电机电器状态检测与故障诊断
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
变、电室故障的判断、检查及处理模版一、引言电室故障的判断、检查及处理是维护电力设备正常运行的重要工作。
本文将探讨一种变电室故障的模版,包括故障的判断、检查以及处理方法。
二、故障判断1.故障指示灯亮起或报警器响起在变电室,当故障发生时,通常会安装有故障指示灯或报警器。
一旦这些设备发出信号,即可初步判断存在故障。
2.电力系统异常变化如果观察到电力系统出现异常变化,如电压突然下降、电流异常变化等,也可能是存在故障的表现。
这时需要进一步检查。
三、故障检查1.检查继电器状态继电器是电力系统中的核心控制元件,故障时往往会有相关继电器状态异常的情况。
对继电器进行全面检查,确认其状态是否正常。
2.检查保护装置工作情况保护装置是用于检测故障并保护设备正常运行的重要设备。
对保护装置进行检查,确认其是否正常工作。
可以通过检查保护装置的显示屏或观察保护装置的工作指示灯来判断其状态。
3.检查电力设备的连接情况故障往往与电力设备的连接有关,例如接线松动、设备接地不良等。
对电力设备的连接情况进行仔细检查,确认是否存在异常。
4.检查电力设备的运行状态对电力设备的运行状态进行检查,包括电机的转动情况、设备的温度、噪音等。
异常的运行状态可能是存在故障的表现。
四、故障处理1.排除简单故障首先要排除一些简单的故障,例如松动的接线、断路器跳闸等。
这些故障可以通过简单的操作或重置来解决。
2.寻找故障源如果无法排除简单故障,需进一步寻找故障源。
可以通过分段检查电力设备,逐一排查可能存在的故障部位。
3.修复故障设备或更换故障部件一旦找到故障部位,需进行修复或更换故障设备或部件。
根据故障的具体情况,选择适当的修复方法或更换方案。
4.重新测试和验证在进行故障处理后,需要重新测试和验证修复的设备或部件是否正常工作。
通过仪器的测量和其他相关检查,确保故障彻底解决。
五、结束语通过以上故障判断、检查及处理模版,可以有效指导变电室故障的处理工作。
在实际操作中,需要根据具体情况灵活运用,并结合相关专业知识和经验,以确保电力设备的安全稳定运行。
电子产品常见故障检修方法(1)直观检查法直观检查法是指在不采用任何仪器设备、不焊动任何电路元器件的情况下,凭人的感觉——视觉、嗅觉、听觉和融觉来检查电子设备故障的一种方法。
直观检查法是最简单的一种查找设备故障的方法。
直观检查法分冷检与热检,冷检是在不通电的情况下对电子产品进行直观检查。
打开电子产品外壳,观察检查电子产品的内部元器件的情况。
通过视觉可以发现保险丝的熔断;元器件的脱焊;电阻器的烧坏(烧焦烧断);印刷电路板断裂、变形;电池触点锈蚀;机内进水、受潮;接插件脱落;变压器的烧焦;电解电容器爆裂;油或蜡填充物元器件(电容器、线圈和变压器)的漏油、流蜡等现象。
用直觉检查法观察到故障元器件后,一般需进一步分析找出故障根源,并采取相应措施排除之。
对于电子制作产品应重点检查是否存在装接错误,包括二极管、三极管及电解电容器等元器件的极性是否接错;是否存在错焊、漏焊、虚焊、短路及连线错误;集成电路、接插件是否插反,插接是否可靠到位。
热检是进行通电检查,即在电子产品通电工作情况下进行直观检查。
通过视觉可以发现元器件(电阻器等)有没有跳火烧焦、闪亮、冒烟,显像管灯丝亮不亮等现象。
通过嗅觉可以发现变压器、电阻器等发出的焦味。
通过听觉可以发现导线和导线之间,导线和机壳之间的高压打火,以及变压器过载引起的交流声及其他异常声音等。
一旦发现上述不正常现象,应该立即切断电源,进一步分析找出故障根源,并采取措施排除。
通过触觉可发现元器件明显的异常温升,检查温升一般应在切断电源的情况下进行,以免发生人身触电、烫伤等事故。
直观检查法的基本技巧:应用直观检查法要围绕故障现象有重点地对一些元器件进行检查,切莫什么元器件都去仔细观察一次,浪费排除故障时间。
直观检查法通常要用手拨动一些元器件,在拔动中要注意安全,防止元器件碰到220V的交流电或其他直流电源上。
拨过的元器件要扶正,不要让元器件互相碰到一起,特别是金属外壳的耦合电容不能碰到机器内部的金属部件上,否则会引起噪声。
电动机振动故障及检修总结电动机振动故障及检修总结电动机的振动故障及检修在工业领域普遍存在的振动式衡量设备装态的重要指标之一,当机械内部发生异常时,设备就会出现振动加剧现象。
振动诊断就是以系统在某种激励下的振动响应作为诊断信息的来源,通过对所测得的振动参量(振动位移、速度、加速度)进行各种处理,借助一定的识别策略,对机械设备的运行状态作出判断,进而对于有故障的设备给出故障部位、故障程度以及故障原因等方面的信息。
由于振动诊断具有诊断结果准确可靠,便于实时诊断等诸多优点,因而它成为应用最为广泛、最普遍的诊断技术之一。
特别是近年来,随着振动信号采集、传输以及分析仪器技术性能的提高,更进一步地促进了振动诊断技术在机械故障诊断中的应用。
1、电动机振动的危害电动机产生振动,会使绕组绝缘和轴承寿命缩短。
振动力促使绝缘缝隙扩大、外界粉尘和水份侵入其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等故障。
另外,电动机产生振动,又会使冷却管振裂,焊接点振开;同时会造成负载机械的损伤,降低工件精度;会造成所有遭到振动的机械部分的疲劳,会使地脚螺栓松动或断掉,最后电动机将产生很大噪声。
2、振动原因电动机的振动原因大致分为:①电磁原因;②机械原因;③机电混合原因。
①电磁原因1)电源方面:电压不平衡,三相电动机单相运转(比如熔丝烧断一根)/2)定子方面:定子铁芯变椭圆、偏心、松动、单边磁拉力,绕组故障(断线、对地短路、击穿),三相电流不平衡,三相阻抗不平衡,绕组接线有误。
3)转子方面:转子铁芯变椭圆、偏心、松动、鼠笼缺陷(如缩孔、断笼)等。
②机械原因1)电动机本身方面:①机械不平衡,转轴弯曲,滑环变形;②气隙不均;③定转子铁芯磁中心不一致;④轴承故障(如磨损超限、变形、配合精度不够);⑤机械结构强度不够;⑥基础安装不良,强度不够,共振,地脚螺丝松动等。
2)与联轴器配合方面:①连接不良,定中心不准;②联轴器不平衡,负载机械不平衡,系统共振等。
电气设备故障排查与修复电气设备的故障排查与修复是一项非常重要的工作,因为电气设备故障不仅会影响工业生产,还可能会对人类的安全造成威胁。
本文就电气设备故障排查与修复的方法进行探讨。
一、检查电源电气设备的故障排查与修复应该从最基本的电源检查开始。
首先,检查供电线路是否接触良好,是否有短路、开路等现象。
如果断路器跳闸,应该立即检查原因,并加以排除。
二、检查电气设备内部线路如果电源检查正常,而设备仍然不工作,那么就需要检查电气设备内部线路。
首先,需要检查各个接线端子是否接触良好,接线是否正确。
其次,检查各个元件的工作状态,例如接触器、断路器、保险丝、继电器等。
如果发现有元件损坏,就需要及时更换以确保电气设备的正常工作。
三、检查控制信号有些电气设备在工作时需要控制信号,如果控制信号异常,那么可能会导致设备无法正常工作。
因此,在排查故障时,应该检查控制信号是否正常,例如开关量信号、模拟量信号等。
如果发现控制信号异常,就需要找出原因并进行修复。
四、使用测试仪器在排查电气设备故障时,有些故障可能无法通过肉眼观察或者多次检查来确定,需要使用一些测试仪器来检测。
例如万用表、示波器、电能表等。
这些仪器可以帮助我们更快地找出故障原因,并进行相应的修复。
五、预防措施电气设备的故障排查与修复不仅仅是修复,更重要的是预防。
因此,在平时使用电气设备时,需要加强设备的保养、维护,定期检查设备线路和元件的情况,及时更换老化和损坏的元件,以避免设备故障的发生。
综上所述,电气设备故障排查与修复是一项重要的工作,需要我们认真对待。
在排查故障时,应该从最基本的电源、内部线路、控制信号等方面开始检查,并使用测试仪器进行排查。
在平时使用电气设备时,需要加强保养维护,定期检查设备情况,以预防故障的发生。
电机点检项目电机点检项目主要包括以下内容:1. 外观检查:主要检查电机的外观是否完好无损,有无局部变形、异响等异常情况,以及端盖是否有渗油现象。
对于电机的重要部件,如轴承、齿轮等,也需要进行仔细的外观检测,以确保其完整性。
2. 接线端子检查:检查接线端子的紧固情况、是否有松动现象、是否有接触不良现象等。
检查时可以用手轻轻拉动接线,看是否松动;同时,可以用万用表检查接触是否良好。
3. 轴承检查:主要检查轴承的润滑情况、是否有异响、是否有局部磨损等。
检查时可以观察轴承在运行中是否有异常振动或噪音,同时要仔细检查轴承座的密封和润滑情况是否良好。
4. 绝缘电阻检查:这是电机点检中非常重要的一个环节,主要是检查电机的绝缘电阻是否符合标准要求。
可以用万用表检查绝缘电阻是否符合要求,以确保电机安全运行。
5. 尺寸检测:电机的尺寸对于其安装和使用都有重要影响。
尺寸检测主要包括电机的各项尺寸是否符合设计要求,如外径、内径、长度、高度等。
此外,对于电机的轴向和径向跳动量也需要进行检测,以确保其精度。
6. 性能检测:包括电机的转速、功率、转矩、电流等参数的检测,以及电机在各种工况下的运行稳定性。
此外,对于电机的启动、制动、过载等方面的性能也需要进行检测。
7. 温度检测:通过点检设备检测电机的运行温度,包括电机绕组温度、轴承温度等,确保电机在允许的温度范围内运行。
8. 振动检测:通过专业的振动检测仪器对电机运行过程中的振动幅度和频率进行检测,判断电机运转是否正常。
9. 气体泄漏检测:对于需要使用润滑气体的电机,通过气体检测仪器检查是否存在泄漏现象,确保电机的正常运转和安全性。
在实际操作中,电机点检应根据具体情况进行,具体可以咨询相关专家。
电力系统电气设备常见故障检测与分析摘要:随着我国社会经济的不断发展与进步,科学技术也在突飞猛进的发展。
各行各业在发展过程中也逐渐增加了对电能的需求,在此基础上向电力系统提出了更高的标准和要求,电力系统的性能和安全性也已经成为人们关注的焦点和讨论的热点。
在目前能源供应紧张的形势下,电力生产过程中电气设备故障的出现,不仅会影响电能生产,严重时还会威胁人们的生命安全和设备安全,加剧了电力企业的竞争和挑战的难度,想使电力企业在激烈竞争中占据有力的位置,获得有效的发展空间,需要在故障诊断过程中不断探索并寻找出有效措施,进一步提高排查故障的效率和速度。
关键词:电力系统;电气设备故障;检修分析引言电力系统电气设备在经过一段时间的运行之后,会出现磨损和老化的现象,从而导致电气设备发生各种各样的故障。
当出现故障后没有对故障进行有效的诊断和检修,可能导致电气设备故障的进一步恶化,造成电气设备损坏,甚至造成更加严重的后果。
因此,必须加强对电力系统电气设备故障诊断和检修工作的研究,从而能够第一时间对故障进行识别和判断,并采取科学的方法对故障进行检修,保证电力系统电气设备的安全可靠运行。
1电力系统中电气设备故障理论规律分析电力系统的运行与电气设备的支撑是离不开的。
电气设备在实际运行期间由于会受到较多原因的制约,所以经常会发生各类故障,因此,加强电气设备的检修工作十分必要。
传统的在检修电气设备时往往凭经验办事的比较多,对于设备维修的周期难以准确的制定。
实际上,电气设备故障的发生是存在一定规律的,从理论上来说,主要能够通过浴盆曲线来对其进行表示。
从总体上来说,电气设备故障主要分为早期故障、偶发故障以及耗损故障这几个阶段。
早期故障的发生率是比较高的,这主要是因为设计与制造期间存在的不足造成的。
到了第二个阶段的时候,电气设备的故障发生率就会比较平稳,同样,在这个阶段中,电气设备有着非常高的工作效率,能够创造出很高的价值。
一般来说,在该阶段中,故障的发生往往因为维护管理不当而引起的。
高压开关柜的在线监测与故障诊断技术高压开关柜是电力系统中重要的电气设备之一,用于控制和保护电力系统中的电器设备。
其在线监测与故障诊断技术的研究和应用对于确保电力系统的稳定运行和故障快速处理具有重要意义。
本文将从高压开关柜的在线监测技术和故障诊断技术两个方面展开论述。
高压开关柜的在线监测技术是指通过传感器和数据采集装置将开关柜的运行状态参数进行实时监测,并通过远程通信技术传输到监控中心,进行实时分析和监控。
其主要包括以下几个方面的内容:第一,温度监测。
高压开关柜中的电器设备在运行时会产生一定的热量,如果温度过高可能导致设备失效或发生故障。
因此,通过设置温度传感器对高压开关柜的关键部位进行温度监测,可以及时发现异常情况并进行预警。
第二,电流监测。
高压开关柜中的电流是电力系统正常运行的基本依据,通过安装电流传感器对高压开关柜中电流进行实时监测,可以掌握设备的运行状态,提前预防设备过载或短路等故障的发生。
第三,压力监测。
高压开关柜中的气体压力是其正常运行的重要参数,通过安装压力传感器对高压开关柜中的气体压力进行监测,可以及时发现气体泄漏或压力异常,防止设备损坏或发生爆炸等事故。
第四,湿度监测。
高压开关柜中的湿度会影响设备的绝缘性能和运行稳定性,通过安装湿度传感器对高压开关柜中的湿度进行监测,可以及时发现湿度过高或过低的情况,采取相应的措施保障设备的正常运行。
高压开关柜的故障诊断技术是指通过监测和分析高压开关柜运行时产生的信号,判断设备是否存在故障,并通过相应的算法和方法对故障进行诊断和定位。
其主要包括以下几个方面的内容:第一,振动分析。
高压开关柜在运行时会产生一定的振动信号,通过对振动信号进行分析,可以判断设备是否存在运行不稳定、松动或其他故障。
第二,红外热像技术。
通过红外热像仪对高压开关柜的外观进行拍摄,可以观察设备局部温度分布情况,通过温度异常点的识别和定位,判断设备是否存在故障。
第三,气体分析。
高压开关柜在运行时会产生一定的气体,通过对开关柜内气体的成分和浓度进行分析,可以判断设备是否存在绝缘失效、短路故障等情况。
电气设备状态监测与故障诊断技术1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
电机电器状态检测与故障诊断
作者:杨金芳
来源:《中国新技术新产品》2014年第09期
摘要:做好电机电器状态检测和故障诊断对保证电器设备处于良好的运行状态的重要手段,因此掌握状态检测技术以及故障诊断技术是十分重要的,其中做好电机设备的状态检测是对故障诊断的有效方式。
本文介绍了电机设备故障诊断技术的特点、常用方法以及当前常用的状态检测与故障诊断技术。
关键词:电机;状态检测;故障诊断
中图分类号:TM34 文献标识码:A
概述
电机作为工业生产中常用的机械设备其运行过程中极易发生各类故障,因此将设备状态检测和诊断技术用于电机生产和运行是大势所趋,可极大增加电机运行的安全可靠性。
1电机故障诊断技术的特点
1.1涉及学科多
由于电机内部结构较为复杂,涉及到电力、电磁、机械以及通风散热等方面,因此如果发生故障就需要对各个可能的方面进行检测,再加上可能出现的故障不是单一方面原因造成的,就更造成了故障检测的难度,电机故障诊断涉及到电机学、空气动力学、传热学、高压电技术、弱电技术、材料技术、计算机技术、机械加工技术等等多个学科,因此就要求相关工作人员必须具备全方位的综合素质方能合格。
1.2对电机工作状态记录依赖性较大
电机的运行状态是不断改变的,虽然这种改变非常轻微,但一般来说形成故障都是有一定征兆的,同时引起电机故障的原因来说也是多方面的,因此对电机状态检测与故障诊断很大程度上要依赖日常工作对电机工作状态的记录文件作为参考,工作人员只有在充分了解电机的运行特点以及工作负载情况的基础上,才能有针对性地进行故障诊断,达到事半功倍的目的。
1.3可根据实时状态对故障进行预判
与继电保护系统不同的是,电机故障检测和诊断可根据当前检测的运行状态对可能发生的故障进行预判,对故障的发展趋势进行分析后可制定出最佳的检修方案,而不用等到故障发生后才采取相应手段,因此将可能由故障带来的损失降为最低。
2电机故障诊断方法与流程
电机状态检测与故障诊断工作的进行需要借助于先进的分析仪器和设备以及丰富的理论知识和相关经验。
首先,用传感器对电机的实时技术状态参数进行采集,然后将数据传输到主机进行数据的处理和诊断分析,利用工作人员扎实的知识和丰富的经验,并结合当前数据分析结果对当前电机可能发生的故障提出相关技术措施,尽量做到故障的事前控制,将损失降为最低。
电机的状态检测和故障诊断流程如图1所示:
图1 电机故障诊断流程图
3电机状态检测与故障诊断常用技术
3.1铁谱技术
铁谱技术是通过铁谱仪对电机零部件磨损颗粒的形态、粒径和化学成分进行分析(金属磨粒一般是从易损部件的润滑油样中分离出来得到),从而得出电机当前的磨损状况,以便在磨损的初期得到情报,及时采取有效措施防止进一步的磨损,预防故障的产生。
在电机检测中,利用铁谱仪将磨损颗粒的谱图呈现在基片上,供工作人员分析使用。
3.2红外测温和热成像技术
在电机状态检测中,红外测温与热成像技术是通过检测电机向外辐射出的红外光谱来显示出电机的温度,是非接触式的测温方法,由于物体的温度越高其辐射的功率就越大,因此可根据测量得到的辐射量将温度呈现出来,在实际工作中,电机某一个部位出现温升过大的情况就可通过红外热成像的技术准确检测出来。
3.3声发射技术
在电机中如果某一个部件有发生变形或断裂等,其声传播与在正常金属材料中传播的形式不同,此时形变或断裂处在受力的状态下就会以弹性波的形式释放出部分能量,这种能量以声音的形式发射出去,利用这种非正常的声音即可判断出是否存在故障以及故障发生部位,在实际工作中,仅凭人耳是无法分辨微弱的声音,因此一般要借助于灵敏的声检测仪器来测试。
3.4力和扭矩的检测
力和扭矩检测技术是检测电机工作状态的一种重要手段,其方法为:将电阻丝固定在基片上制成应变片,而后将其粘接到需要检测的部位,当设备工作时应变片就会受到电机的影响,如果被检测部位承受力和扭矩的作用就会使应变片发生形变,改变电阻丝的横截面和长度,因此使之阻值发生改变,结果呈现在应变仪上,计算出该部位的应变量就得得知该检测部位的受力情况,从而判断故障的趋势走向。
3.5电磁检测
在实际工作中经常利用电机内部和其周围的磁场分布情况来检测和判断电机的故障,通常的方法有直接测量电机内部和周围的磁场分布,以及测量谐波磁场和漏磁场等,其原理是利用探测线圈或霍尔元件等测磁元件测量磁场分布中各点的磁通量,其中探测线圈只用来测量交变磁场,而霍尔元件可测量交变磁场和直流磁场,根据磁通量变化情况来判定电机故障发生点。
3.6光线传感器测温技术
光纤传感器测温技术是一种新兴设备检测和故障诊断技术,具有体积小、灵敏度高、重量轻、精度高、测温范围宽等优点,因此在电机状态检测和故障诊断中可推广应用,其主要是利用光纤测温系统对测量空间的温度场分布进行实时测量,并实时传递出来供工作人员参考使用。
结语
综上所述,电机电器状态检测和故障诊断技术是在电机不拆卸的前提下,防治电机出现安全事故,并能大幅度降低电机故障出现概率的重要技术手段,在实际工作中,可用于电机状态检测与故障诊断的技术有很多,需要工作人员根据当前电机工作情况并考虑成本问题优选最佳的故障检测诊断技术,同时对较为复杂情况要综合两种或几种技术进行综合分析,最终得出最佳检修方案。
参考文献
[1]韩军.工程机械状态检测与故障诊断网络化系统研究[J].建设机械技术与管理,2001.
[2]谢宝义.工程机械状态检测与故障诊断技术[J].计量与测试技术,2002.。