卫星链路跟功率计算
- 格式:docx
- 大小:16.92 KB
- 文档页数:3
卫星通信链路计算过程卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T的计算公式分别为C/T U= EIRP E– Loss U + G/T SatC/T D = EIRP S– Loss D + G/T E/S式中的EIRP E和EIRP S分别为载波的上行和下行EIRP,Loss U和Loss D分别为总的上行和下行传输衰耗,G/T Sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N与C/T 的关系C/N与C/T的关系式为C/N = C/T – k – BW N = C/T + 228.6 – BW N式中的k为波兹曼常数,BW N为载波噪声带宽。
式中的数据均为对数形式。
C/I与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U和C/I XP_D、以及上行和下行邻星干扰C/I AS_U和C/I AS_D。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N与C/I的合成由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为(C/N Total )-1 = (C/N U )-1 + (C/N D )–1(C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1 (C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1上述三个算式中的数据均为真数形式。
由多项C/N和C/I求取总的C/(N+I)的步骤也可为(C/(N+I)U )-1 = (C/N U )-1 + (C/I XP_U )–1 + (C/I AS_U )–1(C/(N+I)D )-1 = (C/N D )-1 + (C/I XP_D )-1 + (C/I AS_D )-1 + (C/IM)-1(C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D )–1上述两种不同计算步骤所得到的结果是相同的。
卫星通信链路计算过程之蔡仲巾千创作星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T的计算公式分别为C/T U= EIRP E– Loss U + G/T SatC/T D = EIRP S– Loss D + G/T E/S式中的EIRP E和EIRP S分别为载波的上行和下行EIRP,Loss U和Loss D分别为总的上行和下行传输衰耗,G/T Sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N与C/T 的关系C/N与C/T的关系式为C/N = C/T – k – BW N = C/T + 228.6 – BW N式中的k为波兹曼常数,BW N为载波噪声带宽。
式中的数据均为对数形式。
C/I与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U和C/I XP_D、以及上行和下行邻星干扰C/I AS_U和C/I AS_D。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N与C/I的合成由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为(C/N Total )-1 = (C/N U )-1 + (C/N D )–1(C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1(C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1上述三个算式中的数据均为真数形式。
由多项C/N和C/I求取总的C/(N+I)的步调也可为(C/(N+I)U )-1 = (C/N U )-1 + (C/I XP_U )–1 + (C/I AS_U )–1(C/(N+I)D )-1 = (C/N D )-1 + (C/I XP_D )-1 + (C/I AS_D )-1 + (C/IM)-1 (C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D )–1上述两种分歧计算步调所得到的结果是相同的。
卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。
上下行C/T上行和下行C/T 的计算公式分别为CZT u= EIRP E - LOSS U + G/T SatC/T D = EIRP S - Loss D + GZT E/S式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N 与C/T 的关系C/N 与C/T 的关系式为C/N = C/T - k - BW N = CZT + 228.6 - BW N式中的k 为波兹曼常数, BW N 为载波噪声带宽。
式中的数据均为对数形式。
C/I 与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^nC/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。
C/N 与C/I 的合成由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为(C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T(C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I-1 -1 - 1(C/(N+I)) -1 = (C/N Total ) -1 + (C/ITotal )上述三个算式中的数据均为真数形式。
由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为-1 -1 - 1 - 1(C∕(N+I) U ) = (C∕N u ) + (C/1 XP_U) + (C/1 AS_U)-1 -1 -1 -1 -1(C∕(N+I) D ) = (C∕N D ) + (C∕I XP_D) + (C∕I AS_D) + (C/IM)(C∕(N+I)) -1= (C∕(N+I) U ) -1 + (C∕(N+I) D ) -1上述两种不同计算步骤所得到的结果是相同的。
卫星链路计算公式
1.链路预算
链路预算是用于确定卫星链路的信号强度和传输损耗的公式。
它用于计算链路损耗、可用信号功率和接收信噪比等参数。
链路预算公式通常由以下几个部分组成:发射端天线增益、发射机功率、传输路线损耗、接收端天线增益、接收机灵敏度和链路容量等。
链路预算的目的是确定链路的可靠性和传输性能。
2.接收信噪比计算公式
接收信噪比是用于评估卫星链路接收端性能的指标。
接收信噪比计算公式通常由以下几个参数组成:信号功率、噪声功率和信道带宽。
接收信噪比公式可以用于确定链路的接收能力和系统的传输性能。
3.系统容量计算公式
系统容量是用于评估卫星通信系统吞吐量的指标。
系统容量计算公式通常由以下几个参数组成:带宽、调制方式、编码方式和误码率。
系统容量的计算公式可以用于确定链路的传输容量和系统的传输性能。
4.链路可靠性计算公式
链路可靠性是用于评估卫星链路稳定性和可靠性的指标。
链路可靠性计算公式通常由以下几个参数组成:链路错误率、链路间隔、链路失效概率和故障修复时间。
链路可靠性的计算公式可以用于确定链路的稳定性和系统的可靠性。
5.链路质量计算公式
链路质量是用于评估卫星链路传输质量的指标。
链路质量计算公式通常由以下几个参数组成:误码率、帧错误率、比特错误率和信号失真度。
链路质量的计算公式可以用于确定链路的传输质量和系统的性能。
需要注意的是,卫星链路计算公式的具体形式和参数可能会因具体的应用场景和卫星通信系统而有所不同。
因此,使用者在进行卫星链路计算时应根据具体情况选择适当的计算公式,并结合实际数据进行计算。
卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T的计算公式分别为C/TU = EIRPE– LossU+ G/TSatC/TD = EIRPS– LossD+ G/TE/S式中的EIRPE 和EIRPS分别为载波的上行和下行EIRP,LossU和LossD分别为总的上行和下行传输衰耗,G/TSat 和G/TE/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N与C/T 的关系C/N与C/T的关系式为C/N = C/T – k – BWN = C/T + 228.6 – BWN式中的k为波兹曼常数,BWN为载波噪声带宽。
式中的数据均为对数形式。
C/I与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/IXP_U和C/IXP_D 、以及上行和下行邻星干扰C/IAS_U和C/IAS_D。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N与C/I的合成由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为(C/NTotal )-1 = (C/NU)-1 + (C/ND)–1(C/ITotal )-1 = (C/IXP_U)-1 + (C/IAS_U)–1 + (C/IM)-1 + (C/IXP_D)-1 + (C/IAS_D)-1(C/(N+I))-1 = (C/NTotal )-1 + (C/ITotal)–1上述三个算式中的数据均为真数形式。
由多项C/N和C/I求取总的C/(N+I)的步骤也可为(C/(N+I)U )-1 = (C/NU)-1 + (C/IXP_U)–1 + (C/IAS_U)–1(C/(N+I)D )-1 = (C/ND)-1 + (C/IXP_D)-1 + (C/IAS_D)-1 + (C/IM)-1(C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D)–1上述两种不同计算步骤所得到的结果是相同的。
卫星链路预算带公式计算1.计算路径损耗:路径损耗是指信号在空间传播过程中因为衰减和散射而损失的功率。
路径损耗可以通过自由空间传播模型或海森伯模型进行计算。
自由空间传播模型的计算公式为:PL(dB) = 20log10(d) + 20log10(f) + 20log10(4π/c)其中,PL为路径损耗(单位:dB),d为传播距离(单位:m),f 为信号频率(单位:Hz),c为光速(单位:m/s)。
海森伯模型是一种常用的宽带信号传播模型,计算公式如下:PL(dB) = 20log10(d) + 20log10(f) + K其中,K为路径衰落因子。
根据具体的卫星通信场景和环境条件,选择适当的路径损耗模型进行计算。
2.计算发射功率:发射功率是指在卫星链路中,为保证接收端信号质量要求,发射端需要提供的最小功率。
发射功率的计算可以通过链路损耗和链路预算余量进行估算。
发射功率(Pt)=接收端灵敏度+链路损耗+链路预算余量接收端灵敏度是接收端能够接收到的最小信号功率。
链路损耗通过前述的路径损耗计算得到。
链路预算余量是为了考虑系统运行中的各种不确定性因素而设置的一定的功率余量。
通常,链路预算余量的大小取决于系统设计的可靠性要求和工程经验。
3.计算接收灵敏度:接收灵敏度是指接收端能够接收到的最小信号功率。
它取决于接收机的技术指标和接收机的前端噪声。
接收灵敏度可根据接收机的技术规格手册或卫星通信系统的设计要求来确定。
通过以上三个步骤,就可以计算得到卫星链路的预算参数,包括发射功率、接收灵敏度和链路预算余量。
这些参数可以作为卫星通信系统设计和优化的参考依据,以提高系统的性能和可靠性。
需要注意的是,卫星链路预算的计算是一个复杂的过程,涉及到多个技术参数和系统设计要求。
在实际应用中,需要根据具体的情况和需求进行调整和优化,以满足特定的通信需求。
radar_wind1、接收功率的计算根据电波传播理论,通信链路中电波的自由空间衰减为:L=(4πd/λ)2 (1)其中λ为工作波长,在卫星通信中,d为卫星到接收站的距离:d=35786×103×{1+0.42×[1-cos(φs-φe)cosθ]}1/2或d=42146×103×[1.023-0.302cos(φs-φe)cosθ]1/2式中φs为卫星星下点的经度,φe为地球站经度,θ为地球站纬度。
如果源点的发射功率为Pt,接收方向上发射天线的增益为Gt,接收天线的增益为Gr,下行链路的自由空间衰减为Ld,则接收到的功率为:Pr=Pt×Gt×Gr/Ld用对数表示,则[Pr]=[Pt]+[Gt]+[Gr]-[Ld](2)在卫星通信中,Pt×Gt定义为等效全向辐射功率EIRP,该值由卫星公司提供,通常以等高线图或表格的形式提供给用户。
并将大气闪烁损耗、天线指向误差和馈源极化调整误差对接收的影响归结为ΔLd(Ku波段上行或下行链路瞬间雨衰量可超过10dB,而C波段最大雨衰量一般不超过1dB),则公式(2)变为:[Pr]=[EIRP]+[Gr]-[Ld]-*ΔLd+ (3)Gr=10lg[(πD/λ)2 η]确定,其中D为接收天线的直径(米),η为接收天线的效率,通常在50%~70%之间(偏馈天线为65%,前馈天线为55%)。
2、当采用SCPC方式使用一个转发器时(SCPC为单路单载波系统,即一路载波只含有一套节目,要传送多套节目就需要多个载波,其优点是可在不同的地点上星,适合上行站不在同一地点而需共用一个转发器的情况。
MCPC多路单载波系统,即一路载波包含多套节目,优点是没有多载波谐波干扰,频带和功率利用率较高,适用于多路信号在同一地点上星),转发器的发射功率将在几个载波之间分配,如果这几个载波都是等幅的,则对每1路载波而言,其EIRP要考虑带宽因子:[S]=10lg(B/Br)其中B为整个转发器的带宽,Br则为某个已调载波占的带宽。
卫星链路预算卫星链路预算的计算公式包括信号链路预算和总链路预算两部分。
信号链路预算是指计算卫星链路中信号的传输损失和接收敏感度,以确定所需的发射功率和接收灵敏度。
总链路预算则是包括信号链路预算和各种系统损耗在内的全链路计算。
下面是卫星链路预算的详细计算过程及公式:一、信号链路预算:1.发射链路:发射功率 Ptx = Pt + Gt - Lf - Lp + 20log(d)其中,Pt为发送端的功率,Gt为天线增益,Lf为自由空间路径损耗,Lp为极化损耗,d为发射端到接收端的距离。
2.接收链路:接收信号功率 Prx = Ptx - Ls - Lm - Gr + 20log(d)其中,Ls为发射天线到卫星的距离损耗,Lm为大气吸收损耗,Gr为接收天线的增益。
3.判断接收灵敏度:接收灵敏度 Es/N0 = (Prx - NF - Eb/N0) / B其中,NF为噪声系数,Eb/N0为误码率要求,B为系统带宽。
二、总链路预算:1.发射/接收损耗:Lt=Lf+Lp+Ls其中,Lf为自由空间路径损耗,Lp为极化损耗,Ls为发射天线到卫星的距离损耗。
Lr=Lm+Gr其中,Lm为大气吸收损耗,Gr为接收天线的增益。
2.系统总损耗:Ltotal = Lt + Lr + Lprop + Lrain其中,Lprop为传输损耗,Lrain为雨衰损耗。
3.系统要求:Eb/N0 ≥ Eb/N0_req其中,Eb/N0为误码率要求,Eb/N0_req为系统所需误码率。
通过以上公式,可以计算出卫星链路中所需的发射功率、接收灵敏度以及相应的损耗和要求。
根据这些数据,可以进一步确定所需的卫星导轨参数、天线尺寸、传输设备等,从而估算相应的成本。
卫星链路预算的结果对于卫星通信系统的设计、优化和运营具有重要意义。
只有通过合理的预算计算,才能保证卫星链路的稳定性和性能可靠性,并且在经济、技术和环境等方面达到最佳平衡。
因此,卫星链路预算是卫星通信系统规划和管理的重要一环。
卫星链路计算公式天线的增益与波束宽度有效全向辐射功率自由空间传输损耗转发器的工作点噪声与损耗1. 天线增益:G=收点收到的功率无方向天线辐射时,接点收到的最大功率定向天线辐射时,接收 微波天线增益:G=ηλπ24A半功率角:)(7021度D λθ≈【半功率角是指主叶瓣上场强为主射方向场强的1/2= 0.707时(即功率下降1/2时),两个方向间的夹角。
】2. 接收点的功率密度(单位面积上的功率)为:)/(422m W dG P W T T E π=接收天线收到的功率: 22)4(4d G G P d A G P A W P R T T T T E R πλπηη==⋅=① fR T T R L G G P P = ② 【式②一般性地描述通信线路中信号的传输,称之为“通信距离方程”】3.自由空间传输损耗:2)4(cdf L f π=时,式②与式①相等。
此即自由空间传输损耗。
【物理解释 物理解释:由于电磁波在自由空间无方向性地辐射,使得只有少部分信号被接收点收到,而其他大部分无法被收到的能量即视为损耗。
】4.有效全向辐射功率:T T G P EIRP =若考虑馈线损耗,则 F T T L G P EIRP =【物理解释:在接收点进行测量时,将T P 功率送入增益为T G 、最大辐射方向指向接收点的发射天线时所测得的结果与将T P T G 功率送入无方向性发射天线时所测得的结果是相同的。
】4. 转发器的工作参数:工作点:输入补偿输出补偿多载波与单载波工作时的输出功率1) 2244λπλπηη⋅=⋅===f ES f T T f R T T R L EIRP L G P A L G G P A P W 即 )/)(4lg(10][[EIRP][W]22ES m dBW L f λπ+-=【为使卫星转发器单载波饱和工作,在其接收天线的单位有效面积上应输入的功率,一般以W 或SFD 表示】2)G/T 值:接收天线增益与接收系统总的等效噪声温度的比值称为地球站的G/T 值,也称性能因数或品质因数。
卫星通信链路计算过程卫星通信链路是指卫星与地面站之间的通信路径,主要用于传输语音、数据和视频等信息。
在设计卫星通信链路时,需要考虑到多种因素,包括传输距离、频率选择、传输速率、信道容量和信号质量等,并进行相应的计算和分析。
首先,为了计算卫星通信链路的传输距离,需要确定地面站到卫星的距离。
这一距离通常通过地面站和卫星之间的视距来估算。
视距的计算可以使用下述公式:视距=√(2Rh+H^2)其中,R为地球半径,H为卫星的轨道高度。
接下来,为了确定适当的频率选择,需要对卫星通信链路的频带进行计算。
频带的选择通常由频率规划规定。
在进行频带计算时,需要考虑传输的数据速率和卫星通信系统的要求。
一般来说,高速数据传输需要使用高频段,而低速数据传输可以使用低频段。
传输速率的计算是卫星通信链路设计的重要一环。
传输速率通常受到频带宽度和调制方式的限制。
传输速率的计算可以使用香农公式来估算:C=Blog2(1+SNR)其中,C为信道容量,B为频带宽度,SNR为信噪比。
信道容量是指在给定的频带宽度下,信号可以传输的最大速率。
在进行信道容量计算时,必须考虑到信噪比、调制方式以及频带宽度等因素。
常见的调制方式包括调幅调制(AM)、频移键控调制(FSK)和相移键控调制(PSK)等。
最后,信号质量的计算可以通过信号功率的计算来完成。
可通过对信号功率进行估计,以评估信号在传输过程中的衰减情况。
P=P0GtGr(λ/4πR)^2其中,P为接收信号的功率,P0为发射功率,Gt为发射天线增益,Gr为接收天线增益,λ为信号波长,R为传输距离。
通过上述计算过程,可以得到卫星通信链路的关键参数,从而确定适当的设备和调整相关参数。
这些计算和分析能够为卫星通信系统的设计、优化和运维提供重要的依据。
总结起来,卫星通信链路的计算过程包括传输距离的估算、频率选择和频带计算、传输速率的估算、信道容量的计算以及信号质量的估计。
这些计算过程是卫星通信链路设计中的重要一环,能够帮助优化卫星通信系统的性能和可靠性。
卫星通信链路计算过程 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T的计算公式分别为C/TU = EIRPE– LossU+ G/TSatC/TD = EIRPS– LossD+ G/TE/S式中的EIRPE 和EIRPS分别为载波的上行和下行EIRP,LossU和LossD分别为总的上行和下行传输衰耗,G/TSat 和G/TE/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N与C/T 的关系C/N与C/T的关系式为C/N = C/T – k – BWN = C/T + – BWN式中的k为波兹曼常数,BWN为载波噪声带宽。
式中的数据均为对数形式。
C/I与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/IXP_U 和C/IXP_D、以及上行和下行邻星干扰C/IAS_U 和C/IAS_D。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N与C/I的合成由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为(C/NTotal )-1 = (C/NU)-1 + (C/ND)–1(C/ITotal )-1 = (C/IXP_U)-1 + (C/IAS_U)–1 + (C/IM)-1 + (C/IXP_D)-1 + (C/IAS_D)-1(C/(N+I))-1 = (C/NTotal )-1 + (C/ITotal)–1上述三个算式中的数据均为真数形式。
由多项C/N和C/I求取总的C/(N+I)的步骤也可为(C/(N+I)U )-1 = (C/NU)-1 + (C/IXP_U)–1 + (C/IAS_U)–1(C/(N+I)D )-1 = (C/ND)-1 + (C/IXP_D)-1 + (C/IAS_D)-1 + (C/IM)-1(C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D)–1上述两种不同计算步骤所得到的结果是相同的。
卫星通信链路计算过程星通信载波得链路计算方法为,先分别计算上行与下行链路得载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素得系统载噪比C/(N+I)与载波得系统余量。
上下行C/T上行与下行C/T得计算公式分别为C/TU= EIRPE–LossU+ G/TSatC/TD= EIRPS– LossD+ G/TE/S式中得EIRPE 与EIRPS分别为载波得上行与下行EIRP,LossU与LossD分别为总得上行与下行传输衰耗,G/TSat 与G/TE/S分别为卫星转发器与地球站得接收系统品质因数。
上式中得数据均为对数形式. C/N与C/T 得关系C/N与C/T得关系式为C/N= C/T –k– BWN = C/T +228、6 –BWN式中得k为波兹曼常数,BWN为载波噪声带宽.式中得数据均为对数形式.C/I与C/IM卫星通信载波需要考虑得干扰因素主要有,上行与下行反极化干扰C/IXP_U与C/IXP_D、以及上行与下行邻星干扰C/IAS_U与C/IAS_D.此外,还需考虑转发器在多载波工作条件下得交调干扰 C/IM。
C/N与C/I得合成由多项C/N与C/I求取总得C/N、C/I、以及C/(N+I)得算式为(C/NTotal )—1= (C/NU)—1 + (C/ND)–1(C/ITotal )-1 = (C/IXP_U)—1 + (C/IAS_U)–1 + (C/IM)-1+ (C/IXP_D)-1 + (C/IAS_D)-1(C/(N+I))-1 = (C/NTotal )—1+ (C/ITotal)–1上述三个算式中得数据均为真数形式。
由多项C/N与C/I求取总得C/(N+I)得步骤也可为(C/(N+I)U)—1 = (C/NU)-1 + (C/IXP_U)–1+ (C/IAS_U)–1(C/(N+I)D )-1= (C/ND)—1+ (C/IXP_D)—1+(C/IAS_D)-1 + (C/IM)—1(C/(N+I))—1= (C/(N+I)U )-1+ (C/(N+I)D)–1上述两种不同计算步骤所得到得结果就是相同得。
卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T 或者载波与噪声功率比C/N 、以及载波与干扰功率比C/I ,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T 的计算公式分别为C/T U = EIRP E – Loss U + G/T SatC/T D = EIRP S – Loss D + G/T E/S式中的EIRP E 和EIRP S 分别为载波的上行和下行EIRP ,Loss U 和Loss D 分别为总的上行和下行传输衰耗,G/T Sat 和G/T E/S 分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N 与C/T 的关系C/N 与C/T 的关系式为C/N = C/T – k – BW N = C/T + 228.6 – BW N 式中的k 为波兹曼常数,BW N 为载波噪声带宽。
式中的数据均为对数形式。
C/I 与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U 和C/I XP_D 、以及上行和下行邻星干扰C/I AS_U 和C/I AS_D 。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N 与C/I 的合成由多项 C/N 和C/I 求取总的C/N 、C/I 、以及C/(N+I)的算式为(C/N Total )-1 = (C/N U )-1 + (C/N D )–1(C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1(C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1上述三个算式中的数据均为真数形式。
由多项C/N 和C/I 求取总的C/(N+I)的步骤也可为 (C/(N+I)U )-1 = (C/N U )-1 + (C/I XP_U )–1 + (C/I AS_U )–1 (C/(N+I)D )-1 = (C/N D )-1 + (C/I XP_D )-1 + (C/I AS_D )-1 + (C/IM)-1(C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D )–1上述两种不同计算步骤所得到的结果是相同的。
卫星通信链路计算过程文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。
上下行C/T上行和下行C/T的计算公式分别为C/TU = EIRPE– LossU+ G/TSatC/TD = EIRPS– LossD+ G/TE/S式中的EIRPE 和EIRPS分别为载波的上行和下行EIRP,LossU和LossD分别为总的上行和下行传输衰耗,G/TSat 和G/TE/S分别为卫星转发器和地球站的接收系统品质因数。
上式中的数据均为对数形式。
C/N与C/T 的关系C/N与C/T的关系式为C/N = C/T – k – BWN = C/T + 228.6 – BWN式中的k为波兹曼常数,BWN为载波噪声带宽。
式中的数据均为对数形式。
C/I 与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U 和C/I XP_D 、以及上行和下行邻星干扰C/I AS_U 和C/I AS_D 。
此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。
C/N 与C/I 的合成由多项 C/N 和C/I 求取总的C/N 、C/I 、以及C/(N+I)的算式为 (C/N Total )-1= (C/N U )-1+ (C/N D )–1(C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1(C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1 上述三个算式中的数据均为真数形式。
由多项C/N 和C/I 求取总的C/(N+I)的步骤也可为 (C/(N+I)U )-1 = (C/N U )-1 + (C/I XP_U )–1 + (C/I AS_U )–1(C/(N+I)D )-1 = (C/N D )-1 + (C/I XP_D )-1 + (C/I AS_D )-1 + (C/IM)-1 (C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D )–1 上述两种不同计算步骤所得到的结果是相同的。
radar_wind
1、接收功率的计算
根据电波传播理论,通信链路中电波的自由空间衰减为:
L=(4πd/λ)2 (1)
其中λ为工作波长,在卫星通信中,d为卫星到接收站的距离:
d=35786×103×{1+0.42×[1-cos(φs-φe)cosθ]}1/2或
d=42146×103×[1.023-0.302cos(φs-φe)cosθ]1/2
式中φs为卫星星下点的经度,φe为地球站经度,θ为地球站纬度。
如果源点的发射功率为Pt,接收方向上发射天线的增益为Gt,接收天线的增益为Gr,下行链路的自由空间衰减为Ld,则接收到的功率为:
Pr=Pt×Gt×Gr/Ld用对数表示,则
[Pr]=[Pt]+[Gt]+[Gr]-[Ld](2)
在卫星通信中,Pt×Gt定义为等效全向辐射功率EIRP,该值由卫星公司提供,通常以等高线图或表格的形式提供给用户。
并将大气闪烁损耗、天线指向误差和馈源极化调整误差对接收的影响归结为ΔLd(Ku波段上行或下行链路瞬间雨衰量可超过10dB,而C波段最大雨衰量一般不超过1dB),则公式(2)变为:
[Pr]=[EIRP]+[Gr]-[Ld]-*ΔLd+ (3)
Gr=10lg[(πD/λ)2 η]确定,其中D为接收天线的直径(米),η为接收天线的效率,通常在50%~70%之间(偏馈天线为65%,前馈天线为55%)。
2、当采用SCPC方式使用一个转发器时(SCPC为单路单载波系统,即一路载波只含有一套节目,要传送多套节目就需要多个载波,其优点是可在不同的地点上星,适合上行站不在同一地点而需共用一个转发器的情况。
MCPC多路单载波系统,即一路载波包含多套节目,优点是没有多载波谐波干扰,频带和功率利用率较高,适用于多路信号在同一地点上星),转发器的发射功率将在几个载波之间分配,如果这几个载波都是等幅的,则对每1路载波而言,其EIRP要考虑带宽因子:
[S]=10lg(B/Br)其中B为整个转发器的带宽,Br则为某个已调载波占的带宽。
如果1个星载转发器的带宽被n个载波均分,则带宽因子成为[S]=10lgn。
此外,在多载波使用时,总功率是多个载波的功率之和,所以每个载波需要有一定数值的功率回退。
功率回退的目的是减小互调产物对转发器甚至是对其它转发器的干扰。
功率回退的值[OPBO]由卫星公司提供。
综合上述几个因素,某1路载波的EIRP为:
[EIRP]=[EIRP]-[S]-[OPBO]
接收天线接收到载波的功率为:
[Pr]=[EIRP]-[S]-[OPBO]+[Gr]-[Ld]-[ΔLd](4)
3、接收站的噪声温度和下行链路的载温比
如果接收天线的噪声温度为Ta,高频头的噪声温度为TLNB,则接收站的系统噪声温度大致(忽略了馈线的噪声温度)为:
T=Ta+TLNB测定了噪声温度(现在有很多高频头给出的是噪声系数F单位是db,那么噪声系数和噪声温度TLNB的换算公式是: TLNB=(10F/10-1)T0 ,T0是常温下的绝对温度2900K),就可以得到下行链路的载温比C/T:
[C/T]=[Gr/T]+[EIRP]-[Ld]-[ΔLd](5)
通常将[Gr/T]称为地球站的品质因数,它是用来描述卫星接收信号能力的一个重要指标。
当多个载波使用1个转发器时,某1路载波的载温比为:
[C/T]=[Gr/T]+[EIRP]-[S]-[OPBO]-[Ld]-[ΔLd](6)
4、数字方式转发时的门限[Eb/N0]
当以数字方式转发时,以[Eb/N0]来表示,[Eb/No]是单位比特的平均信号能量(即传送一个比特的信息所需要的载波功率)与噪声的单边功率谱密度(每赫兹带宽的噪声功率)之比。
[Eb/N0]与[C/T]的关系:
[Eb/N0]=[C/T]-[RI]-[K](8)
这里需要注意的是,RI为信道编码之前的信息净荷速率,也就是调制解调器输入信号的速率,而非经过信道编码后的数码流的速率。
[Eb/N0]与[C/N]之间有如下关系:
[C/N]=(Eb/N0) ×(Rb/B)其中Rb/B是频谱效率,
B=(1+α)×RSα是滚降系数,在卫星系统中取0.35;RS是符号率
Rb=RS×log2(M) Rb是总码率
所以有Rb/B= log2(M)/1.35
一般来说卫星信号的调制方式都是QPSK,所以Rb/B=1.48 有:
[C/N]=(Eb/N0)+10lg1.48=(Eb/N0)+1.7 (9)
5、雨衰对卫星信号接收的影响
在进行卫星接收时,我们经常会遇到雨衰的问题,对于C波段来说,由于其波长较大,所以雨衰较小在1db以下,但对于波长较短的KU波段来说,由于雨滴对电波的吸收和散射造成对电波的衰减较为严重,所以在KU波段雨衰可高达10db以上。
对于地面接收站来说,避免雨衰的方法是采用大口径的接收天线加以解决。
另外,雨滴对电磁波还有去极化的作用,由于穿过雨滴的入射电波的极化面取向不同将造成雨滴对电波的衰减和相移不同,从而对电磁波形成微分衰减和微分相移,这对于正交极化复用的双极化传输系统造成极化隔离度下降,正交极化信号相互干扰加大。
EIRP(Effective Isotropic Radiated Power)
有效全向辐射功率
EIRP也称为等效全向辐射功率,它的定义是地球站或卫星的天线发送出的功率(P)和该天线增益(G)的乘积,即:
EIRP=P*G
如果用dB计算,则为
EIRP(dBW) = P(dBW) + G(dBW)
EIRP表示了发送功率和天线增益的联合效果。
EIRP是卫星通信和无线网络中的一种重要参数。
有效全向辐射功率EIRP为卫星转发器在指定方向上的辐射功率。
它为天线增益与功放输出功率之对数和,单位为dBW。
EIRP的计算公式为EIRP = P – Loss + 式中的P为放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,为卫星天线的发送增益。
卫星转发器的主要性能参数
通信卫星的转发器主要参数为G/T、SFD与EIRP。
相关参数在用户载波的链路计算和卫星通信的系统设计中起着关键作用。
G/T 、SFD与EIRP
G/T 被称为figure of merit,即接收系统的品质因素。
G/T为接收天线增益G与接收系统噪声温度T之比值,单位为dB/k ,其计算公式为,
G/T = GR – TS
式中,GR为卫星天线的接收增益,TS为卫星接收系统的噪声温度。
饱和通量密度SFD的定义为,当转发器被推到饱和工作点时,上行载波在接收天线口面所达到的通量密度。
SFD反映卫星转发器对上行功率的需求量,单位为dBW/m2,它的一种常用
计算公式为,
SFD = constant + attn – G/T
式中的constant为反映转发器增益的计算常数,其数值多在-100与-90之间。
constant越小,转发器的增益就越高。
上式中的attn为转发器的衰减控制量。
通过地面遥控方式,可以改变星上转发器的attn值,调整SFD的灵敏度。
用户在作链路计算时,应向卫星公司了解相关转发器衰减档的当前设置值,并且据此对手册中查到的SFD数据作修正。
EIRP反映卫星转发器在指定方向上的辐射功率,它为天线增益与功放输出功率之对数和,单位为dBW,其计算公式为,
EIRP = P – Loss + GT
上式中,P为功率放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,GT 为卫星天线的发送增益。
天线增益决定转发器参数
G/T和SFD反映卫星接收系统在其服务区内的性能,这两个参数与卫星接收天线的增益线性相关。
EIRP反映转发器的下行功率,它与卫星发送天线的增益线性相关。
卫星天线增益随天线指向与工作频率而变。
天线服务区中不同地点的转发器参数各不相同。
用户可以从卫星公司所提供的城市参数表、或者G/T与EIRP等值线分布图中查询各地的转发器参数。
不同转发器在同一地点的参数略有不同。
系统噪声温度
需要注意的是,不同公司所选的系统噪声温度TS可能略有出入,而这将影响G/T的取值。
系统噪声温度主要由天线噪声温度和接收系统前置级放大器的噪声温度所构成。
折算到天线馈源端的系统噪声温度的计算公式为,
TS = Ta + (LF– 1) T1 + LF * Te (dBk)
式中,Ta和Te分别为天线和低噪声放大器的噪声温度,LF为天线和放大器之间的馈线损耗,T1 为馈线的环境温度。
由于卫星天线指向温度较高的地球表面,Ta远高于Te。
不过,星上的馈线损耗较大,上式中折算到天线馈源端的后两项噪声因子也不容小觑。