辆小货车一次可以满载运输1450件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)计划租用两种货车共10辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1300件,且总费用不超过46000元.请你指出共有几种运输方案,并计算哪种方案所需费用最少,最少费用是多少?如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上一动点(不与点A,B重合).过点P作x轴的垂线交直线AB于点C.作PD⊥AB于点D.(1)求抛物线的解析式;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,若这两个三角形的面积之比为2:3,求出m的值.。
2023年中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b26.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+27.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.329.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.410.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=.12.正六边形的外接圆的半径与内切圆的半径之比为.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|16.(5分)解分式方程:+3=.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A 原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.23.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选:C.2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为2,3,2.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°【分析】直接利用平行线的性质以及三角形的性质进而得出答案.【解答】解:由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°﹣45°﹣60°=75°.故选:C.4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】根据正比例函数的性质进行判断.【解答】解:∵正比例函数y=﹣kx的y值随x值的增大而减小,∴﹣k<0,∴此函数的图象经过第二、四象限.故选:D.5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b2【分析】直接利用积的乘方运算法则以及整式的混合运算法则分别判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、(﹣b2)3=﹣b6,正确;C、3a•3a2=9a3,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:B.6.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+2【分析】过D作DE⊥AB于E,依据△BDE是等腰直角三角形,即可得到BD的长,进而得到BC的长,可得答案.【解答】解:如图所示,过D作DE⊥AB于E,∵AC=BC,∠C=90°,AD平分∠BAC,∴DE=CD=1,∠B=45°,∴∠BDE=∠B=45°,∴BE=DE=1,∴Rt△BDE中,BD==,∴BC=+1,∴AC=+1,故选:B.7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.32【分析】由矩形的性质得出OA=OC,由线段垂直平分线的性质得出AE=CE=3,求出BE=1,由勾股定理求出AB,即可得出答案.【解答】解:连接AE,如图所示:∵四边形ABCD是矩形,∴OA=OC,∠ABC=90°,BC=AD=4,∵OE⊥AC,∴AE=CE=3,∴BE=BC﹣CE=1,∴AB===2,∴矩形ABCD的面积=AB×BC=2×4=8;故选:B.9.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.4【分析】利用切线长定理得到AD=AC,则可判断△ADC为等边三角形,所以∠ADC=60°,再利用切线的性质得到AD⊥DB,所以∠CDB=30°,接着根据圆周角定理得到∠BCD=90°,然后根据含30度的直角三角形三边的关系求出CD即可.【解答】解:∵AD、AC为⊙O的两条切线,切点分别为D,C,∴AD=AC,而AD=CD,∴AD=CD=AC,∴△ADC为等边三角形,∴∠ADC=60°,∵AD为切线,∴AD⊥DB,∴∠CDB=90°﹣60°=30°,∵BD为⊙O的直径,∴∠BCD=90°,在Rt△BCD中,BC=BD=×4=2,∴CD=BC=2,∴AC=2.故选:C.10.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12【分析】根据对称轴求出m的值,从而得到x=﹣1、6时的函数y=x2﹣4x值,再根据一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有解相当于y=x2+mx与y=n在x的范围内有交点解答.【解答】解:∵抛物线的对称轴x=﹣=2,∴m=﹣4,则方程x2+mx﹣n=0,即x2﹣4x﹣n=0的解相当于y=x2﹣4x与直线y=n的交点的横坐标,∵方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=6时,y=36﹣24=12,又∵y=x2﹣4x=(x﹣2)2﹣4,∴当﹣4≤n<12时,在﹣1<x<6的范围内有解.∴n的取值范围是﹣4≤n<12,故选:C.二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=(a﹣1)2.【分析】观察原式发现,此三项符合差的完全平方公式a2﹣2ab+b2=(a﹣b)2,即可把原式化为积的形式.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.12.正六边形的外接圆的半径与内切圆的半径之比为2:.【分析】从内切圆的圆心和外接圆的圆心向三角形的边长引垂线,构建直角三角形,解三角形i可.【解答】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是r,因而正六边形的外接圆的半径与内切圆的半径之比为2:.故答案为:2:.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.【分析】连接AC交BD于E,如图,利用菱形的性质得AC⊥BD,AE=CE,DE=BE,设A(1,k),B(4,),则BE=3,AE=k﹣=k,根据菱形的面积公式得到4××3×k=10,然后解关于k的方程即可.【解答】解:如图,连接AC交BD于E,∵四边形ABCD为菱形,∴AC⊥BD,AE=CE,DE=BE,∵BD∥x轴,设A(1,k),B(4,),∴BE=3,AE=k﹣=k,∵菱形ABCD的面积为10,=10,∴4S△ABE即4××3×k=10,解得k=.故答案为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为+1+.【分析】当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM =DM,连接DM.分别求出MH、AM、FH即可解决问题.【解答】解:如图,当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM=DM,连接DM.∵FD=FE=DE=2,AF⊥DE,∴DH=HE,AD=AE,∠DAH=∠DAE=22.5°,∵AM=DM,∴∠MAD=∠MDA=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=1,∴DM=AM=,∵FH==,∴AF=AM+MH+FH=+1+.∴AF的最大值为+1+,故答案为:+1+.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|【分析】原式利用二次根式性质,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=2+4×()2﹣(﹣1)=2+4×﹣+1=2+1﹣+1=+2.16.(5分)解分式方程:+3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+3x﹣6=x﹣1,解得:x=1.5,经检验x=1.5是分式方程的解.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).【分析】根据垂径定理即可作⊙O的内接正方形ABCD.【解答】解:如图正方形ABCD即为所求作的图形.18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质就可以得出△CDF△BDE就可以得出DE=DF.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB.在△CDE和△BDF中,∴△CDF≌△BDE(AAS),∴DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?【分析】(1)根据读两本的人数除以读两本人数所占的百分比,可得抽测人数,根据中位数的定义,可得答案;(2)根据有理数的减法,可得读4本的人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)10÷20%=50,∴被调查的人数为50,被抽查学生课外阅读量的中位数3;(2)50﹣4﹣10﹣15﹣6=15,补充如图;(4)2500×1050(人),答:估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有1050人.20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)【分析】过E作EF⊥AB于F,得到四边形BDEF是矩形,根据矩形的性质得到EF=DB,BF=DE,解直角三角形即可得到结论.【解答】解:过E作EF⊥AB于F,则四边形BDEF是矩形,∴EF=DB,BF=DE,在Rt△CDE中,∵∠EDC=90°,CE=6m,∠DCE=30°,∴DE=3m,CD=3m,设BC=xm,∵∠AEF=45°,∴EF=AF=BD=(3+x)m,∴AB=AF+BF=(3+3+x)m,在Rt△ABC中,tan60°===,解得:x=6+3,∴AB≈19m.答:楼房AB的高度大约为19米.21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A原价销售以原价的7.5折销售B 原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A 种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.【分析】(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据“购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A 种垃圾桶为a 个,则购买B 种垃圾桶为(200﹣a)个,根据“B 种垃圾桶不多于A 种垃圾桶数量的”列出不等式并求得a 的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据题意得,解得,答:A 种垃圾桶的单价为50元,B 种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200﹣a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200﹣a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.【分析】(1)根据概率公式计算即可.(2)画树状图展示所有12种等可能的结果数,找出小红获胜的结果数,然后根据概率公式求解【解答】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.【分析】(1)连接OC、OE,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠DAC=∠OAC,根据圆周角定理、圆心角、弧、弦之间的关系定理证明结论;(2)根据勾股定理求出AB,证明△DAC∽△CAB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:连接OC、OE,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,由圆周角定理得,∠BOC=2∠OAC,∠EOC=2∠DAC,∴∠BOC=∠EOC,∴CE=CB;(2)解:由(1)可知,BC=CE=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB===3,∵∠DAC=∠BAC,∠ADC=∠ACB=90°,∴△DAC∽△CAB,∴=,即=,解得,DC=.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线的解析式可知OC=2,由于∠ACB=90°,可根据射影定理求出OB的长,即可得出B点的坐标,也就得出了m的值.然后根据A,B,C三点的坐标,用待定系数法可求出抛物线的解析式.(2)本题要分情况进行讨论,如果过E作x轴的垂线,不难得出∠DBx=135°,而∠ABE是个钝角但小于135°,因此P点只能在B点左侧.可分两种情况进行讨论:①∠DPB=∠ABE,即△DBP∽△EAB,可得出BP:AP=BD:AE,可据此来求出P点的坐标.②∠PDB=∠ABE,即△DBP∽△BAE,方法同①,只不过对应的成比例线段不一样.综上所述可求出符合条件的P点的值.【解答】解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB===4,∴m=4,∴B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2得,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)解得,,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°,过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△BAE,则=,∴BP1===∴OP1=4﹣=,∴P1(,0);②若△DBP2∽△BAE,则=,∴BP2===∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是等腰直角三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.【分析】(1)如图,△OP1P2是等腰直角三角形.证明OP1=OP2,∠P1OP2=90°即可.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.证明∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,构建方程求出x即可解决问题.(3)不存在.首先证明MN是定值.由题意PM+PN≥MN,推出当点P落在AB或BC 上时,PM+PN=MN=定值,此时△PMN不存在.【解答】解:(1)如图1中,△OP1P2是等腰直角三角形.理由:∵点P关于边OA、OB的对称点分别为P1,P2,∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2(∠AOP+∠BOP)=90°,∴△OP1P2是等腰直角三角形.故答案为等腰直角.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.∵AB=AC,AD⊥BC,∴∠EAC=∠BAC=15°,∵EA=EC,∴∠EAC=∠ECA=15°,∴∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,∵AD=2+,∴2x+x=2+,∴x=1,∴BC=2CD=2,=•BC•AD=×2×(2+)=2+.∴S△ABC(3)如图3中,不存在.理由:∵点P关于AB,BC的对称点分别为M,N,∴PB=BM=BN=10,∠PBA=∠ABM,∠PBC=∠CBN,∵∠ABC=60°,∴∠MBN=2(∠ABP+∠PBC)=120°,∴△BNM是顶角为120°,腰长为10的等腰三角形,∴MN为定值,∵PM+PN≥MN,∴当点P落在AB或BC上时,PM+PN=MN=定值,此时△PMN不存在,∴△PMN的周长不存在最小值.。
中考复习2023年中考数学压轴大题专题二次函数与圆压轴问题【例1】(2022年江苏省常州市北郊初级中学中考二模数学试题)已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,CB为半径的圆交x轴于M,N两点(M在N的左侧).(1)求此二次函数的表达式;(2)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN 的长;(3)当△ABM与△ABN相似时,求出M点的坐标.【例2】.(必刷卷05-2022年中考数学考前信息必刷卷(湖南岳阳专用))已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A为(﹣1,0),与y轴负半轴交于点C(0,﹣2),其对称轴是直线x=32.(1)求二次函数y=ax2+bx+c的解析式;(2)圆O′经过点△ABC的外接圆,点E是AC延长线上一点,△BCE的平分线CD交圆O′于点D,连接AD、BD,求△ACD的面积;(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得△PDB=△CAD?如果存在,请求经典例题出所有符合条件的P点坐标;如果不存在,请说明理由.【例3】.(2022年江苏省徐州市九年级下学期第二次模拟数学试题)如图,已知二次函数y=ax2+bx+c 的图像与x轴交于A(−1,0),B(2,0)两点,与y轴交于点(0,2).(1)求此二次函数的表达式;(2)点Q在以BC为直径的圆上(点Q与点O,点B,点C均不重合),试探究QO,QB、QC的数量关系,并说明理由.(3)E点为该图像在第一象限内的一动点,过点E作直线BC的平行线,交x轴于点F.若点E从点C出发,沿着抛物线运动到点B,则点F经过的路程为______.x2+bx+c的图象经【例4】(2022年云南省德宏州初中学业水平考试模拟监测数学试题)二次函数y=34过点A(-1,0)和点C(0,-3)与x轴的另一交点为点B.(1)求b,c的值;(2)定义:在平面直角坐标系xOy中,经过该二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.问:√10为半径作△Q,使△Q是二次函数y=在该二次函数图象的对称轴上是否存在一点Q,以点Q为圆心,5634x2+bx+c的坐标圆?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图所示,点M是线段BC上一点,过点M作MP//y轴,交二次函数的图象于点P,以M为圆心,MP为半径作△M,当△M与坐标轴相切时,求出CMMB的值.专题31二次函数与圆压轴问题1.(湖北省武汉市华中科技大学附属中学2022-2023学年九年级上学期1月考数学试题)如图,已知抛物线经过点A(−1,0),B(3,0),C(0,3)三点,点D是直线BC绕点B逆时针旋转90°后与y轴的交点,点M是线段AB 上的一个动点,设点M的坐标为(m,0),过点M作x轴的垂线交抛物线于点E,交直线BD于点F.(1)求该抛物线所表示的二次函数的解析式;(2)在点M运动过程中,若存在以EF为直径的圆恰好与y轴相切,求m的值;(3)连接AC,将△AOC绕平面内某点G旋转180°后,得到△A1O1C1,点A、O、C的对应点分别是点A1、O1、C1,是否存在点G使得△AOC旋转后得到的△A1O1C1的两个顶点恰好落在抛物线上,若存在,直接写出G 点的坐标;若不存在,请说明理由.2.(专题16二次函数中的相似三角形-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版))如图,一次函数y=−2x的图象与二次函数y=−x2+3x图象的对称轴交于点B.培优训练(1)写出点B的坐标;(2)将直线y=−2x沿y轴向上平移,分别交x轴于点C、交y轴于点D,点A是该抛物线与该动直线的一个公共点,试求当△AOB的面积取最大值时,点C的坐标;(3)已知点P是二次函数y=−x2+3x图象在y轴右侧部分上的一个动点,若△PCD的外接圆直径为PC,试问:以P、C、D为顶点的三角形与△COD能否相似?若能,请求出点P的坐标;若不能,请说明理由.3.(福建省泉州市鲤城区第七中学2022-2023学年九年级下学期数学期末质量检测)如图(1)所示,y关于x的(x+m)(x−3m)(m>0)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于D二次函数y=−√33m点.以AB为直径作圆,圆心为C.定点E的坐标为(−3,0),连接ED.(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.4.(第5章二次函数(基础、典型、易错、压轴)分类专项训练-2022-2023学年九年级数学考试满分全攻略(苏科版))如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(−1,0),B(2,0)两点,与y轴交于点(0,2).(1)求此二次函数的表达式;(2)点Q在以BC为直径的圆上(点Q与点O,点B,点C均不重合),试探究QO,QB,QC的数量关系,并说明理由.(3)E点为该图象在第一象限内的一动点,过点E作直线BC的平行线,交x轴于点F.若点E从点C出发,沿着抛物线运动到点B,则点F经过的路程为.5.(湖南省长沙麓山外国语实验中学2022-2023学年九年级上学期第三次月考数学试卷)已知二次函数y= ax2+bx+c的图象与x轴交于A,B两点,其中点A为(−1,0),与y轴负半轴交于点C(0,−2),其对称.轴是直线x=32(1)求二次函数y=ax2+bx+c的解析式;(2)圆O′为△ABC的外接圆,点E是AC延长线上一点,∠BCE的平分线CD交圆O′于点D,连接AD、BD,求△ACD的面积;(3)在(2)的条件下,y轴上是否存在点P,使得以P,C,B为顶点的三角形与△BCD相似?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.6.(湖南省长沙市湖南师大附中博才实验中学2022-2023学年九年级上学期第三次随堂测数学试卷)如图,x2+bx+c与x轴的一个交点A的坐标为(−3,0),以点A为圆心作圆A,与该二次函数的二次函数y=−56图象相交于点B,C,点B,C的横坐标分别为−2,−5,连接AB,AC,并且满足AB⊥AC.过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N.(1)求该二次函数的关系式;(2)经过点B作直线BD,在A点右侧与x轴交于点D,与二次函数的图象交于点E,使得∠ADB=∠ABM,连接AE,求证:AE=AD;(3)若直线y=kx+1与圆A相切,请求出k的值.7.(专题30圆与二次函数结合-【微专题】2022-2023学年九年级数学上册常考点微专题提分精练(人教版))如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,且OA=OC(1)求二次函数的解析式;(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,直接写出点P坐标;若不存在,请说明理由.8.(北京市朝阳区汇文中学朝阳垂杨柳分校2020-2021学年九年级上学期期中数学试卷)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y 与其横坐标x 的差y﹣x 称为P 点的“坐标差”,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)△点A(1,3)的“坐标差”为;△抛物线y=−x2+3x+3的“特征值”为;(2)某二次函数y=−x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点 B 与点C 的“坐标差”相等.△直接写出m=;(用含c的式子表示)△求此二次函数的表达式.(3)如图,在平面直角坐标系xOy 中,以M(2,3)为圆心,2 为半径的圆与直线y=x 相交于点D、E,请直接写出△M 的“特征值”为.9.(湖南省长沙市中雅培粹学校2022-2023学年九年级上学期第一次月考数学试题)如图,已知抛物线经过点A(−1,0),B(3,0),C(0,3)三点,点D是直线BC绕点B逆时针旋转90°后与y轴的交点,点M是线段AB上的一个动点,设点M的坐标为(m,0),过点M作x轴的垂线交抛物线于点E,交直线BD于点F.(1)求该抛物线所表示的二次函数的解析式;(2)在点M运动过程中,若存在以EF为直径的圆恰好与y轴相切,求m的值;(3)连接AC,将ΔAOC绕平面内某点G旋转180°后,得到ΔA1O1C1,点A、O、C的对应点分别是点A1、O1、C1,是否存在点G使得ΔAOC旋转后得到的ΔA1O1C1的两个顶点恰好落在抛物线上,若存在,求出G点的坐标;若不存在,请说明理由.10.(湖南省长沙市一中双语实验学校2021-2022学年九年级上学期期末数学试题)如图,已知二次函数y= ax2+bx+3的图象与x轴交于点A(1,0)、B(−3,0),与y轴的正半轴交于点C.(1)求二次函数y=ax2+bx+3的表达式;(2)点D是线段OB上一动点,过点D作y轴的平行线,与BC交于点E,与抛物线交于点F,连接CF,探究是否存在点D使得△CEF为直角三角形?若存在,求点D的坐标;若不存在,说明理由;(3)若点P在二次函数图象上,是否存在以P为圆心,√2为半径的圆与直线BC相切,若存在,求点P的坐标;若不存在,说明理由.11.(广东省深圳市龙华区龙华区高峰学校2021-2022学年九年级下学期第三次月考数学试题)如图,已知二次函数y=ax2+bx+c(a<0,c>0)与x轴交于点A、B,与y轴交于点C,且以AB为直径的圆经过点C.(1)若点A(﹣4,0),点B(16,0),求C点坐标和函数关系式.(2)若点D是圆与抛物线的交点(D与A、B、C不重合),在(1)的条件下,坐标轴上是否存在一点P,使得以P、B、C为顶点的三角形与△CBD相似?若存在,请求点P坐标;若不存在,请说明理由.12.(2022年山东省济宁市任城区济宁学院附属中学九年级第二次模拟考试试题)如图,已知二次函数y= ax2+bx+3的图象与x轴交于点A(1,0)、B(−3,0),与y轴的正半轴交于点C(1)求二次函数y=ax2+bx+3的表达式(2)点D是线段OB上一动点,过点D作y轴的平行线,与BC交于点E,与抛物线交于点F,连接CF,BF,探究是否存在点D使得四边形ACFB的面积最大?若存在,求点D的坐标;若不存在,说明理由(3)若点P在二次函数图象上,是否存在以P为圆心,√2为半径的圆与直线BC相切,若存在,直接写点P 的坐标;若不存在,说明理由13.(2022年山东省济宁市金乡县中考二模数学试题)已知二次函数的图象交x轴于点A(3,0),B(-1,0),交y轴于点C(0,-3),P这抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式:(2)当△P AC是以AC为直角边的直角三角形时,求点P的坐标:(3)抛物线上是否存在点P,使得以点P为圆心,2为半径的圆既与x轴相切,又与抛物线的对称轴相交?若存在,求出点P的坐标,并求出抛物线的对称轴所截的弦MN的长度;若不存在,请说明理由.(写出过程)14.(江苏省盐城市大丰区新丰初级中学2021-2022学年九年级下学期新课程结束考试数学试题(一模))如图1,在平面直角坐标系中,O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA△OB.(1)若点B的坐标是(2,m),则点A的坐标是;(2)过点B作BC△x轴,垂足为C,若△AOB与△OBC相似,求cos△OBA.(3)在(1)问的条件下,若点E为二次函数第一象限内抛物线上一动点,EH垂直于X轴于点H,交线段AB 于点F,以EF为直径的圆M与AB交于点R,求当△EFR周长取最大值时E点的坐标;(4)在(3)问的条件下,以BH为直径作圆N,点P为圆N上一动点,连接AP,Q为AP上一点且AQ=12AP,连接HQ,求OQ的最小值;15.(2022年广西河池市凤山县中考模拟(二)数学试题)如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,且tan△OAC=1.(1)求二次函数的解析式;(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,直接写出点P坐标;若不存在,请说明理由.16.(湖北省鄂州市吴都中学2021-2022学年九年级下学期第一次月考数学试题)如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan△ACO=13.(1)求这个二次函数的表达式;(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.17.(2022年新疆维吾尔自治区乌鲁木齐市天山区一模数学试题)如图,已知二次函数y=−14x2+32x+4的图像与x轴交于点A,B,与y轴交于点C,顶点为D,连接BC;(1)求顶点D的坐标;(2)求直线BC的解析式;(3)点E是第一象限内抛物线上的动点,连接BE,CE,求△BCE面积的最大值;(4)以AB为直径,M为圆心作圆M,试判断直线CD与圆M的位置关系,并说明理由18.(专题09二次函数与圆综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘)定义:平面直角坐标系xOy中,过二次函数图像与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,√5为半径作圆.请判断△P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)已知二次函数y=x2﹣4x+4图像的顶点为A,坐标圆的圆心为P,如图1,求△POA周长的最小值;(3)已知二次函数y=ax2﹣4x+4(0<a<1)图像交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连接PC,PD,如图2.若△CPD=120°,求a的值.19.(湖南省长沙市青竹湖湘一外国语学校2020-2021学年九年级下学期第二次模拟考试数学试题)已知二次函数的图象经过点A(2,0),B(−4,0),C(0,4),点F为二次函数第二象限内抛物线上一动点,FH⊥x 轴于点H,交直线BC于点D,以FD为直径的圆△M与BC交于点E.(1)求这个二次函数的关系式;(2)当三角形EFD周长最大时.求此时点F点坐标及三角形EFD的周长;(3)在(2)的条件下,点N为△M上一动点,连接BN,点Q为BN的中点,连接HQ,求HQ的取值范围.20.(江苏省宿迁市沭阳县怀文中学2021-2022学年九年级上学期期末数学试题)如图,已知二次函数y= ax2+bx+c的图象与x轴交于A和B(3,0)两点,与y轴交于C(0,−2),对称轴为直线x=5,连接BC,在直4线BC上有一动点P,过点P作y轴的平行线交二次函数的图像于点N,交x轴于点M,(1)求抛物线与直线BC的函数解析式;(2)设点M的坐标为(m,0),求当以PN为直径的圆与y轴相切时m的值:(3)若点P在线段BC上运动,则是否存在这样的点P,使得△CPN与△BPM相似,若存在请直接写出点P 的坐标,若不存在,请写出理由.。
2020版-掌控中考-数学-初中学业水平考试-模拟卷含答案2020年初中学业水平考试模拟卷(二)(考试时间:120分钟满分:120分)班级:________ 姓名:________ 得分:________一、填空题(本大题共6小题,每小题3分,共18分)1.-2 020的绝对值是 2 020 .2.分解因式: m2-9=(m+3)(m-3) .3.如图,已知a∥b,点B在直线b上,且AB⊥BC,∠1=38°,则∠2的度数是 52°.4.若点(2,4)在一次函数y=kx-2(k≠0)的图象上,则k= 3 .5.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是10 .6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D,E为AC,BC上两个动点,若将∠C沿DE折叠,点C的对应点C′恰好落在AB上,且△ADC′恰好为直角三角形,则此时CD的长为127或43.二、选择题(本大题共8小题,每小题4分,共32分)7.如图所示几何体的左视图是( D )8.一个数用科学记数法表示为2.37×105,则这个数是( D )A.237 B.2 370 C.23 700 D.237 0009.函数y=2xx+3中,自变量x的取值围是( C )A.x>-3 B.x>-3且x≠0C.x≠-3 D.x≠-3且x≠010.若一个多边形的角和与外角和总共是900°,则此多边形是( B )A.四边形 B.五边形 C.六边形 D.七边形11.为了了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2019年5月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是( D )A.中位数是55 B.众数是60C.平均数是54 D.方差是2912.若矩形ABCD的两邻边长分别为一元二次方程x2-17x+60=0的两个实数根,则矩形ABCD的对角线长为( C )A.10 B.12 C.13 D.1513.定义新运算:对于任意实数a,b,都有a b=a+b,a b=ab,其中等式右边是通常的加法和乘法运算,则代数式a2+b2可由式子______转化而得到( B ) A.(a b)2B.(a b)2-2(a b)C.(a b)2+2(a b) D.(a b)2-(a b)14.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则cos∠ADF的值为( C )A.1113B.1315C.1517D.1719三、解答题(本大题共9小题,共70分) 15.(本小题6分)计算:-14+(2-2)0+|-2 020|-⎝ ⎛⎭⎪⎫-16-1.解:原式=-1+1+2 020+6 =2 026.16.(本小题6分)如图,在△ABC 中,点E 是AC 边上一点,BE =BC ,点D 为△ABC 外一点,且∠DEA =∠EBC ,AC =DE.若∠ABD =50°,求∠C 的度数.解:∵∠AED +∠DEB =∠EBC +∠C ,∠DEA =∠EBC ,∴∠DEB =∠C. ∵BE =BC ,AC =DE , ∴△DBE ≌△ABC(SAS ). ∴∠DBE =∠ABC. ∴∠EBC =∠DBA. 又∵∠ABD =50°, ∴∠EBC =∠ABD =50°. ∵BE =BC ,∴∠C =∠BEC =12(°-∠EBC)=12×(°-50°)=65°,即∠C 的度数为65°.17.(本小题8分)某电台对市某区市民设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),该电台在全区围随机调查了部分市民.将统计结果绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题.(1)这次统计共抽查了________名市民;在扇形统计图中,表示“QQ ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)若该区共有150 000名市民,请估计该区最喜欢用微信进行沟通的市民有多少名.解:(1)喜欢用沟通的人数为20,所占百分比为20%,所以此次共抽查了20÷20%=100(人).喜欢用QQ 沟通所占比例为30100=310. 所以表示“QQ ”的扇形圆心角的度数为360°×310=108°,故填100,108°.(2)喜欢用短信的人数为100×5%=5(人).喜欢用微信的人数为100-20-5-30-5=40(人). 补充图形如图所示.(3)估计该区最喜欢用微信进行沟通的市民有 150 000×40100=60 000(人).18.(本小题6分)为提倡低碳环保,绿色出行,市大力推广共享单车。
2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。
2020年湖南省初中数学学业水平考试数学模拟试卷(二)一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题4分,共40分)1.﹣2020的相反数是( )A .2020B .﹣2020C .20201D .﹣20201 【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2020的相反数是2020.故选:A .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.﹣22×3的结果是( )A .﹣5B .﹣12C .﹣6D .12【分析】根据有理数的混合运算法则解答即可.【解答】解:﹣22×3=﹣4×3=﹣12.故选:B .【点评】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.3.下列运算正确的是( )A .a •a 2=a 2B .(ab )2=abC .3﹣1=D .【分析】根据同底数幂的乘法法则对A 进行判断;根据积的乘方对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据二次根式的加减法对D 进行判断.【解答】解:A 、原式=a 3,所以A 选项错误;B 、原式=a 2b 2,所以B 选项错误;C 、原式=,所以C 选项正确;D、原式=2,所以D选项错误.故选:C.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.4.分式有意义,则x的取值范围是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7【分析】直接利用分式有意义则分母不为零进而得出答案.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.【点评】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.6.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选:C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数7.如图的立体图形的左视图可能是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:此立体图形的左视图是直角三角形,故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.8.在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.【分析】方法1、根据已知解析式和函数的图象和性质逐个判断即可.方法2、先根据一次函数的图象排除掉C,D,再判断出A错误,即可得出结论.【解答】解:方法1、A、从一次函数图象看出k<0,而从反比例函数图象看出k>0,故本选项不符合题意;B、从一次函数图象看出k>0,而从反比例函数图象看出k>0,故本选项符合题意;C、从一次函数图象看出k>0,而从反比例函数图象看出k<0,故本选项不符合题意;D、从一次函数图象看出k<0,而从反比例函数图象看出k<0,但解析式y=x+k的图象和图象不符,故本选项不符合题意;故选B.方法2、∵函数解析式为y=x+k,这里比例系数为1,∴图象经过一三象限.排除C,D选项.又∵A、一次函数k<0,反比例函数k>0,错误.故选:B.【点评】本题考查了反比例函数和一次函数的图象和性质,能灵活运用图象和性质进行判断是解此题的关键.9.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选:B.【点评】本题考查了等腰三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.10.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2020的值为()A.201721⎪⎭⎫⎝⎛B.201722⎪⎪⎭⎫⎝⎛C.201822⎪⎪⎭⎫⎝⎛D.201821⎪⎭⎫⎝⎛【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=2020时,S2018=()2020﹣3=()2017.故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=()n﹣3”.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.新田为实现全县“脱贫摘帽”,2019年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为 2.35×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为:2.35×108.故答案为:2.35×108.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.直线y=2x+1经过点(0,a),则a= 1 .【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【解答】解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.【点评】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.13.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是 4 .【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】方法1解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.方法2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②由①﹣②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故答案为:4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD 的面积,△AGF的面积=△AGE的面积=△CGE的面积.14.把多项式3x2﹣12因式分解的结果是3(x﹣2)(x+2).【分析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:3x2﹣12=3(x2﹣4)=3(x﹣2)(x+2).故答案为:3(x﹣2)(x+2).【点评】此题主要考查了提公因式法与公式法的综合运用,在分解因式时首先要考虑提取公因式,再考虑运用公式法,注意分解一定要彻底.15.不等式组的解集是2≤x<4 .【分析】分别解两个不等式得到x<4和x≥2,然后根据大小小大中间找确定不等数组的解集.【解答】解:,解①得x<4,解②得x≥2,所以不等式组的解集为2≤x<4.故答案为2≤x<4.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB 的面积为1,则k=﹣2 .【分析】根据反比例函数的性质可以得到△AOB的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.17.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为﹣4≤m≤﹣1 .【分析】先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m ≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【解答】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点评】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键..18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于2.【分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【解答】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为4×=2,即两个二次函数的最大值之和等于2.故答案为2.【点评】本题考查了二次函数的最值问题,等边三角形的判定与性质,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2020【分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【解答】解:原式=﹣4+1+1+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)先化简,再求值:﹣÷,其中a=1.【分析】原式第二项利用除法法则变形,约分后通分并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•2(a﹣3)=﹣==,当a=1时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是126 度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?【分析】(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【解答】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点评】本题主要考查条形统计图及扇形统计图及相关计算.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.22.(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,)【分析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论.【解答】解:∵BD=CE=6m,∠AEC=60°,∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,先根据锐角三角函数的定义得出AC的长是解答此题的关键.23.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.(1)求证:AE=BF.(2)若BE=,AG=2,求正方形的边长.【分析】(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG =2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足为G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四边形ABCD为正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,∴()2=x•(2+x),解得:x1=1,x2=﹣3(不合题意舍去),∴AE=3,∴AB===.【点评】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.24.(10分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.【分析】(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.【解答】(1)证明:连接OD;∵PA为⊙O切线,∴∠OAD=90°;在△OAD和△OBD 中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB为⊙O的切线(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=30°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=30°,∴AC=AP=3.【点评】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.25.(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地大货车A村(元/辆)B村(元/辆)800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往A村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.26.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC 于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?【分析】(1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a =﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QPC=,∴,解得t=;当∠PQC=90°时,∵cos∠QCP=,∴,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则有:,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4 中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CPQ=FQ•AG+FQ•DG,=FQ(AG+DG),=FQ•AD,=×2(t﹣),=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.。
2023年春季学期九年级学业水平模拟检测数学试题卷(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卡上解题作答,答案书写在答题卡相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12个小题,每小题只有一个正确选项,每小题3分,共36分)1.如果规定收入为正,支出为负,收入3元记作3元,那么支出10元记作()A.5元B.元C.11元D.元2.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.B.C.D.3.如图1,直线,若,则∠2的度数为()A.152°B.138°C.127°D.142°4.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.5.已知反比例函数的图象经过点,则k的值是()A.B.B.D.6.已知一组数据:20,23,25,25,27,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,257.如图2,下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片,,按此规律排列下去,图n中黑色正方形纸片的张数为()A.2n-1B.n+2C.2n+1D.2n+28.如图3,已知AB=DC,,能直接判断的方法是()A.B.C.D.9.下列运算正确的是()A.B.C.D.10.在中,,,,则的值为()A.B.C.D.11.如图4,某校数学兴趣小组利用标杆BE测量学校旗杆CD的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则旗杆CD的高度是()A.12m B.10.5mC.13m D.16m12.关于x的一元二次方程有两个实数根,则k的取值范围是()A.B.C.且D.且二、填空题(本大题共4个小题,每小题2分,共8分)13.若代数式有意义,则实数x的取值范围为______.14.分解因式:______.15.如图5,圆锥的底面直径AB=6cm,OC=4cm,则该圆锥的表面积是______(结果保留).16.如图6,在中,AC=2,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB 于点D,连接CD,则AB的长为______.三、解答题(本大题共8个小题,共56分)17.(本小题6分)计算:18.(本小题6分)如图7,已知点B,D在线段AE上,AD=BE,,且AC=EF,求证:BC=DF.19.(本小题7分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图8所示尚不完整的统计图.(1)本次调查共随机抽取了______名中学生,其中课外阅读时长“2~4小时”的有______人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为______°;(3)若该地区共有15000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.20.(本小题7分)某校在“庆祝建党100周年”系列活动中举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛.九年级某班“班级党史知识竞赛”中,有A,B,C,D四名同学的竞赛成绩为满分.(1)若该班要随机从4名满分同学中选取1名同学参加学校的党史知识竞赛,A同学被选中的概率是______;(2)该班4位满分同学中A和B是女生,C和D是男生,若要从4名满分同学中随机抽取两名同学参加学校的党史知识竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.21.(本小题7分)如图9,在四边形ABCD中,,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=4,求OE的长.22.(本小题7分)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售,经了解甲种水果和乙种水果的进价与售价如下表所示.水果甲乙价钱进价(元/千克)售价(元/千克)2025已知用1200元购进甲种水果的重量与用1600元购进乙种水果的重量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?23.(本小题8分)如图10,AB=BC,以BC为直径的,与AC交于点E,过点E作于点F,交CB的延长线于点G.(1)求证:EG是的切线;(2)若GF=3,GB=5,求的半径.24.(本小题8分)如图11,已知点,,点P为线段AB上的一个动点,反比例函数的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当P点在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式;②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.2023年春季学期九年级学业水平模拟检测数学参考答案一、选择题(本大题共12个小题,每小题只有一个正确选项,每小题3分,共36分)题号123456789101112答案B D C D B A C D C C A D 二、填空题(本大题共4个小题,每小题2分,共8分)题号13141516答案三、解答题(本大题共8个小题,共56分)17.(本小题6分)解:=4.18.(本小题6分)证明:因为AD=BE,所以,所以AB=ED,因为,所以∠A=∠E.在和中,AC=E F,∠A=∠E,AB=ED,所以.所以BC=DF.19.(本小题7分)解:(1)20040(2)144(3)(人).答:估计该地区中学生一周课外阅读时长不少于4小时的有9750人.20.(本小题7分)解:(1)(2)画树状图如图1:共有12种等可能的结果,其中抽到一名男生一名女生的有8种结果,P(抽到男女各一名).21.(本小题7分)(1)证明:,.为的平分线,,,.,四边形ABCD是平行四边形.,平行四边形ABCD是菱形.(2)解:四边形ABCD是菱形,,OB=OD,.,,BD=4,OB=2,在中,AB=6,OB=2,,.22.(本小题7分)解:(1)由题意可知:,解得:x=12,经检验,x=12是原分式方程的解,且符合实际意义.(2)设购进甲种水果m千克,则购进乙种水果千克,利润为y,由题意可知:.甲种水果的重量不低于乙种水果重量的3倍,,解得:,即,在中,,则y随m的增大而减小,当m=75时,y最大,且为元,购进甲种水果75千克,购进乙种水果25千克,获得最大利润825元.23.(本小题8分)(1)证明:如图2,连接OE,,.,,,.,,且OE为半径,是的切线.(2),,GF=3,GB=5,.,,,,,即的半径为20.24.(本小题8分)解:(1)①当n=l时,,设线段AB所在直线的函数表达式为,把和代入得:解得:则线段AB所在直线的函数表达式为.②不完全同意小明的说法,理由为:,,当x=l时,;当时,;则不完全同意.(2)当n=2时,,,符合;当时,,,当n<2时,k随x的增大而增大,则有,此时;当n>2时,k随x的增大而增大,则有,此时n>2,综上,.。
)二2020年云南省初中数学学业水平考试模拟试卷(分)分,每小题3一.填空题(满分18xxx,则..1|的取值范围是﹣3|=3﹣2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.yx的取值范围是=中,自变量.4.在函数DAEADEDEABDFABAEDF等于,则⊥.,若5.如图:∠=∠==15°,∥8,ABCABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个1.已知△,连接△的周长是6三角形…依此类推,则第2020个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A. B. C. D.9.下列各式中,运算正确的是()632aaa B=A..÷. DC.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°).下列各命题是真命题的是( 11 A.平行四边形对角线互相垂直 B.矩形的四条边相等.菱形的对角线相等CD.正方形既是矩形,又是菱形x的平均数为3,则这组数中的()4212.若数组,2,,3,xx.中位数为CA.3 =B.中位数为3 .众数为3 D2019abba)的值为()﹣,则(0=1|+﹣+|.已知13.A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三.解答题222222zxzxzxyyzxzyyxy.))﹣++﹣2()2+15.(6分)已知:(﹣()++(+﹣)﹣+(2﹣)=(求的值.ADABCBCADEDEADBEACDEBD.,使,求证:△16.(6分)已知:=是△中,连接边上的中线,延长至≌△17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(6分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的2mxy)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100(元)与种植面积元.(种植费用yx的函数关系式;与(1)试求出22mm,200且不超过乙种花卉的种乙两种花卉的种植面积共1200,若甲种花卉的种植面积不少于(2)广场上甲、植面积的2倍.2mWx)之间的函数关系式;元与种植面积(①试求种植总费用W最少?最少总费用为多少元?②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用yxxAyBBx关于轴交于点轴交于点的图象与,与19.(7分)如图,在平面直角坐标系中,一次函数,点=﹣32bxcACCyx.+ 轴的对称点是,二次函数+=﹣和点的图象经过点(1)求二次函数的表达式;ACADCEAB落在直线,平移线段2)如图1落在二次函数在第四象限的图象上,点,点的对应点的对应点(D的坐标;上,求此时点CDxMPACPPF⊥为直线,在(3)如图22)的条件下,连接,交上方抛物线上一动点,过点轴于点,点作(ACFPCPPCFCOMP的,垂足为点,连接,是否存在点,使得以点,,为顶点的三角形与△相似?若存在,求点横坐标;若不存在,请说明理由.(依《中庸》、《大学》、20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》CBCAAB张完全相同的不透明卡片的正面上,背面朝上洗匀表示这三个材料),将3,,分别写在次用字母,,洗匀后,再由小智从中随机抽取一张卡后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,片,他俩按各自抽取的内容进行诵读比赛.;(1)小礼诵读《论语》的概率是(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.ABCD四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的,,21.(8分)某品牌牛奶供应商提供,牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;C对应的中心角度数是;(3)扇形统计图中(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,AB口味的牛奶共约多少盒?,则该牛奶供应商送往该校的牛奶中,PABCDACBPCDEADF,上的一点,连接,交并延长交于点.22(9分)如图,点为正方形的延长线于点的对角线ODEFDP.⊙的外接圆,连接是△DPO的切线;)求证:是⊙(1PDCABCDOOP的长.的半径和线段,求⊙4的边长为,正方形=∠tan)若2(.ABCDABcmEBDAECEE,过,上一动点,连接为对角线(2019威海中考)(12分)如图,在正方形,中,=1023.EFAEBCFEBBDcmED重合时,点出发,沿着⊥,交直线的速度运动,当点于点方向以每秒.2点从与点点作2xEBEFycm的面积为点的运动时间为,运动停止.设△秒.CEEF;=(1)求证:yxx的取值范围;)求之间关系的函数表达式,并写出自变量与(2BEF面积的最大值.)求△(3参考答案一.填空题x≥0,3﹣ 1.解:x≤3∴;x≤3故答案为;2.解:多边形的边数是:360÷72=5.故答案为:5..解:12 000 000=1.2×10,7310 故答案是:1.2×x+1≠0,.解:由题意,得427,x≠﹣.解得x≠﹣.故答案为:DGACG.⊥,垂足为5.解:作DEAB,∥∵BADADE,∴∠=∠DAEADE°,15==∠∵∠.DAEADEBAD=15°,=∠=∠∴∠DEG=15°×2=30°,∴∠EDAE=8∴,=DEDEGDG=4,=∴在Rt△中,DFDG=4∴.=故答案为:4.n个三角形的周长为?,6.解:设第nCCCCCCC=∵1=,====,=,,…,3112342n﹣1,)∴?=(n2019C)∴=(.2020(故答案为:)二.选择题(共8小题,满分32分,每小题4分)2019.7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.B.故选:8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,B.故选:633aAaa,故本选项错误;、 9.解:=÷B、=2,故本选项错误;1﹣C=,故本选项正确;)÷=1、1 ÷2263ababD ,故本选项错误. )、=(C .故选: BEFAEFF =30°, 是△°,∠的外角,∠1=.解:如图,∵∠1020BEFF =50°,=∠1+∠ ∴∠ABCD ,∵ ∥BEF =50°,=∠∴∠2 C . 故选:A 、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;.解:11.B 、矩形的四边不一定相等,故错误,是假命题;C 、菱形的对角线垂直但不一定相等,故错误,是假命题;D 、正方形既是矩形,又是菱形,正确,是真命题; D .故选:x =3×5﹣2﹣2﹣4﹣3=412.解:根据平均数的定义可知,,这组数据从小到大的顺序排列后,处于中间位置的数是3, 那么由中位数的定义和众数的定义可知,这组数据的中位数是3,B .故选:ba 1|+=0﹣13.解:∵|,+∴,,解得: 则原式=﹣1,B .故选:14.解:∵矩形的对边平行且相等,对角线互相平分且相等,C 正确∴选项 C .故选:三.解答题222222zyyyzxxyzzxyxzx .2+)(.解:∵(+﹣)(+( ﹣+)++(﹣﹣2)=()+)﹣2﹣15222222yzyzxxyxyzzxzxy )=0+,2+)﹣()﹣(﹣+﹣﹣2)+(2﹣))﹣(﹣(+ ﹣∴(yzyzxyzyzxxyxyzxyxyzzxzxyzxzxy )﹣﹣﹣2﹣+2﹣∴()﹣+2++)﹣2+)(﹣(﹣(﹣﹣+2)+(﹣﹣+++﹣﹣2+)(=0,222xyxzyyzxz=0,﹣﹣2∴22+2﹣2+2 222zyxzxy=0)+∴((﹣.)﹣+(﹣)xyz均为实数,,∵,xyz.=∴===1.∴ADABC的中线,是△16.证明:∵BDCD,=∴ACDEBD中,和△在△,ACDEBDSAS).∴△(≌△xx)步,﹣.解:设矩形的长为步,则宽为(6017xx)=864,(60﹣依题意得:2xx+864=060整理得:,﹣xx=24(不合题意,舍去),解得:=36或x=60﹣36=﹣24(步),∴60∴36﹣24=12(步),则该矩形的长比宽多12步.xykxkkyx;130130,即 0)当≤300≤时,设==300,根据题意得39000=,解得=1.解:18(111ybkyxxx,300当>时,设=+1500080=,即,解得,根据题意得+2.y=∴;xwxxx+120000;)=30+100()①当200≤1200≤300时,﹣=130 (2xwxxx+135000;20(1200﹣当>300时,80=)=﹣+15000+10022amam,),则乙种花卉种植(1200﹣②设甲种花卉种植为∴,a≤800200≤∴aW=126000 元=200 时.当min aW=119000 元=800时,当min∵119000<126000a=800时,总费用最少,最少总费用为119000∴当元.2m.400 1200﹣800=此时乙种花卉种植面积为22mm,才能使种植总费用最少,最少总费用为400800119000 和答:应该分配甲、乙两种花卉的种植面积分别是元.yxxyAB两点,、=轴分别交于点﹣3的图象与 119.()解:∵一次函数轴、AB(0,﹣3),3,0),∴(BxC,关于∵点轴的对称点是C(0,3)∴,2yxbxcAC,的图象经过点+ +∵二次函数、点=﹣∴bc=3,∴=2,2xxy+3∴二次函数的解析式为:.=﹣+2ACACADCE,的对应为点的对应点为0,3),平移线段,点,点(2)∵)(3,0,(EmmDmm﹣6),),则(设+3(,,﹣3D落在二次函数在第四象限的图象上,∵2mmm﹣6, +3)+3∴﹣()+3=+2(mm=﹣6(舍去)1,,=21D(4,﹣5),∴CD(4,﹣5),), 3()∵0(,3∴,解得xyCD,+3的解析式为=﹣2 ∴直线xy,=,则0=令.M(,0),∴yxxAC(0,3),(3,0∵一次函数)=﹣3的图象与,轴交于AOOC=3,3,∴=OAC=45°,∴∠PPFACPPNOAACEPC,于点作过点⊥作交⊥,连,点PEFAEN都是等腰直角三角形,∴△和△PEPNENmmmmm,∴﹣(﹣=+3﹣+3=﹣)=﹣+2+32mEmmmPm+3),﹣)设(,,﹣,(+2 +322FEmAEEN=,=∴,=﹣ +3,EFCFACAE,==﹣∴﹣CFPCOM,,∽△①当△∴,m,舍去,,=0解得1PFCCOM,②当△时,∽△∴,m,,(舍去)解得=01P或综合可得.点的横坐标为)小红诵读《论语》的概率=;.解:(120故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,=.所以小红和小亮诵读两个不同材料的概率=21.解:(1)本次调查的学生有30÷20%=150人;C类别人数为150﹣(30+45+15)=2()60人,补全条形图如下:C°×=144°(3)扇形统计图中对应的中心角度数是360 °故答案为:144,×()=300(人))(4600AB口味的牛奶共约300,盒.答:该牛奶供应商送往该校的牛奶中,OD, 1)连接22.(ABCDCDBCCPCPDCPBCP=45°,∵正方形,∠中,=,=∠=SASCDPCBP,≌△)(∴△CDPCBP,=∠∴∠BCD=90°,∵∠CBPBEC=90°,+∠∴∠ODOE,∵=ODEOED,∴∠=∠OEDBEC,∠=∠BECOEDODE,∴∠=∠=∠CDPODE=90°,∴∠ +∠ODP=90°,∴∠DPO的切线;是⊙∴CDPCBE, 2)∵∠=∠(tan,∴CE∴=,DE=2,∴EDF=90°,∵∠EFO的直径,是⊙∴FDEF=90∠°,∴∠+FCDP,=∠∴∠.DEF中,△,在Rt DF=4∴,2,∴==∴,FPDEDPEFPD,,∠∵∠=∠=∠DPEFPD,∴△∽△∴,PExPDx,==,则2设∴,x解得=,EPOEOP=∴.= +EMNABADMBCN,(1)证明:过于作于∥,交,交23.【解答】ABCDADBCABADMNADMNBC,∥⊥,⊥⊥,,∴∵四边形是正方形,∴AMEFNENFEFENAEEFAEFAEMFEN=90°,,∵+⊥∴∠,∴∠=∠∠=90°=∠=∠+∠AEMNFEDBCBNEBNENAM,==45°,∠=∴∠90=∠°,∴,∵∠=AEMEFNAASAEEFABCDADCDADECDE,,∵四边形,∠∴△≌△是正方形,∴(),∴===∠DEDEADECDESASAECEEF;(∵)=,∴,∴△=≌△=xBDBCD5,0≤Rt△中,由勾股定理得:≤==10,∴(2)解:在xAEMENEFNBNBEx,≌△=,由(=1)知:△由题意得:=2,∴FNMNMEMEFNABx﹣=10=,∴=10,∴==,∵xxxBFFNBN,2∴﹣==﹣10=10﹣﹣2xxxy5=)≤2;+5 ∴(=0≤=﹣22xyxx+()解:=﹣2+5=﹣2﹣),<,∵﹣20 3(BEFyx面积的最大值是.时,∴当=;即△有最大值是。