2015年高考真题——理科数学(北京卷) 含解析
- 格式:pdf
- 大小:1.15 MB
- 文档页数:17
2015北京高考数学理科试卷解析及评价纯WORD版参与人员:陈玉兵王海军韦家鼎刘迎春沈少林高原马文超石运红何军凤闫泓水从2015年北京高考数学理科试卷来看,命题依旧考察学生的空间想象、抽象概括、推理论证、运算求解、数据处理、分析问题和解决问题的能力.从试卷整体来看,难度有所下降,在考察能力的同时,更注重基础知识的和方法的考察.从试题来看,小题部分对函数的直接考察力度加大,其中第七题、第八题、第十四题均为函数问题;小题部分有所调整,今年取消了几何证明选讲部分的考察,增加了二项式定理部分的题目.整体来看,小题部分难度有所下降.解答题部分15题三角函数、16题概率、17题立体几何这三个题目没有太大改变,题目比较常规,18题导数部分加强了导数运算的能力,19题圆锥曲线通过三角形相似构建坐标关系,较去年难度有所下降;第20题依然考察学生思维能力,注重数学模型和数学语言的表达.从2015高考试题来看,北京高考依然以第8题,14题和20题三个题目为难点考察学生综合分析和综合运用的能力,起到高考选拔的作用.2015年普通高等学校招生全国统一考试(北京卷)理科数学第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 1.复数()2i i -=( ).A .12i +B .12i -C .12i -+D .12i -- 【解析】()22212i i i i i -=-=+,选A2.若x ,y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为( ).A .0B .1C .32D .2 【解析】如图,当 01x y ==,max 2z =,选B 3.执行如图所示的程序框图,输出的结果为( ).A .(2,2)-B .(4,0)-C .(4,4)-D .(0,8)-【解析】020212222240403s t x y k s t x y k s t x y k ======-==-===-==-==结束,输出(4,0)-,选择B4.设αβ,是两个不同的平面,m 是直线且αm ⊂,“//m β”是“//αβ”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,答案为B5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ). A .25+ B .45+ C .225+ D .5【解析】由三视图知,PA ⊥面ABC ,12222ABCS=⨯⨯=,5AB AC ==,155122PABPCASS==⨯⨯=,6PC PB ==,12552PBCS =⨯⨯=,∴225S =+,答案为C6.设{}n a 是等差数列,下列结论中正确的是( ).A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则2123(-)(-)0a a a a > 【解析】210a a >>,0d ⇒>,所以30a >,132132a a a a a +=>,故答案为C 7.如图,函数()f x 的图像为折线ACB ,则不等式()2()1f x x +≥log 的解集是( ). A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤ 【解析】由题可知:22-10()202x x f x x x +≤≤⎧=⎨-+<≤⎩,当(]1,0x ∈-时,2log (1)022x x +<<+.(]0,2x ∈时,()f x 单调递减,2()log (1)g x x =+单调递增,2log (1)2x x +=-+1x ⇒=∴当01x <≤时,2log (1)2x x +≤-+,∴2()log (1)f x x ≥+的解集为(]1,1-,∴答案选择C8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( ).A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【解析】由图可知,对乙车存在一个速度,使燃油效率高于5,∴A 错;由图知,当以40/km h 的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B 错;甲车以80/km h 行驶1小时耗油8升,故C 错在限速80/km h ,相同情况下,丙车燃油效率较乙车高,所以乙车更省油,所以选D第二部分(非选择题 共110分)二、填空题 共6小题,每小题5分,共30分.9. 在()52x +的展开式中,3x 的系数为__________.(用数字作答)【解析】rr r r x C T -+=5512,当3=r 时,系数为4024542235=⨯⨯=C . 10.已知双曲线1222=-y a x )0(>a 的一条渐近线为03=+y x ,则=a __________.【解析】令00222=+⇒=-y a x y a x ,所以3331=⇒=a a .11.在极坐标中,点)3,2(π在直线6)sin 3(cos =+θθρ的距离为__________.【解析】直线方程为36360x y x y +=⇒+-=,点为)3,1(,所以点到直线方程的距离为12231631==+-+=d . 12.在ABC △中,4a =,5b =,6c =,则=CAsin 2sin __________. 【解析】222sin 22sin cos 24253616901sin sin 263090A A A a b c a C C c bc +-+-==⋅=⨯==.13. 在ABC △中,点N M ,满足.,2NC BC MC AM ==若,AC y AB x MN +=则=x __________;=y __________.【解析】CN MC MN +==31+AC 21CB =31AC +21)(AC AB -=21-AB 61AC ,所以61,21-==y x14. 设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--⎩≥.①若1a =,则)(x f 的最小值为 ;②若)(x f 恰有2个零点,则实数a 的取值范围是 .【解析】①当1=a 时,⎩⎨⎧≥--<-=1),2)(1(41,12)(x x x x x f x ,1<x 时,1()1f x -<<,1≥x 时,min 311()()4()1222f x f ==⨯⨯-=-,所以1)(min -=x f ;②(I )当0≤a 时,)(x f 没有两个零点,(Ⅱ)当10<<a 时,1<x 时,220log 0x aa x -=⇒=<,()f x 有一个零点;1≥x 时,a x a x x f 2,0)(21==⇒=;当12≥a ,即21≥a 时,)(x f 恰有两个零点, 所以当121<≤a 时,)(x f 恰有两个零点; (Ⅲ)当21<≤a 时,1<x 时,220log 1x aa x -=⇒=<,()f x 有一个零点;1≥x 时,1()0f x x a =⇒=,22x a =,()f x 有两个零点,此时)(x f 有三个零点;(Ⅳ)当2≥a 时,1<x 时,无零点;1x ≥时,有两个零点,此时)(x f 有两个零点.综上所述[)+∞⋃⎪⎭⎫⎢⎣⎡∈,21,21a .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2—2.222()x x x sin cos sin f x =(Ⅰ)求(x)f 的最小正周期;(Ⅱ)求(x)f 在区间[,0]π-上的最小值. 解:(Ⅰ)22()sin (1cos )22f x x x =-- 222sin cos 222x x =+-2sin()42x π=+-周期221T ππ==. (Ⅱ)0x π-≤≤3444x πππ∴-≤+≤21sin()42x π∴-≤+≤21()02f x ∴--≤≤ ∴最小值为212--.16.(本小题满分13分)A ,B 两组各有 7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组: 10111213141516,,,,,,B 组: 121315161714a ,,,,,,假设所有病人的康复时间互相独立,从A ,B 两组随机各选 1人,A 组选出的人记为 甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14 天的概率;(Ⅱ)如果 25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当 a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 解:(Ⅰ)记甲康复时间不小于14天为事件A .则3()7P A =答:甲康复时间不小于14天的概率为37. (Ⅱ)记甲的康复时间比乙的康复时间长为事件B .基本事件空间如下表乙 甲 10 11 12 13 14 15 16 12 短 短 短 长 长 长 长 13 短 短 短 短 长 长 长 14 短 短 短 短 短 长 长 15 短 短 短 短 短 短 长 16 短 短 短 短 短 短 短 17 短 短 短 短 短 短 短 25短短短短短短短所以1010()7749P B ==⨯. (Ⅲ)11a =或18a =由于A 组为公差为1的等差数列,所以当11a =或18a =时B 组也为公差为1的等差数列,所以方差一定相等,而方差相等的方程是关于a 的一个一元二次方程,故最多有两个解,所以只有11a =或18a =两个值.17.(本小题满分14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,//EF BC ,4BC =, 2EF a =,060EBC FCB ∠=∠=,O 为EF 的中点.(Ⅰ)求证:AO BE ⊥;(Ⅱ)求二面角F AE B --的余弦值; (Ⅲ)若 BE ⊥平面AOC ,求a 的值.解:(Ⅰ)证明:AEF ∆为等边三角形,O 为EF 中点, AO EF ∴⊥又平面AEF ⊥平面EFCB ,平面AEF平面EFCB EF =,AO ∴⊥平面EFCB ,AO BE ∴⊥,(Ⅱ)以O 为原点建立如图坐标系(),0,0E a ,(),0,0F a -,()0,0,3A a ,()()2,32,0B a -(),0,3EA a a →=-,()()2,32,0EB a a →=--平面AEF 的法向量()0,1,0m →=; 设平面AEB 的法向量(),,n x y z →=,则030300n EA x z x y n EB →→→→⎧⎧⋅=-+=⎪⎪⇒⎨⎨+=⎪⎪⎩⋅=⎩ 取()3,1,1n →=-15cos ,515m nm n m n→→→→→→⋅-∴===-⨯⋅ 又二面角F AE B --为钝角,∴二面角F AE B --的余弦值为55-. (Ⅲ)BE ⊥平面AOC ,BE OC ∴⊥,()()2,32,0OC a →=--,()()()2232320BE OC a a a →→⋅=--+-⨯-=,解得2a =(舍)或43a =18.(本小题满分13分)已知函数()1ln1xf x x+=-.(Ⅰ)求曲线(x)y f =在点(0,(0))f 处的切线方程;(Ⅱ)求证:当(0,1)x ∈时,2(x)2(x )3xf >+;(Ⅲ)设实数k 使得3x (x)k(x )3f >+对(0,1)x ∈恒成立,求k 的最大值解:(Ⅰ) (x)ln(1x)ln(1x)f =+--11(x)11f x x -'=-+- 1111x x =++-所以(0)2f '= 又()0f x =所以,切线方程为02(x 0)y -=- 即2y x =(Ⅱ)3322(x)f(x)2x ln(1)ln(1x)2x 33F x x x =--=+----211(x)2211F x x x '=+--+-222(1)(1)(1x)x x =-++- 22222(1)(1)1x x x -+-=- 4221x x =- 又因为01x <<,所以(x)0F '>所以(x)F 在(0,1)上是增函数 又(0)0F =, 故(x)(0)F F >所以3x (x)k(x )3f >+(Ⅲ)31ln (x ),x (0,1)13x x k x +>+∈-设 21(x)ln (x )0,(0,1)13x x t k x x +=-+>∈-422222(x)(1),(0,1),11kx k t k x x x x +-'=-+=∈--[0,2]k ∈,(x)0t '≥,函数(x)t 是单调递增,(x)t(0)t '>显然成立当2k >时,令(x)0t '=()0t x '=,得402(0,1)k x k-=∈ x 0(0,)x0x0(,1)x(x)t '— 0+ (x)t ↓极值↑0(x )t(0)0t <=,显然不成立,由此可知k 最大值为2.19. (本小题满分14分)已知椭圆C :22221x y a b+=(0a b >>)的离心率为22,点()0,1P ,和点(,)(0)A m n m ≠都在椭圆C 上,直线PA 交x 轴于点M M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q Q ,使得若存在,求点Q 的坐标;若不不存在,说明理由.解:(Ⅰ)由题意知1b =,22c a =,又222a b c =+,解得2,1a b c ===, 所以C 的方程为2212x y +=. PA 的斜率1PA n k m-=, 所以PA 方程11n y x m-=+, 令0y =,解得1m x n=- 所以,01m M n ⎛⎫ ⎪-⎝⎭(Ⅱ)(),B m n -,同(I )可得,01m N n ⎛⎫ ⎪+⎝⎭, 1tan QM OQM k ∠=,tan QN ONQ k ∠=,因为OQM ONQ ∠=∠所以1QN QM k k ⋅=,设(),0Q t 则111t t m m n n⋅=-+--即2221m t n =-, 又A 在椭圆C 上,所以2212m n +=,即2221m n =-, 所以2t =±,故存在()2,0Q ±使得OQM ONQ ∠=∠20. (本小题满分13分)已知数列{n a }满足1a ∈Ν*,136a ≤,且12,18(1,2).236,18n n n n n a a a n a a +≤⎧==⋯⎨->⎩ 记集合{|}n M a n =∈N*(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值. 解:(Ⅰ)6,12,24.(Ⅱ)若存在(1,2,,)i a i n =L 是3的倍数,设3()i a k k =∈*N , 当18i a ≤时,126i i a a k +==,1i a +也是3的倍数; 当18i a >时,1236636i i a a k +=-=-,1i a +也是3的倍数. 综上,1i a +是3的倍数,依次类推,当n i ≥时,n a 是3的倍数;若存在(2,3,,)i a i n =L 是3的倍数,设3()i a k k =∈*N ,当118i a -≤时,1322i i a k a -==⋅,因为1i a -∈*N ,所以1i a -也是3的倍数; 当18i a >时,1363(6)22i i a k a -+==⋅+,因为1i a -∈*N ,所以1i a -也是3的倍数;. 综上,1i a -是3的倍数,依次类推,当n i <时,n a 是3的倍数; 所以原结论成立.(Ⅲ)当11a =时,将11a =代入12,18(1,2,)236,18n n n nn a a a n a a +⎧==⎨->⎩L ≤, 依次得到2,4,8,16,32,28,20,4,L 所以当9n ≥时,6n n a a -=,此时{1,2,4,8,16,20,28,32}M =, 共8个元素.由题意,3a 可取的值有14a ,1436a -,1472a -,14108a -共4个元素, 显然,不论1a 为何值,3a 必为4的倍数,所以34(1,2,,9)a k k ==L ,① 当3{4,8,16,20,28,32}a ∈时, {4,8,16,20,28,32}n a ∈(3)n ≥,此时M 最多有8个元素; ② 当3{12,24}a ∈时,{12,24}n a ∈(3)n ≥,此时M 最多有4个元素; ③ 当336a =时,36n a =(3)n ≥,此时M 最多有3个元素; 所以集合M 的元素个数的最大值为8.。
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i(2i)-=( )A .12i +B .12i -C .12i -+D .12i -- 2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2 3.执行如图所示的程序框图,输出的结果为( )A .(22)-,B .(40)-,C .(44)--,D .(08)-,4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4C.2+D .5 6.设{}n a 是等差数列.下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则2123()()0a a a a -->7.如图,函数()f x 的图像为折线ACB ,则不等式2()log (1)f x x +≥的解集是A .{|10}x x -<≤B .{|11}x x -≤≤C .{|11}x x -<≤D .{|12}x x -<≤8.汽车的“燃油效率”是指汽车每消耗1汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在52x +()的展开式中,3x 的系数为________(用数字作答). 10.已知双曲线22210x y a a-=>()0y +=,则a =________. 11.在极坐标系中,点π23()‚到直线cos 6ρθθ=()的距离为________. 12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC=________.13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB yAC =+,则x =_______;y =_______.14.设函数2 14()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩()≥‚‚‚ ①若1a =,则()f x 的最小值为__________;②若()f x 恰有2个零点,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()cos222x x x f x . (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[π0]-,上的最小值.俯视图侧(左)视图--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)16.(本小题满分13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立.从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题满分14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ)求证:AO BE ⊥;(Ⅱ)求二面角F AE B --的余弦值; (Ⅲ)若BE ⊥平面AOC ,求a 的值.18.(本小题满分13分)已知函数1()ln1xf x x+=-. (Ⅰ)求曲线()y f x =在点(0(0))f ,处的切线方程;(Ⅱ)求证:当(01)x ∈,时,3()2()3x f x x >+;(Ⅲ)设实数k 使得3()()3xf x k x >+对(01)x ∈,恒成立,求k 的最大值.19.(本小题满分14分)已知椭圆22221(0) x ya b a bC +=>>:,点(01)P ,和点()A m n ,(0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.20.(本小题满分13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨-⎩, ≤,,>,12n =(,,)…. 记集合*{|}n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.O FECBA数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2i(2i)2i i 12i -=-=+,故选A .【提示】利用复数得运算法则解答. 【考点】复数代数形式的乘除运算 2.【答案】D 【解析】如图,当01x y ==,,max 2z =,故选D .【提示】作出题中不等式组表示的平面区域,再将目标函数2z x y =+对应的直线进行平移,即可求出z 取得的最大值. 【考点】简单线性规划 3.【答案】B【解析】依题意得:02021s t x y k =====,,,,, 2222240403s t x y k s t x y k =-==-===-==-==,,,,,,,,结束,输出(4)-,故选B .【提示】模拟执行程序框图,依次写出每次循环得到x y k ,,的值,当3k =时满足条件3k ≥,退出循环,输出(4)-. 【考点】程序框图4.【答案】B 【解析】m β∥不能推出αβ∥,因为αβ、可能相交,只要m 和αβ、相交即可得到m β∥;而αβ∥,m α⊂∴m β、没有公共点,∴m β∥,即αβ∥能得到m β∥,∴“m β∥”是“αβ∥”的必要不充分条件,故选B .【提示】m β∥并得不到αβ∥,根据面面平行得判定定理,只有α内得两相交直线都平行于β,而αβ∥,并且m α⊂,显然能得到m β∥,这样即可找出正确选项. 【考点】必要条件,充分条件与充要条件得判断 5.【答案】C【解析】由三视图知,OA ⊥面ABC,AB AC == E 为BC 中点,211EA EC EB OA ====,,, ∴AE BC BC OA ⊥⊥,12222ABC S =⨯⨯=△,112OAC OAB S S ===△△,122BCO S =⨯=△∴2S =+C .【提示】根据三视图可判断直观图为:PA ⊥面ABC ,AB AC =,E 为BC 中点,211EA EC EB OA ====,,,BC AEO ⊥面,AC OE =特点,计算边长,求解面积. 【考点】由三视图求面积,体积 6.【答案】C【解析】∵若120a a +>,则120a d +>,2312320a a a d d d +=+>>,时,结论成立,即A 不正确;若120a a +<,则120a d +<,2312320a a a d d d +=+<<,时,结论成立,即B 不正确;{}n a 是等差数列,120a a <<,∴1322a aa +=>C 正确;若10a <,则22123)()(0a a a a d ---<=,即D 不正确.故选C .【提示】对选项分别进行判断,即可得出结论.【考点】等差数列的性质 7.【答案】C【解析】由题可知:由已知()f x 的图象,在此坐标系内作出2log (1)y x =+的图象,如图满足不等式2()log (1)f x x ≥+的x 范围是11x -<≤;所以不等式2()log (1)f x x ≥+的解集是(]1,1-,故选C .【提示】在已知坐标系内作出2log (1)y x =+的图象,利用数形结合得到不等式的解集. 【考点】指数函数和对数函数不等式的解法 8.【答案】D【解析】由图可知,对乙车存在一个速度,使燃油效率高于5,所以A 错;由图知,当以40km/h 的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B 错;甲车以80km/h 行驶1小时耗油8升,故C 错;在限速80km/h ,相同情况下,丙车燃油效率较乙车高,所以乙车更省油,故选D . 【提示】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【考点】函数的图象与图象变化第Ⅱ卷二、填空题 9.【答案】40【解析】5(2)x +的展开式的通项公式为:5152r r rr T C x -+=,当3r =时,系数为3255424402C ⨯=⨯=.数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)故答案为40.【提示】写出二项式定理展开式的通项公式,利用x 的指数为3,求出r ,然后求解所求数值.【考点】二项式定理的应用 10.【答案】3【解析】双曲线2221x y a -=的渐近线方程为,所以x y a =±,解得1aa =. 【提示】运用双曲线的渐近线方程为x y a =±,结合条件可得1aa 的值.【考点】双曲线的简单性质 11.【答案】1【解析】点π2,3P ⎛⎫⎪⎝⎭化为P,直线方程为660x x =⇒+-=,所以点到直线方程的距离为212d ===. 【提示】化为直角坐标,再利用点到直线的距离公式距离公式即可得出. 【考点】简单曲线的极坐标方程 12.【答案】1【解析】在ABC △中,4a =,5b =,6c =,1625361cos =58C +-=⨯,2536163cos =2564A +-=⨯⨯,∴sin 8C =,sin 4A =,∴222sin 22sin cos 24253616901sin sin 263090A A A a b c a C C c bc +-+-===⨯==g . 【提示】利用余弦定理求出cos cos C A ,,即可得出结论. 【考点】余弦定理,二倍角的正弦,正弦定理 13.【答案】12x =【解析】由已知得到111111()323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-uuu r uuu r uuu r uuu r uu r uuu r uu u r uuu r uu u r uuu r ,所以1126x y ==-,.【提示】首先利用向量的三角形法则,将所求用向量AB AC uu u r uuu r、表示,然后利用平面向量基本定理得到值.【考点】平面向量的基本定理及其意义 14.【答案】min ()1f x =-[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭【解析】①当1a =时,21,1()4(1)(2),1x x f x x x x ⎧-<=⎨--≥⎩,当1x <时,1()1f x -<<,当1x ≥时,min 311()41222f x f ⎛⎫⎛⎫==⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以min ()1f x =-;②当0a ≤时,()f x 没有两个零点,当01a <<时,1x <时,220log 0x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,12()0,2f x x a x a =⇒==;当21a ≥,即12a ≥时,()f x 恰有两个零点,所以当112a ≤<时,()f x 恰有两个零点;当12a ≤<时,1x <时,220log 1x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,1()0f x x a =⇒=,22x a =,()f x 有两个零点, 此时()f x 有三个零点;当2a ≥时,1x <时,无零点;1x ≥时,有两个零点,此时()f x 有两个零点.综上所述[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭.【提示】分别求出分段的函数的最小值,即可得到函数的最小值;分情况讨论,求出符合()f x 有两个零点的并集.【考点】函数的零点,分段函数的应用三、解答题15.【答案】(Ⅰ)2πT = (Ⅱ)12--【解析】(Ⅰ)()cos )f x x x -x x =πsin()42x =+-,则周期2π2π1T==. (Ⅱ)∵π0x -≤≤,∴3πππ444x -≤+≤,∴π1sin()42x -≤+≤,∴1()0f x -≤≤,∴()f x 在区间[π0]-,上的最小值为1--. 【提示】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简()f x ,再由正弦喊话说的周期,即可得到所求(Ⅱ)由x 的范围,可得π4x +的范围,再由正弦函数的图象和性质,即可求得最小值. 【考点】两角和与差的正弦函数,三角函数的周期性及其求法,三角函数的最值 16.【答案】(Ⅰ)37(Ⅱ)1049(Ⅲ)11a =或18a =【解析】(Ⅰ)记甲康复时间不小于14天为事件A .则3()7P A =,所以甲康复时间不小于14天的概率为37.(Ⅱ)记甲的康复时间比乙的康复时间长为事件B .16y =-所以()7749P B==⨯.(Ⅲ)由于A组为公差为1的等差数列,所以当11a=或18a=时,B组也为公差为1的等差数列,所以方差一定相等,而方差相等的方程是关于a的一个一元二次方程,故最多有两个解,所以只有11a=或18a=两个值.【提示】(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得.(Ⅱ)设“甲的康复时间比乙的康复时间长”为事件B,列出基本时间空间表,由表即可求得()P B.(Ⅲ)由方差的公式可得.【考点】古典概型及其概率公式,概率的加法公式和方差17.【答案】(Ⅰ)见解析(Ⅱ)5-(Ⅲ)2a=【解析】(Ⅰ)证明:AEF∵△为等边三角形,O为EF中点,AO EF∴⊥又∵平面AEF⊥平面EFCB,平面AEF I平面EFCB EF=,AO∴⊥平面EFCB,AO BE∴⊥.(Ⅱ)以O为原点建立如图坐标系:∴(,0,0)E a,(,0,0)F a-,)A,),0)B a-,()EA a=-uu r,(2),0)EB a a=--uur平面AEF的法向量(0,1,0)m=u r;设平面AEB的法向量(,,)n x y z=r,则00n EA xxn EB⎧⎧=-=⎪⎪⇒⎨⎨+==⎪⎪⎩⎩r uu rgr uu rg,取1,1)n=-r,cos,||||m nm nm n==u r ru r r gu r rg∴又∵二面角F AE B--为钝角,∴二面角F AE B--的余弦值为.(Ⅲ)BE∵⊥平面AOC,BE OC∴⊥,(),0)OC a=--uuu r,2(2)))0BE OC a a a=----=uur uuu rg,解得2a=(舍去)或43a=.【提示】(Ⅰ)根据线面垂直的性质定理即可证明AO BE⊥.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F AE B--的余弦值.(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值.【考点】空间直线和平面垂直的判定以及二面角的求解18.【答案】(Ⅰ)2y x=(Ⅱ)见解析(Ⅲ)k最大值为2【解析】:(Ⅰ)()ln(1)ln(1)f x x x=+--,11()11f xx x-'=-+-1111x x=++-,又()0f x=,所以,切线方程为02(0)y x-=-,即2y x=.(Ⅱ)3322()()2ln(1)ln(1)233F x f x x x x x x x=--=+----,211()2211F x xx x'=+--+-222(1)(1)(1)xx x=-++-22222(1)(1)1x xx-+-=-4221xx=-,又因为01x<<,所以()0F x'>,所以()F x在(0,1)上是增函数,又(0)0F=,故()(0)F x F>,所以3()3xf x k x⎛⎫>+⎪⎝⎭.(Ⅲ)31ln(0,1)13x xk x xx⎛⎫+>+∈⎪-⎝⎭,,设21()ln()0,(0,1)13x xt x k x xx+=-+>∈-,422222()(1)(0,1)11kx kt x k x xx x+-'=-+=∈--,[0,2]k∈,()0t x'≥,函数(x)t是单调递增,()(0)t x t'>显然成立.当2k>时,令()0t x'=()0t x'=,得42(0,1)kx-=∈,()(0)0t x t<=,显然不成立,由此可知k最大值为2.【提示】(Ⅰ)利用函数的导数求在曲线上某点处的切线方程(Ⅱ)构造新函数利用函数的单调性证明命题成立(Ⅲ)对k进行讨论,利用新函数的单调性求参数k的取值范围【考点】切线方程的求法及新函数的单调性的求解证明数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷第15页(共18页)数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)19.【答案】(Ⅰ)C 的方程为2212x y +=,01m M n ⎛⎫ ⎪-⎝⎭(Ⅱ)存在,点Q的坐标为(【解析】(Ⅰ)由题意知1b =,c a =,又222a b c =+,解得1a b c ===,所以C 的方程为2212x y +=.PA 的斜率1PA n k m-=,所以PA 方程11n y x m -=+, 令0y =,解得1m x n =-,所以,01m M n ⎛⎫⎪-⎝⎭. (Ⅱ)(,)B m n -,同(Ⅰ)可得,01m N n ⎛⎫ ⎪+⎝⎭,1tan QM OQM k ∠=,tan QN ONQ k ∠=,因为OQM ONQ ∠=∠所以1QN QM k k =g ,设(,0)Q t ,则111m m n nt t -+--=即2221m t n =-, 又A 在椭圆C 上,所以2212m n +=,即2221m n =-,所以t =(Q 使得OQM ONQ ∠=∠.【提示】(Ⅰ)根据椭圆的几何性质得出2221b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩求解即可.(Ⅱ)求解得出,01m M n ⎛⎫ ⎪-⎝⎭,,01m N n ⎛⎫ ⎪+⎝⎭,运用图形得出OQM ONQ ∠=∠,故1Q N Q M k k =g , 设(,0)Q t ,代入整理得2221m t n =-,又2212m n +=,则2221m n=-根据m ,n 的关系整体求解.【考点】直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题20.【答案】(Ⅰ)6,1{2,24}M = (Ⅱ)见解析(Ⅲ)集合M 的元素个数的最大值为8【解析】(Ⅰ)若16a =,由于12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩,{|}n M a n =∈*N . 故集合M 的所有元素为6,12,24,即6,1{2,24}M = (Ⅱ)若存在(1,2,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当18i a ≤时,126i i a a k +==,1i a +也是3的倍数; 当18i a >时,1236636i i a a k +=-=-,1i a +也是3的倍数. 综上,1i a +是3的倍数,依次类推,当n i ≥时,n a 是3的倍数;若存在(2,3,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当118i a -≤时,1322i i a k a -==g ,因为1i a *-∈N ,所以1i a -也是3的倍数;当18i a >时,1363622i i a k a -+⎛⎫==+ ⎪⎝⎭g ,因为1i a -∈*N ,所以1i a -也是3的倍数;. 综上,1i a -是3的倍数,依次类推,当n i <时,n a 是3的倍数;所以原结论成立.(Ⅲ)当11a =时,将11a =代入1218(1,2,)23618n n n n n a a a n a a +≤⎧==⎨->⎩,,, 依次得到2,4,8,16,32,28,20,4,所以当9n ≥时,6n n a a -=,此时{1,2,4,8,16,20,28,32}M =,共8个元素. 由题意,3a 可取的值有14a ,1436a -,1472a -,14108a -共4个元素, 显然,不论1a 为何值,3a 必为4的倍数,所以34(1,2,,9)a k k ==,①当3{4,8,16,20,28,32}a ∈时,{4,8,16,20,28,32}n a ∈(3)n ≥,此时M 最多有8个元素; ②当3{12,24}a ∈时,{12,24}n a ∈(3)n ≥,此时M 最多有4个元素; ③当336a =时,36n a =(3)n ≥,此时M 最多有3个元素;所以集合M 的元素个数的最大值为8.【提示】(Ⅰ)16a =,利用12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩可求得集合M 的所有元素为6,12,24.(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由12,18(1,2,)236,18n n n nn a a a n a a +≤⎧==⎨->⎩,可归纳证明对任意n n k a ≥,是3的倍数. (Ⅲ)分1a 是3的倍数与1a 不是3的倍数讨论,即可求得集合M 的元素个数的最大值. 【考点】数列递推关系的应用,分类讨论思想与等价转化思想及推理,运算能力。
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,C.若若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.答案:1、解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2、解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.3、解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.4、解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.5、解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.6、解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.7、解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.8、解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.9、解:(2+x)5的展开式的通项公式为:T5﹣r x r,r+1=2所求x3的系数为:=40.故答案为:40.10、解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.11、解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.12、解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.13、解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.14、解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.15、解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.16、解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P (A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.17、证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.18、解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.19、解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)20、解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.11。
2015年北京高考数学(理科)真题本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数()i2i-=A.12i+B.12i-C.12i-+D.12i--【答案】A【解析】i(2-i)=1+2i【难度】容易【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
2.若x,y满足1x yx yx-⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为A.0 B.1 C.32D.2【答案】D 【解析】可行域如图所示目标直线的斜率为12-,易知在(0,1)处截距取得最大值,此时z=4.【难度】容易【点评】本题考查分段函数值域求解。
在高一数学强化提高班上学期课程讲座1,第二章《函数》有详细讲解,在高考精品班数学(理)强化提高班中有对函数相关知识的总结讲解。
3.执行如图所示的程序框图,输出的结果为A .()22-,B .()40-,C .()44--,D .()08-,【答案】B 【解析】程序运行过程如下表所示故输出结果为(-4,0) 【难度】容易【点评】本题算法初步。
在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。
在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。
4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】两平面平行,则一平面内的任意一条直线与另一平面平行,故“m β∥”是“αβ∥”的必要条件. 若“m β∥”,“αβ∥”不一定成立,反例如下图所示.【难度】容易【点评】本题考查立体几何中点到直线的距离问题。
试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1z-=i ,则|z|=(A )1 (B )2 (C )3 (D )2 (2)sin20°cos10°-con160°sin10°=(A )32- (B )32(C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D为错误!未找到引用源。
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.解答:解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,k的值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x,y,k的值是解题的关键,属于基础题.4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.点评:本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 C.若若0<a1<a2,则a2考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.解答:解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为40(用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:T r+1=25﹣r x r,所求x3的系数为:=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.解答:解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=1.考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.考点:函数的零点;分段函数的应用.专题:创新题型;函数的性质及应用.分析:①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦喊话说的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.点评:本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P (C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.解答:解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P (A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m的关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:(Ⅰ)a1=6,利用a n+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.解答:解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.。