往复泵的震动
- 格式:ppt
- 大小:1.80 MB
- 文档页数:12
往复机振动标准
往复机振动标准是指对往复机的振动进行测量、分析和评估的标准。
往复机是一种能够以往复运动方式工作的机器,如活塞式压缩机、柴油机、往复泵等。
往复机振动标准主要包括振动测量方法、振动参数评估标准和振动控制要求等方面。
振动测量方法通常采用加速度传感器或速度传感器,通过对往复机各部位的振动进行监测和记录,得出振动的频率、振幅和相位等参数。
振动参数评估标准一般根据往复机的使用环境和要求,制定合理的振动限值,以评估往复机振动是否达到标准。
振动控制要求则是针对不同类型的往复机,制定相应的振动控制措施,以保证往复机的正常运行和使用寿命。
往复机振动标准的制定和实施,能够有效地保障往复机的性能和可靠性,提高生产效率,减少能源消耗和环境污染。
因此,在往复机的设计、制造、安装和维护过程中,必须遵守相关的振动标准和要求。
- 1 -。
水泵振动产生原因及隔振方法城市建设趋于高层化,人们的生活用水随之须要加压晋升。
水泵作为加压晋升的重要装备,使用越来越广泛。
但其带来的噪声及振动问题也给环境工作者提出了如何把持和防护问题。
本文就水泵振动产生起源进行剖析,并提出了几种处置看法。
一、水泵振动产生原因1.由于水泵制造工艺不过关:转子不平衡;泵与电机轴不同心;转子与定子部分发生碰撞或磨擦;2.由于使用时间较长,水泵磨损老化:叶轮松动;轴承损坏或轴承间隙大;3.水泵入口管、叶轮内、泵内有杂物;水泵与基础固定不紧固,发生共振加强现像等;4.水泵工作中推进水流时,伴随的涡流,气蚀不可避免的会产生振动;由此,我们可以得出结论:水泵产生振动的原因很多,其中一些很多振动的产生几呼是不可避免的。
这就要求我们对于处置水泵振动问题除对水泵本身制造工艺进行加强,降低振动幅度外,通过给水泵安装橡胶隔振器、弹簧隔振器、隋性基座也成为水泵振动控制重要方法。
二、水泵振动的控制治理:A.加装弹簧隔振器:a.水泵弹簧隔振器样式的选择:一般选用自立式弹簧减振器,其优点结构简单、造价较低;弹簧裸露在外,便于随时观察弹簧状态,对于需更换的弹簧提前处置,以避免弹簧锈蚀过度损坏时,造成水泵突然沉降造成设备损害及管路扯断等现像。
b.弹簧的选择:一般减振器厂家选用弹簧需满足以下要求:弹簧直径应不少于其在额定负载下高度的0.8倍;弹簧须具备一定的额外行程,至少等于额定静挠度的50%;弹簧的水平刚度至少是坚直钢度的100%,以保证减振器的稳定性。
c.弹簧减振器挠度的选择;通常减振器厂商所提拱的弹簧减振器额定挠度(弹簧额定压缩量)一般为25MM(自频率值约3-4HZ),此挠度可应于650转每分钟的水泵的隔振。
当转速低于650时,建议使用40以下挠度之弹簧隔振器。
B。
加装橡胶隔振器:橡胶隔振器之选择:材质一般为氯丁胶(C.R),天然胶(N.R);一般选用压缩型橡胶减振器,对于重量较轻的水泵,可选用剪切型橡胶减振器;相较弹簧减振器,橡胶减振器隔振性能相对相差些。
Value Engineering0引言往复泵是潜艇保障系统中不可或缺的疏水机械,主要是用来疏排平时舱底积水和生活污水,以及特殊情况下的舱底疏水和均衡疏水。
由于该泵易满足高背压的使用条件和适应舱底积水及生活污水等介质环境,特别是在设备出现故障时,能够自然阻断舷外压力,其安全特性比较好,该泵一直沿用至今,具有不可替代的作用。
正因如此,其性能的优劣有着非常重要的意义,特别是对于潜艇而言,尤为重要。
而往复泵由于自身工作原理、工作过程、本身结构、加工制造、使用管理等因素,会产生一定的噪声和振动[1]。
如果噪声和振动得不到有效的控制或消除,对外部环境来说会形成噪声污染,危害艇员的身心健康,影响其它仪器设备的正常工作;对于机械及系统本身来说,会使其使用寿命减少和可靠性降低;更为重要的是对潜艇来说,会使整艇的噪声越来越大、隐蔽性不好,敌方不难探测到我们,进而降低其执行任务的能力。
因此,对于往复泵而言,分析其噪声产生的原因和机理并采取相应的减振降噪措施,对于增强潜艇的战斗力显得尤为重要。
1往复泵噪声和振动产生的原因往复泵的产生噪声和振动的主要原因有[2][3][4][5]:一是机械本身产生的噪声;二是参与流动的液体的脉动;三是管路系统的机械共振;四是液体在管路中的流体噪声。
1.1机械本身产生的噪声1.1.1吸排水阀工作时撞击产生的噪声和振动吸排水阀是控制液体流动方向的主要部件,每组水阀的阀片和阀座之间的敲击频率很高。
而且吸排水阀的阀座与阀片均为钢制,敲击声非常清脆,频率又高,加之排出腔压力高,且液体流动不均匀,有脉动,这样就形成了较大的噪声和振动。
1.1.2减速机构和传动机构产生的噪声往复泵是一种必须采用减速机构的机械,以将电动机的高速旋转减低为泵的正常工作速度。
就其蜗轮蜗杆减速机构和曲柄连杆传动机构而言,本身就不难造成比较大的振动和噪声,特别是当曲轴轴颈与连杆瓦间隙非常大、各个零部件加工和安装精度低时,振动和噪声更大。
往复式回注泵振动分析及减振措施研究2中国石油长庆油田第十二采油厂甘肃合水 745413摘要:回注泵在原油采出水单元中应用广泛,回注泵的振动容易造成泵进、出口管道的破裂、刺漏,维修工作量不仅大,而且存在较大的安全风险,严重影响了原油采出水的正常回注作业。
对回注泵振动原因及减震分析是保证采出水安全生产的重要举措,通过对回注泵现场运行的振动原因分析,提出了减振措施,并进行分析探讨,对回注泵运行减振措施的实施,提供了有力的理论依据。
关键字:回注泵;采出水;振动一、回注泵的特点往复泵属于容积泵,其借助活塞或柱塞在液缸工作腔内的往复运动(或通过隔膜、波纹管等挠性元件在工作腔内周期性地产生弹性变形)实现工作腔容积产生周期性的变化。
在结构上,工作腔通过密封装置与外界隔开。
工作时,原动机的机械能经往复泵直接转化为被输送液体的压力能。
其主要特点有:(1)流量是脉动的。
(2)平均流量是恒定的,理论上其大小只取决于泵的结构参数,而与出口压力无关。
(3)泵的压力取决于管路特性,与流量无关,对输送介质有较强的适应性。
(4)有良好的自吸能力,启动前无需灌泵;(5)在出口压力很高而流量又很小时,往复泵是唯一的选择,其不仅能满足性能需要,而且效率也较高。
二、回注泵振动原因分析(1)脉动冲击回注泵属于高压柱塞泵,高压柱塞泵的振动主要原因是管线中液体的脉动冲击。
高压柱塞泵在运转过程中,由于吸入和排出的间断性,以及活塞的变速运动,使管路中的液流压力和流量呈周期性变化,这种现象称为液流的压力脉动。
尤其当流体的激振频率与管系的固有振动频率接近或成倍数时,会引起管道系统的共振。
柱塞泵的排出压力变化大与柱塞泵的流量不均匀有关,柱塞泵的液缸数不同,其流量不均匀系数也不相同。
不均匀系数越小,柱塞泵的流量、压力脉动就会大大减少,柱塞泵泵体的振动也会降低。
(2)水击现象高压柱塞泵在运行时管路中的流体流速的突然变化,会造成管内压强在大范围内波动,形成水击现象,导致管路剧烈振动。
往复泵振动和噪声机理分析及减振降噪措施袁东红;华锁宝;顾则红;潘政广;鲁飞【摘要】介绍了往复泵的特点,并通过对其工作原理、运动、流量和受力等的分析,找出了往复泵产生振动和噪声的主要振源,进而有针对性的提出了往复泵的减振降噪措施,对潜艇舱底泵的改进具有借鉴意义.【期刊名称】《中国舰船研究》【年(卷),期】2009(004)005【总页数】6页(P75-80)【关键词】潜艇;往复泵;振动;噪声;减振降噪【作者】袁东红;华锁宝;顾则红;潘政广;鲁飞【作者单位】海军驻中国舰船研究设计中心军事代表室,湖北,武汉,430064;合肥通用机械研究院,安徽,合肥,230031;合肥通用机械研究院,安徽,合肥,230031;合肥通用机械研究院,安徽,合肥,230031;合肥通用机械研究院,安徽,合肥,230031【正文语种】中文【中图分类】U674.703.8机械设备的振动和噪声对设备本身来说,会造成其使用寿命的减少和可靠性的降低;对外界环境来说,会造成污染,并影响工作人员的正常工作,危害健康;对潜艇来说,会使整艘艇的噪声大、声隐身能力差,易被敌方探测到,从而影响其执行任务的能力。
因此,机械设备的减振降噪对于增强舰艇的战斗力显得尤为重要。
在各种工业装置和舰船系统中,泵是应用最为广泛的一种机械设备。
其中往复泵虽然在应用数量上所占的比重不大,但都是应用于高压、小流量或需要定量排出等关键场合,是其他类型的泵不可替代的[1]。
舱底泵便是一种往复泵,是潜艇上的重要设备,用于日常舱底积水和生活污水在水下全深度的对外疏排,以及特殊情况下的舱底疏水和均衡疏水。
由于易满足高背压的使用条件和适应舱底积水及生活污水等介质环境,尤其在设备故障时,具有自然阻断艇外压力水的安全特性,该舱底泵的往复泵结构一直沿用至今。
目前,我国的往复泵和其他大部分机械设备一样,存在着技术水平低和噪声振动大的情况。
也正因为如此,舱底往复泵减振降噪的改进难度较大。
水泵振动产生原因及隔振方法城市建设趋于高层化,人们的生活用水随之须要加压晋升。
水泵作为加压晋升的重要装备,使用越来越广泛。
但其带来的噪声及振动问题也给环境工作者提出了如何把持和防护问题。
本文就水泵振动产生起源进行剖析,并提出了几种处置看法。
一、水泵振动产生原因1.由于水泵制造工艺不过关:转子不平衡;泵与电机轴不同心;转子与定子部分发生碰撞或磨擦;2.由于使用时间较长,水泵磨损老化:叶轮松动;轴承损坏或轴承间隙大;3.水泵入口管、叶轮内、泵内有杂物;水泵与基础固定不紧固,发生共振加强现像等;4.水泵工作中推进水流时,伴随的涡流,气蚀不可避免的会产生振动;由此,我们可以得出结论:水泵产生振动的原因很多,其中一些很多振动的产生几呼是不可避免的。
这就要求我们对于处置水泵振动问题除对水泵本身制造工艺进行加强,降低振动幅度外,通过给水泵安装橡胶隔振器、弹簧隔振器、隋性基座也成为水泵振动控制重要方法。
二、水泵振动的控制治理:A.加装弹簧隔振器:a.水泵弹簧隔振器样式的选择:一般选用自立式弹簧减振器,其优点结构简单、造价较低;弹簧裸露在外,便于随时观察弹簧状态,对于需更换的弹簧提前处置,以避免弹簧锈蚀过度损坏时,造成水泵突然沉降造成设备损害及管路扯断等现像。
b.弹簧的选择:一般减振器厂家选用弹簧需满足以下要求:弹簧直径应不少于其在额定负载下高度的0.8倍;弹簧须具备一定的额外行程,至少等于额定静挠度的50%;弹簧的水平刚度至少是坚直钢度的100%,以保证减振器的稳定性。
c.弹簧减振器挠度的选择;通常减振器厂商所提拱的弹簧减振器额定挠度(弹簧额定压缩量)一般为25MM(自频率值约3-4HZ),此挠度可应于650转每分钟的水泵的隔振。
当转速低于650时,建议使用40以下挠度之弹簧隔振器。
B。
加装橡胶隔振器:橡胶隔振器之选择:材质一般为氯丁胶(C.R),天然胶(N.R);一般选用压缩型橡胶减振器,对于重量较轻的水泵,可选用剪切型橡胶减振器;相较弹簧减振器,橡胶减振器隔振性能相对相差些。
水泵振动分析及处理随着现代工业的发展,水泵已经成为了生产过程中不可或缺的一部分,而随着水泵的普及和使用范围的扩大,其故障问题也时有发生。
其中,水泵振动问题是最常见的一种故障,本文将尝试对水泵振动问题进行分析及处理。
一、水泵振动的原因在使用水泵的过程中,会出现各种各样的振动现象,根据振动的具体性质和原因,可以将水泵振动分为以下几种类型:1、轴向振动轴向振动属于一般的过度杂乱振动,在水泵的轴与支座之间及轴与密封件之间的振动频率出现的感觉效果。
该振动主要是由于旋转机构的不平衡、叶轮间隙过大、轴弯和泵的基础设计不良等原因造成的。
2、径向振动径向振动是指水泵轴与垂直轴线的振荡运动。
水泵叶轮形状的不同、动平衡的不良、轴承间隙过大以及启动和停止频繁等都可能会导致径向振动问题的发生。
3、涡流振动涡流振动是一种由于流体内部涡流、涡旋等形成的振动,其频率与在叶轮中产生的涡流相同。
涡流振动可能会导致叶轮腐蚀、弹性不足以及失重等问题的发生。
4、共振振动共振振动是由于泵、管道、支撑结构等元件相互作用而造成的振动。
当泵的输出频率与支撑结构或管道的自然振动频率相同时,将发生共振振动。
共振振动能够导致机体振动加速度增加、壳体和外壳失效、托架之间产生相对位移等问题。
二、水泵振动的处理方法为了有效地解决水泵振动问题,一般需要从以下几个方面进行处理:1、改善设备结构如果水泵的振动问题是由设备结构不良所致,可以通过优化水泵的结构和传动机构,如更换梳齿轮、增加过滤器、更换机体等来解决振动问题。
2、进行机体平衡处理对于由不平衡导致的振动问题,可以通过进行机体平衡来解决该问题。
在进行平衡时,需要注意使用合适的平衡设备,以确保平衡效果真正达到要求。
3、修整叶轮如发现叶轮的形状不够完美或存在损伤等问题,可以对叶轮进行修整或更换。
为了确保修整后的叶轮满足要求,必须严格按照设计要求进行加工和检验。
4、增加防护措施在水泵的基础和支撑结构上增加减震效果,可以有效地降低水泵振动的影响。
往复柱塞泵的振动检测方法及常见故障识别泵组振动测试准备本文的监测对象为油田采油普遍使用的五柱塞注水泵。
柱塞泵组工作时,通过曲柄连杆机构把电动机的旋转运动转化为柱塞的往复运动,同时把电动机的机械能传给所输送的液体,在结构上,它既有旋转运动部件又有往复运动部件,且其负载大,工况恶劣,因而动态响应极为复杂。
在确定检测方案时,传感器的布局尽可能地靠近待测部位,使测取信号的传递路径短而直接,尽量避免信号的减弱、畸变或传递受阻,使所测的信号能最大限度地反映检测部位的工况;应用尽量少的测点拾取尽量多的工况信息,基于上述原则,选取测点13个,其中电机前端垂直、水平方向各1个,曲轴箱外水平方向3个,十字头位置垂直方向3个,泵头沿柱塞轴线方向,即水平方向5个。
根据泵组的结构与运行特点,不同的监测部位所选用的采样分析频率略有差别,见表1。
表1 泵组转速与分析频率电动机运动为典型的转子旋转运动,虽然其运转速度较高,采用400Hz的分析频率已完全满足对其进行振动分析的采样定理。
柱塞泵为往复机械,其振动以脉动形式出现,是宽带振动,所以采用较高的分析频率。
按照上述检测方案,对吐哈油田现场运行泵组的工作状态进行了长时间测试分析,以检验测试方案的可行性,并对现场泵组发生的故障进行了诊断识别。
机身表面激振源初步分析柱塞泵机组结构复杂、部件多,激励源也很多,机身表面的振动是内部各种激振源共同作用的综合反映,其主要激励源有以下几种:•液压缸内液体压力激荡力;•液阀组件运动的冲击力;•柱塞运动横向撞击力;•柱塞往复运动惯性力通过连杆,曲轴产生的周期性激励;•曲轴旋转运动产生的激励;•皮带传动失效引起的振动;•电动机的滚动轴承撞击引起的振动;•电动机旋转惯性力;•其它机构的激励等。
在这些激励的共同作用下,机身表面振动很复杂,表面总的响应是多个激励响应之综合影响,如何从复杂的激励响应中分离出故障激励源是五柱塞泵机组振动信号分析的难点。
机组振动特征频率计算如下:•柱塞泵曲轴频率:f n=370/60=6.17Hz;•五柱塞往复运动不平衡引起的振动频率:f1=6.17×5=30.85Hz;•液压阀落座频率:f3=6.17×10=61.7Hz;•柱塞横向撞击作用点改变方向的频率:f3=6.17×5×2=61.7Hz;•电动机回转频率:f5=1470/60=24.5Hz;•电源频率:f6=50Hz;•电动机滚动轴承的特征频率:电动机所用滚动轴承的型号为2320,根据电动机的转速及轴承的内、外径,滚珠数等可得滚动轴承的特征频率如表2。