【四川电大】线性代数第四次形考作业_0001辅导答案
- 格式:docx
- 大小:11.93 KB
- 文档页数:3
一、计算下列各题(本题满分40分,共含5道小题,每题8分)1. 1333313333133331D =。
解:10333133313331013311330-200==10=1010313131300-20103311331000-2D 6分 = -80 2分2.已知四阶行列式D =3210021742100210--- ,求D 13233343ij ij M +M +M +M 的值, 其中M 为中元素a 的代数余子式。
解:=D =13233343M +M +M +M 3210021742100210--- 3分=3211074217421021021--=--- 3分 =28- 2分 3. g A A A ,⎛⎫=⎪⎝⎭2-2-1()=+2A+5E,31 求()g A 。
解:22212110()2525313101g A A A E ----⎛⎫⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3分=114250326205--⎛⎫⎛⎫⎛⎫++⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭3分=2135-⎛⎫⎪⎝⎭2分4. 解矩阵方程AX B =,其中A=213122132-⎛⎫ ⎪- ⎪ ⎪-⎝⎭, B=112025-⎛⎫⎪ ⎪ ⎪-⎝⎭。
解1X A B -= 3分2131112220(,)12220031311322505005A B ---⎛⎫⎛⎫⎪ ⎪=-→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭122201004201001010010013200132--⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 3分 420132X -⎛⎫ ⎪= ⎪ ⎪-⎝⎭2分5. 求下列向量组的秩及其一个极大无关组,并把其余的向量用极大无关组的向量线性表示。
12103α-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21324α⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,33021α⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭,42246α⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭。
解:123421321302(,,,)02243416αααα-⎛⎫ ⎪--⎪= ⎪ ⎪-⎝⎭→1302011200110000--⎛⎫⎪ ⎪⎪ ⎪⎝⎭3分 秩),,,(4321αααα=3, 1分 123,,ααα为一个极大无关组。
线性代数第四版答案(总120页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b n c n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A及A T B解4计算下列乘积(1)解(2)解(132231)(10)(3)解(4)解(5)解(a11x1a12x2a13x3 a12x1a22x2a23x3 a13x1a23x2a33x3)5设问(1)AB BA吗解AB BA因为所以AB BA (2)(A B)2A22AB B2吗解 (A B)2A22AB B2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗解 (A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E (3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k 解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解 |A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O (k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以 (E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故 (E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得 |A2A|2即 |A||A E|2故 |A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以 (A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即 (A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(11 25)]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求 (1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) ) ~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3)r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(1 2)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为 (2)解~~~~~故逆矩阵为4 (1)设求X使AX B 解因为所以(2)设求X使XA B 解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式有没有等于0的r阶子式解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1);解(下一步r1r2 )~(下一步r23r1r3r1 )~(下一步r3r2 )~矩阵的是一个最高阶非零子式(2)解(下一步r1r2r22r1r37r1 ) ~(下一步r33r2 )~矩阵的秩是2是一个最高阶非零子式(3)解(下一步r12r4r22r4r33r4 )~(下一步r23r1r32r1 )~(下一步r216r4r316r2 )~~矩阵的秩为3是一个最高阶非零子式10设A、B都是m n矩阵证明A~B的充分必要条件是R(A)R(B)证明根据定理3必要性是成立的充分性设R(A)R(B)则A与B的标准形是相同的设A 与B的标准形为D则有A~D D~B由等价关系的传递性有A~B11设问k为何值可使(1)R(A)1 (2)R(A)2 (3)R(A)3解(1)当k1时R(A)1(2)当k2且k1时R(A)2(3)当k1且k2时R(A)312求解下列齐次线性方程组:(1)解对系数矩阵A进行初等行变换有A~于是。
线性代数练习册第四章习题及答案
:
篇一:线性代数练习册第四章习题及答案
第四章线性方程组
4-1 克拉默法则
一、选择题
1.下列说法正确的是( C)
A.n元齐次线性方程组必有n组解;
B.n元齐次线性方程组必有n?1组解;
C.n元齐次线性方程组至少有一组解,即零解;
D.n元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B)
A.当D?0时,非齐次线性方程组只有唯一解;
B.当D?0时,非齐次线性方程组有无穷多解;
C.若非齐次线性方程组至少有两个不同的解,则D?0;
D.若非齐次线性方程组有无解,则D?0. 二、填空题??x1?x2?x3?0?
1.已知齐次线性方程组?x1??x2?x3?0有非零解,
?x?2?x?x?0
23?1
则?? 1,?? 0.
2.由克拉默法则可知,如果非齐次线性方程组的系数行列式D?0, 则方程组有唯一解xi?DiD
.
三、用克拉默法则求解下列方程组?8x?3y?2
1.?
6x?2y?3?
解:
D?
86
32
??2?0
??5
D2?
86
23??12
D1?
23
32
,
D1D?52,y?
所以,x?
D2D
??6
?x1?2x2?x3??2?
2.?2x1?x2?3x3?1
??x?x?x?0
23?1。
二次型的基本概念一.如果不要求二次型的矩阵是对称的,那么它的矩阵表示唯一吗?解:不唯一二.是,其矩阵为n 阶单位阵 三.写出下列二次型的矩阵1.121242121⎛⎫ ⎪ ⎪ ⎪⎝⎭秩为一 2.0004001401014410⎛⎫⎪ ⎪⎪ ⎪⎝⎭秩为四 四.写出下列矩阵对应的二次型:1.2212311213223(,,)2236f x x x x x x x x x x x =-+--2.1234121314232434(,,,)f x x x x x x x x x x x x x x x x =+++++五.填空题. 1.22212344y y y -++ 2.r 化二次型为标准形一.分别用配方法和初等变换化下列二次型为标准形,并写出所用的可逆线性变换.1.2222123112*********(,,)434443f x x x x x x x x x x x x x x x =+-=++--2222122233322212233399(2)4()4641639(2)4()816x x x x x x x x x x x x =+-+++=+-++令11222333238y x x y x x y x =+⎧⎪⎪=+⎨⎪=⎪⎩ ,则11232233332438x y y y x y y x y ⎧=-+⎪⎪⎪=-⎨⎪=⎪⎪⎩为可逆线性变换使:2221231239(,,)416f x x x y y y =-+ 2.222123123121323(,,)254484f x x x x x x x x x x x x =+++--()()()2221121323232221121323232222211232323232324854422454422(2)(2)(2)544x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+-++-=+-++-=+-+---++-22221232323232(2)2(2)544x x x x x x x x x =+---++-22222123223323232(2)2(44)544x x x x x x x x x x x =+---+++- 22212323232(2)334x x x x x x x =+-+-+2221232332132(2)3()39x x x x x x =+-++- 令:112322333223y x x x y x x y x =+-⎧⎪⎪=+⎨⎪=⎪⎩ ,所以可逆变换为:1123223334323x y y y x y y x y ⎧=--⎪⎪⎪=-⎨⎪=⎪⎪⎩22212312313(,,)239f x x x y y y =+- 3.令:11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩ ,写成矩阵形式为X CY =,其中:110110001C ⎛⎫ ⎪=- ⎪ ⎪⎝⎭则:22123121323(,,)24f x x x y y y y y y =--+ 22213233()(2)3y y y y y =---+令:113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,变换为:113223332y z z y z z y z=+⎧⎪=+⎨⎪=⎩,写成矩阵形式为:Y PZ =,其中:101012001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则:2221233f z z z =-+ 变换为:X CY CPZ ==,其中:113111001CP ⎛⎫⎪=-- ⎪ ⎪⎝⎭二.用正交变换化下列二次型为标准形,并写出所用的正交变换.1.解:120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,其特征值为:-1,2,51λ=-时,对应特征向量为:()221T,2λ=时,对应特征向量为:()212T-,5λ=时,对应特征向量为:()122T-作正交变换为:221333212333122333X Y ⎛⎫-⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,22212325f y y y =-++ 2.解:0041001441001400A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,特征值为:-3,-5,3,5 3λ=-时,对应特征向量为:()1111T--, 5λ=-时,对应特征向量为:()1111T--, 3λ=时,对应特征向量为:()1111T --, 5λ=时,对应特征向量为:()1111T. 作正交变换:11112222111122221111222211112222X Y ⎛⎫--⎪ ⎪ ⎪--⎪= ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭,222212343535f y y y y =--++ 三.解:2000303A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,2003(2)(3)(3)03E A a a a aλλλλλλλ--=--=--+---- 特征值为:2,3,3a a λλλ==-=+有A 的特征值分别为:1,2,5和0a >知:2a =1λ=时,对应特征向量为:()011T-, 2λ=时,对应特征向量为:()100T,5λ=时,对应特征向量为:()011T。
2022年4月《线性代数》真题说明:在本卷中,A T表示矩阵A的转置矩阵,A∗表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.设f(x)=|−110x02−321|=ax−2,则a=()A.-2B.-1C.1D.2【答案】B 【解析】2.设A=(a11a12a21a22),A ij为元素a ij(i,j=1,2)的代数余子式,若A11=1,A12=2,A21=3,A22=4,A=()A.(4−3−21)B.(4−2−31)C.(42 31)D.(43 21)【答案】A【解析】∵A=(a11a12 a21a22)∴A11=a22−1A12=−a21=2∴a21=−2A21=−a12=3∴a12=−3 A22=a11=4∴A=(4−3−21)3.对于向量组α1=(α11,α21)T,α2=(α12,α22)T与向量组β1=(α11,α21,α31)T,β2=(α12,α22,α32)T,下列结论中正确的是()A.若α1,α2线性相关,则β1,β2线性无关B.若α1,α2线性相关,则β1,β2线性相关C.若β1,β2线性相关,则α1,α2线性无关D.若β1,β2线性相关,则α1,α2线性相关【答案】D【解析】若线性相关,则存在不为零的,满足:β1=λβ2∴(α11,α21,α31)=λ(α12,α22,α32)∴(α11,α12)=λ(α12,α22)即α1=λα2故α1,α2线性相关.4.设2阶矩阵A与B相似,若B的特征值λ1=−2,λ2=3,则A−E的迹为()A.-6B.-1C.1D.6【答案】B【解析】A、B相似,特征值相同,故A的特征值也为λ1=−2,λ2=3,∴A−E的特征值为−2−1=−3,3−1=2∴A−E的迹为:−3+2=−15.设矩阵A=(001010100),下列矩阵中与A合同的是()A.(100 010 001)B.(100 0−10 00−1)C.(100 010 00−1)D.(−100 0−10 00−1)【答案】C【解析】都为对称矩阵,故合同⇔ 正,负特征值数量一样A =(001010100),特征值1,1,-1(两正一负) 选项A :单位矩阵,特征为1,选项B :单位矩阵,特征为1,-1,-1(两负一正) 选项C :单位矩阵,特征为1,-1,1(为两正一负) 选项D :同A 为-E ,特征值皆为-1第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。
04级线性代数试题一、选择题1.设|A |是四阶行列式,且|A |=-2,则||A |A |=( ).(A) 4; (B)8; (C)25; (D) -25 . 2.设A,B,C 为同阶方阵,且ABC =E .则下列各式中不成立的是( ).(A) CAB =E ; (B)111B A C E ---=; (C) BCA =E ; (D)111C A B E ---=. 3.11223344(1,0,0,),(1,2,0,),(1,2,3,),(2,1,5,),T T T T αλαλαλαλ===-=-设1234,,,,().λλλλ其中是任意实数则有(A) 123,,ααα总线性相关; (B) 1234,,,αααα总线性相关; (C) 123,,ααα总线性无关; (D) 1234,,,αααα总线性无关. 4.设12,,,s ααα 和12,,,t βββ 为两个n 维向量组, 且1212(,,,)(,,,)s t r r r αααβββ== ,则( ). (A) 两向量组等价;(B) 1212(,,,,,,,)s t r r αααβββ= ;(C)当12,,,s ααα 能由12,,,t βββ 线性表示时,两向量组等价; (D) 当s t =时,两向量组等价.5.下列说法中向量组12,,,s ααα 必定线性相关的是( ). (A) 121,,,s βββ- 可由12,,,s ααα 线性表示; (B) 12121121(,,,,,,,)(,,,)s s s r r αααββββββ--= ; (C) 1212(,,,)(,,,,)s s r r ααααααβ= ;(D) 12121212,,,,,,,s s s s βββαααγγγγγγ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中线性相关.6.11(),1(1,2,,)().n ij ij j in j A a n n a x a i n -==-==∑ 设为阶可逆方阵则元线性方程组(A)有唯一解; (B)无解;(C)有无穷多解; (D)以上三种结果都可能发生.7.已知二阶实对称矩阵A 的一个特征向量为31-⎛⎫⎪⎝⎭,且|A |<0,则下面必为A 的特征向量的是( ).(A) 31k -⎛⎫⎪⎝⎭; (B)13⎛⎫ ⎪⎝⎭; (C) 121231,0013k k k k -⎛⎫⎛⎫+≠≠ ⎪ ⎪⎝⎭⎝⎭且; (D) 121231,,13k k k k -⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭不同时为零.8.若矩阵A 与B 相似,则( ).(A)E A E B λλ-=-; (B) |A | = |B |;(C)A,B 有相同的特征向量; (D) A 与B 均与一个对角矩阵相似. 9.当A 是( )时,A 必合同与单位阵.(A) 对角矩阵; (B) 对称矩阵; (C) 正定矩阵; (D) 正交矩阵. 10.n 阶实对称矩阵A 正定的充要条件是( ). (A)A 的所有特征值非负; (B)r (A )=n ; (C)所有k 阶子式为正(1≤k ≤n ); (D)1A -为正定矩阵. 二、填空题1.多项式10223()71043171x x xf x x-=--中,常数项为 . 2.设A 为二阶方阵,B 为三阶方阵,且|A |=|B |=2,则*020A B=- .3. ,,αβγ为三维列向量,已知三阶行列式|4,2,2|40γαβγα--=, 则行列式|,,|αβγ .4.设A ,B 均为四阶方阵,r (A )=3, r (B )=4,则r (A *B *)= .5.设1121A ⎛=⎪⎭,已知A 6=E ,则A 17= .6.设A 为对称矩阵,B 为与A 同阶的正交矩阵,则111()()T T B B A B A E B ---++= .7.设为四阶方阵A 的秩为2,则其伴随矩阵A *的秩为 .8.设A,B 均为n 阶方阵,且|AB |=1,则方程组AX=0与BX=0的非零解的个数的和为 .9.若A 相似于diag (1, -1,2),则13||A -= . 10.当t 满足条件 时,二次型f 是正定的,其中2221231231223(,,)222f x x x x x x x x tx x =++++三、计算题1.*1*102010,2,,001A A XA A X E A A -⎛⎫ ⎪==+ ⎪ ⎪⎝⎭设且其中是的伴随矩阵.X 求矩阵2.λ取何值时,方程组1231231232125541x x x x x x x x x λλ--=-⎧⎪-+=⎨⎪--=⎩ 无解、有唯一解或有无穷多解?在有无穷多解时求其通解。
1.设,求. 解:2.已知,求. 解:方程两边关于求导:,3.计算不定积分.解:将积分变量x 变为22x +, =⎰++)2(22122x d x =c x ++232)2(31 4.计算不定积分. 解:设2sin,x v x u ='=, 则2cos 2,x v dx du -==, 所以原式=C x x x x d x x x dx x x x ++-=+-=---⎰⎰2sin 42cos 222cos 42cos 22cos 22cos 25.计算定积分解:原式=2121211211)(1d e e e e e e x x x -=--=-=-⎰6.计算定积分解:设x v x u ='=,ln ,则221,1x v dx x du ==, 原式=41)4141(21141021211ln 212222212+=--=--=-⎰e e e e x e xdx e x x e7.设 ,求.解:[](1,2);(2,3)013100105010105010120001120001013100I A I ⎡⎤⎡⎤⎢⎥⎢⎥+=−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦(3)2(2)(2)(1)1(2)1105010105010025001025001013100001200⋅++⨯-⋅-⎡⎤⎡⎤⎢⎥⎢⎥−−−−→--−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以110101()502200I A --⎡⎤⎢⎥⎢⎥+=--⎢⎥⎢⎥⎣⎦。
8.设矩阵 , , 求解矩阵方程.解: → →→→ 由XA=B,所以9.求齐次线性方程组 的一般解.解:原方程的系数矩阵变形过程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-⨯++000011101201111011101201351223111201)2(②③①③①②A由于秩(A )=2<n=4,所以原方程有无穷多解,其一般解为:⎩⎨⎧-=+-=4324312x x x x x x (其中43x x ,为自由未知量)。