SPSS操作方法:聚类分析
- 格式:doc
- 大小:392.00 KB
- 文档页数:14
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
SPSS聚类分析方法选择一、导言SPSS(Statistical Package for the Social Sciences)是一款被广泛使用的统计分析软件,其功能强大且易于操作。
聚类分析是SPSS中常用的一种数据分析方法,可以将相似的个体归为一类,帮助我们理解数据的结构和特征。
在进行聚类分析时,我们首先需要选择适合的聚类方法。
本文将介绍SPSS中常用的聚类方法,并讨论如何选择最适合的方法。
二、常见的SPSS聚类分析方法1. K均值聚类K均值聚类是SPSS中最常见的聚类方法之一。
该方法将样本分为K个簇,使簇内的样本相似度最大化,簇间的相似度最小化。
K均值聚类需要预先确定簇的个数K,并且聚类结果对初始点的选取敏感。
该方法适用于样本数较大、特征数较少的数据。
2. 密度聚类密度聚类是一种基于密度的聚类方法,常用的有DBSCAN和OPTICS。
这些方法将样本集合中的数据点组成的簇定义为密度相连的点的最大集合。
密度聚类能够有效地处理一些非球形分布的数据,对噪声数据也有较好的鲁棒性。
3. 层次聚类层次聚类使用一种树状结构来组织数据,常用的有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从单个样本开始,逐步合并最相似的簇,直到形成一个包含所有样本的簇。
分裂层次聚类则从整个样本集开始,逐步将样本分割成小的、不相交的簇。
层次聚类可用于确定最佳的簇的个数,但在处理大型数据集时计算复杂度较高。
4. 二分K均值聚类二分K均值聚类将样本集合分为两个簇,并且分别对每个子簇进行迭代划分,直到满足预定的停止条件。
该方法适用于样本数较大、特征数较多的数据。
三、选择合适的聚类方法在选择SPSS聚类分析方法时,需要根据具体的数据集特点和分析目的进行考虑:1.数据集特点:数据集的样本数、特征数和分布形态对聚类方法的选择有很大影响。
如果样本数较大、特征数较少,并且数据呈现相对均匀的分布,可以选择K均值聚类。
如果数据集存在非球形分布、噪声数据等问题,可以考虑使用密度聚类方法。
spss聚类分析步骤什么是聚类分析聚类分析是一种通过将相似的样本数据进行分组的方法,以便于研究者可以更好地理解数据中的模式和结构。
在聚类分析中,研究者希望将数据样本划分为若干个互不重叠的群体,每个群体内的样本相似度较高,而不同群体之间的样本相似度较低。
spss的聚类分析功能spss是一种功能强大的统计分析软件,它提供了丰富的数据分析功能。
在spss中,可以使用聚类分析功能来进行数据样本的分组和分类。
聚类分析功能可以帮助研究者发现数据中的模式、规律和群体。
使用spss的聚类分析功能,可以根据变量之间的相似性将样本分成若干个组,从而更好地理解数据。
spss聚类分析步骤以下是使用spss进行聚类分析的基本步骤:1.打开数据文件:首先,需要打开包含要进行聚类分析的数据的spss数据文件。
可以通过点击菜单栏的“文件”选项打开数据文件,或者通过键盘快捷键“Ctrl + O”。
2.转换变量类型:在进行聚类分析之前,需要将数据中的所有变量转换为合适的类型。
例如,如果有一些分类变量,需要将其转换为因子变量。
可以通过点击菜单栏的“数据”选项,然后选择“转换变量类型”来进行变量类型的转换。
3.选择变量:在进行聚类分析之前,需要确定要使用的变量。
可以选择所有的变量,也可以只选择特定的变量。
选择变量可以通过点击菜单栏的“数据”选项,然后选择“选择变量”来进行。
4.进行聚类分析:选择好变量之后,可以进行聚类分析。
可以通过点击菜单栏的“分析”选项,然后选择“聚类”来进行聚类分析。
5.配置聚类分析参数:在进行聚类分析之前,需要配置一些参数。
例如,确定要使用的聚类方法和相似性测度。
可以根据具体的研究目的和数据特点来选择合适的参数。
6.运行聚类分析:配置好参数之后,可以点击“确定”按钮来运行聚类分析。
spss会根据选择的变量和参数,对样本数据进行聚类,并生成相应的结果。
7.分析聚类结果:在进行聚类分析之后,可以对聚类结果进行进一步的分析。
1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。
1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。
开始每个样品自成一类。
2.选择对称矩阵中的最小非零元素。
将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。
3.计算G1与其他样品距离。
重复以上过程直到所有样品合并为一类。
我们在SPSS中实现最短距离分析非常简单。
单击“”-->“”-->“”。
将弹出如图1-1所示的对话框,设置相应的参数即可。
图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。
在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。
在绘制中选择绘制“树状图”。
单击确定,得到以下结果。
聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。
如图1-2所示,最短距离法组内距离小,但组间距离也较小。
分类特征不够明显,无法凸显各个省份的能源消耗的特点。
但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。
12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
使用SPSS软件进行因子分析和聚类分析的方法一、方法原理1.因子分析(FactorAnalysis)因子分析是从多个变量指标中选择出少数几个综合变量指标的一种降维的多元统计方法。
我们在多元分析中处理的是多指标的问题,观察指标的增加是为了使研究过程趋于完整,但由于指标太多,使得分析的复杂性增加;同时在实际工作中,指标间经常具备一定的相关性,使得观测数据所放映的信息有重叠,故人们希望用较少的指标代替原来较多的指标,但依然能放映原有的全部信息,于是就产生了因子分析方法。
2.聚类分析(ClusterAnlysis)聚类分析是根据事物本身特性来研究个体分类的统计方法,是按照物以类聚的原则来研究的事物分类。
3.市场细分方法的流程图二、实证分析已调查35个城市的总人口、生产总值、消费总额、人均年工资、年度储蓄总额、年度财政总收入等数据,试对上述城市进行分类研究。
1.因子分析:·选用Analyze→DataReduction→Factor……·引入因子分析的6个变量(总人口、生产总值、消费总额、人均年工资、年度总储蓄额、年度财政总收入)·提取公因子的方法(Method):主成分分析法·提取(Extract)可选:提取特征值大于1的因子·旋转(Rotation)的方法:方差最大正交旋转·因子得分(FactorScores):作为新变量存入表 1 方差解释表(Total Variance Explained)表 2 旋转后的因子负荷矩阵(Rotated Component Matrix)2.聚类分析:·选用Analyze→Classify→K-MeansCluster……·引入聚类分析的2个变量(即上面的2个公因子)·聚类的数目(NumberofClusters):3类·聚类方法(Method):仅分类·储存新变量(SaveNewVariables):聚类成员表 3 各类数量分布表(Number of Cases in each Cluster)3.均值多重比较:·选用Analyze→CompareMeans→One-WayANOVA……·将2个因子移入因变量,3个类移入“Factor”·多重比较方法(MultipleComparisons):邓肯法Duncan 表 4 3个类对于因子1的重视程度比较表 5 3个类对于因子2的重视程度比较4.综合。
聚类分析为了研究全国各地的城镇家庭收支的分布规律,共抽取28个省、市、自治区的农民生活消费支出的6个有关指标的数据资料。
用表中的数据做谱系聚类,画出谱系图,确定消费支出类型。
地区食品支出住房支出衣着支出其他支出北京190 43 60 49天津135 36 44 36河北95 22 22 22山西104 25 9 18内蒙128 27 12 23辽宁145 32 27 39吉林159 33 11 25黑龙江116 29 13 21上海221 38 115 50江苏144 29 42 27浙江169 32 47 34安徽153 23 23 18福建144 21 19 21江西140 21 19 15山东115 30 33 33河南101 23 20 20湖北140 28 18 20湖南164 24 22 18广东182 20 42 36江西139 18 13 20四川137 20 17 16贵州121 21 14 12云南124 19 14 15陕西106 20 10 18甘肃95 16 6 12青海107 16 5 8宁夏113 24 9 22新疆123 38 4 17【结果与分析】一、欧氏距离平方、组间平均距离连接法Case Processing Summary(a)CasesValid Missing Total N Percent N Percent N Percent28 100.0 0 .0 28 100.0a Average Linkage (Between Groups)上表表示进行聚类分析的有效样品是28个,无缺失值。
Agglomeration ScheduleStageCluster CombinedCoefficientsStage Cluster FirstAppearsNext Stage Cluster 1 Cluster 2 Cluster 1 Cluster 21 14 21 15.000 0 0 62 22 23 22.000 0 0 123 4 24 30.000 0 0 104 3 16 45.000 0 0 155 8 27 51.000 0 0 106 14 20 55.500 1 0 87 13 17 67.000 0 0 88 13 14 82.167 7 6 169 12 18 123.000 0 0 1410 4 8 141.000 3 5 1511 25 26 161.000 0 0 1812 5 22 179.000 0 2 1613 2 10 215.000 0 0 1914 7 12 302.500 0 9 2215 3 4 310.750 4 10 1816 5 13 333.600 12 8 2017 11 19 342.000 0 0 2318 3 25 386.000 15 11 2519 2 6 396.500 13 0 2120 5 28 617.250 16 0 2221 2 15 833.667 19 0 2422 5 7 915.222 20 14 2423 1 11 1021.000 0 17 2624 2 5 1225.875 21 22 2525 2 3 1757.844 24 18 2626 1 2 5112.264 23 25 2727 1 9 18396.630 26 0 0上表表示聚类过程,从中可知,聚类共进行27步;第一步首先合并距离最近的14号和21号样品,形成类G1;因为next stage=6,所以在第6步G1和20号进行复聚类,因此,在Stage Cluster First Appears里列的Cluster 1=1,Cluster 2=0;第二步,合并22号和23号样品,形成类G2;因为next stage=12,所以在第12步,G2和第5号样品进行复聚类,且Cluster 1=0,Cluster 2=2;第一次出现类类的合并在第8步,Cluster 1=7,Cluster 2=6,表示第7步和第6步合并形成的类在第8步合并;其余的类似,不再详细叙述。
. 实验指导之一聚类分析的SPSS操作方法系统聚类法实验例城镇居民消费水平通常用下表中的八项指标来描述。
八项指标间存在一定的线性相关。
为研究城镇居民的消费结构,需将相关性强的指标归并到一起,这实际上就是对指标聚类。
实验数据表 2001年30个省。
市,自治区城镇居民月平均消费数据x1人均粮食支出(元/人) x5人均衣着商品支出(元/人)x2人均副食支出(元/人) x6人均日用品支出(元/人)x3人均烟、酒、茶支出(元/人) x7人均燃料支出(元/人)x4人均其他副食支出(元/人) x8人均非商品支出(元/人)x1x2x3x4x5x6x7x8北京7.78 48.44 8.00 20.51 22.12 15.73 1.15 16.61天津10.85 44.68 7.32 14.51 17.13 12.08 1.26 11.57河北9.09 28.12 7.40 9.62 17.26 11.12 2.49 12.65山西8.35 23.53 7.51 8.62 17.42 10.00 1.04 11.21内蒙古9.25 23.75 6.61 9.19 17.77 10.48 1.72 10.51辽宁7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29吉林8.19 30.50 4.72 9.78 16.28 7.60 2.52 10.32黑龙江7.73 29.20 5.42 9.43 19.29 8.49 2.52 10.00上海8.28 64.34 8.00 22.22 20.06 15.52 0.72 22.89江苏7.21 45.79 7.66 10.36 16.56 12.86 2.25 11.69浙江7.68 50.37 11.35 13.30 19.25 14.59 2.75 14.87安徽8.14 37.75 9.61 8.49 13.15 9.76 1.28 11.28福建10.60 52.41 7.70 9.98 12.53 11.70 2.31 14.69江西 6.25 35.02 4.72 6.28 10.03 7.15 1.93 10.39山东8.82 33.70 7.59 10.98 18.82 14.73 1.78 10.10河南9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76湖北8.67 36.05 7.31 7.75 16.67 11.68 2.38 12.88. 湖南 6.77 38.69 6.01 8.82 14.79 11.44 1.74 13.23广东12.47 76.39 5.52 11.24 14.52 22.00 5.46 25.50广西7.27 52.65 3.84 9.16 13.03 15.26 1.98 14.57海南13.45 55.85 5.50 7.45 9.55 9.52 2.21 16.30四川7.18 40.91 7.32 8.94 17.60 12.75 1.14 14.80贵州7.67 35.71 8.04 8.31 15.13 7.76 1.41 13.25云南9.98 37.69 7.01 8.94 16.15 11.08 0.83 11.67西藏7.94 39.65 20.97 20.82 22.52 12.41 1.75 7.90陕西9.41 28.20 5.77 10.80 16.36 11.56 1.53 12.17甘肃9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35青海10.06 28.64 10.52 10.05 16.18 8.39 1.96 10.81宁夏8.70 28.12 7.21 10.53 19.45 13.30 1.66 11.96新疆 6.93 29.85 4.54 9.49 16.62 10.65 1.88 13.61系统聚类法的SPSS操作:1. 从数据编辑窗口点击Analyze →Classify →Hierachical Cluster , (见图1)图1 系统聚类法打开层次聚类法对话如图2。
图2 系统聚类法对话框选择需要进行聚类分析的变量进入Variable框内后,在Cluster栏中选择聚类类型,SPSS有两种层次聚类方法:Cases 对样品聚类(Q型;系统默认),Variable 对指标变量聚类(R型),本例选择。
在Display栏中选择默认的输出项。
2. 点击Statistics按钮,打开对话框如图3.图3 Statistics对话框✧Agglomeration schedule输出凝聚状态表(聚类进度表);本例选择。
✧Ploximity matrix 输出个体间的距离矩阵,本例选择。
✧Cluster Membership栏中显示每个观测量被分派到的类。
None 不输出。
本例选择。
Simple solution 指定分类数,并输出样本所属类,单一解。
Renge of solution 指定输出从m到n类的各样本所属类。
多个解。
选好后返回主对话框。
3. 单击Method按钮,打开对话框如图4-1.✧Cluster Method:选择聚类方法:SPSS中提供7种聚类方法,分别是:类间平均,类内平均,最短距离,最长距离,重心法,中值法,最小平方和法。
本例选择类间平均。
✧Measure栏:对距离的测度方法选择SPSS中提供了三种类型:Interval等间距度量的变量(连续型),Counts 计数型变量(离散型)和Binary二值变量。
Interval等间隔测度的变量方法包括:Euclidean distance欧氏距离;Squared Euclidean distance欧氏平方距离;Cosine夹角余弦(R 型聚类);Pearson Correlation皮尔逊相关系数距离(R 型聚类),本例选择此项。
Chebychev契比雪夫距离;block距离;Minkowski明氏距离;Customized用户自定义距离--即变量绝对值的第p 次幂之和的第r 次根。
p 与r 由用户指定。
图4-1 Method对话框Transform Values栏,选择消除数量级差的方法(见图4-2),依次是:None不作处理(系统默认);本例选择此项。
Z scores标准化处理;Range -1 to 1 各变量值除全距;Range 0 to 1各变量值减最小值后除全距;Maximum magnitude of 1各变量值除最大值;Mean of 1各变量值除以均值;Standard deviation of 1各变量值除以标准差。
图4-2 Method对话框4. 单击Plots按钮,打开对话框如图5.图5 Plots对话框✧Dendrogram 表示输出树形图,本例选择此项。
✧Icicle表示输出冰柱图。
其中,All clusters表示输出聚类分析每个阶段的冰柱图;本例选择此项。
Specified range of cluster 表示只输出某个阶段的冰柱图,输入从第几步开始到第几步结束,中间间隔几步。
✧Orientationk 栏中指定如何显示冰挂图:Vertical纵向显示,本例选择此项。
Horizontal 横向显示。
图6 Save New Variables对话框5. 单击Save按钮,打开Save New Variables对话框,如图6所示。
选择是否将聚类的结果以变量形式保存在数据文件中。
变量名为:clun_m,其中n表示类数,m表示第m次分析。
✧Cluster Membership栏None 不输出Simple solution 指定分类数,并输出样本所属类。
单一变量。
Renge of solution 指定输出从m到n类的各样本所属类。
多个变量。
当选择结束后,在主对话框中点击OK,可得下面的输出表和图。
Average Linkage (Between Groups) 类间平均凝聚状态进度表:第一列(Stage)表示聚类的进度顺序;第二、三列(Cluster combine)表示每一步将哪两类合并;第四列(Cofficients)表示被合并的两类之间的距离;第五、六列(Stage Cluster First Appares)表示被合并的两类上一次合并分别是在哪一步形成的。
0表示被合并的类为单个样品。
最后一列(Next Stage)表示每一步形成的新类将在哪一步参与下一次合并。
Vertical Icicle冰柱图Dendrogram表示输出树形图(谱分析图)* * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * * Dendrogram using Average Linkage (Between Groups类间平均)Rescaled Distance Cluster CombineC A S E 0 5 10 15 20 25Label Num +---------+---------+---------+---------+---------+X2 2 ⇩✗⇩⇩⇩⇩⇩X8 8 ⇩▫⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩X6 6 ⇩⇩⇩⇩⇩⇩⇩▫⇩⇩⇩⇩⇩⇩⇩X7 7 ⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩▫⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩X1 1 ⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇔X4 4 ⇩⇩⇩⇩⇩⇩⇩⇩⇩✗⇩⇩⇩⇩⇩⇩⇩⇩⇩⇔ X5 5 ⇩⇩⇩⇩⇩⇩⇩⇩⇩▫⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩X3 3 ⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩⇩二:K-聚类法的具体操作以例10.4为例,说明快速聚类法的操作过程。
1. 在数据窗口单击Analyze→Classify→K-Mean Cluster打开对话框(见图7)图7 K-Means Cluster Analysis 对话框将变量选入Variables 栏;将标识变量选入Label Cases 栏(可省略)将分类数输入Number of 框(系统默认为2),本例中选择4.✧Method 栏聚类方法栏Iterate and classify (按K-means 算法)叠代分类(系统默认)。
Classify only 仅按初始类别中心点分类(不叠代)。
✧Centers类中心数据的输入与输出(可省略)Read initial from 使用指定数据文件中的数据作为初始类中心(文件格式参考Write final as 文件格式)选择Write final as 把聚类结果中的各类中心数据保存到指定的文件。