第四章 电力系统功率特性和功率极限实验(DOC)
- 格式:doc
- 大小:145.50 KB
- 文档页数:13
电力系统实验报告篇一:电力系统实验报告单机无穷大系统稳态实验:一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。
单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。
二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。
由实验数据,我们可以得到如下结论:(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。
三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。
2、提高电力系统静态稳定有哪些措施?答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。
[实验名称]二、实验目的1. 理解并掌握电力系统基本特性和参数测量方法。
2. 学习电力电子器件及其驱动电路的基本原理和特性。
3. 掌握电力系统稳态和动态分析的基本方法。
4. 培养实验操作能力和数据分析能力。
三、实验原理[简要介绍实验涉及的原理和公式,包括但不限于电路分析方法、电力电子器件工作原理、电力系统稳态和动态特性等。
]四、实验仪器与设备1. [列出实验所需的仪器和设备,如示波器、万用表、直流稳压电源、电阻箱、电容箱、电力电子器件等。
]2. [说明仪器的使用方法和注意事项。
]五、实验步骤1. 连接电路- 按照实验电路图连接电路,确保连接正确无误。
- 检查电路连接是否牢固,防止短路或接触不良。
2. 参数设置- 根据实验要求设置电源电压、电流、频率等参数。
- 调整电阻箱、电容箱等元件的阻值或容量。
3. 稳态实验- 进行稳态实验,观察电路的稳态特性。
- 记录相关数据,如电压、电流、功率等。
- 进行动态实验,观察电路的动态特性。
- 记录相关数据,如电压、电流、功率等。
5. 数据分析- 对实验数据进行处理和分析,得出实验结论。
- 绘制实验曲线,如伏安特性曲线、相量图等。
6. 实验总结- 总结实验过程,分析实验结果,得出实验结论。
- 提出改进建议和注意事项。
六、实验数据[记录实验过程中获取的电压、电流、功率等数据,并附上表格或曲线图。
]七、实验结果与分析1. 稳态特性分析- 分析电路的稳态特性,如电压、电流、功率等。
- 对比理论值和实验值,分析误差原因。
2. 动态特性分析- 分析电路的动态特性,如过渡过程、稳态响应等。
- 对比理论值和实验值,分析误差原因。
3. 实验结论- 总结实验结果,得出实验结论。
- 对实验过程中遇到的问题进行分析和解决。
八、实验讨论1. 实验现象- 讨论实验过程中观察到的现象,如电路稳定性、电压波动等。
2. 实验误差- 分析实验过程中可能出现的误差,如测量误差、连接误差等。
3. 改进建议- 提出改进实验方案的建议,如提高精度、改进电路设计等。
电力系统及自动化综合实验报告姓名:学号:第三章一机中间开关站电压;DU 输电线路的电压降落3、单回路稳态非全相运行实验确定实现非全相运行的接线方式,断开一相时,与单回路稳态对称运行时相同的输送功率下比较其运行状态的变化。
具体操作方法如下:(1)首先按双回路对称运行的接线方式(不含QF5);(2)输送功率按实验1中单回路稳态对称运行的输送功率值一样;(3)微机保护定值整定:动作时间0秒,重合闸时间100秒;(4)在故障单元,选择单相故障相,整定故障时间为0²<t<100²;(5)进行单相短路故障,此时微机保护切除故障相,准备重合闸,这时迅速跳开“QF1”、“QF3”开关,即只有一回线路的两相在运行。
观察此状态下的三相电流、电压值与实验1进行比较;(6)故障100²以后,重合闸成功,系统恢复到实验1状态。
表3-2UAUBUCIAIBICPQS全相运行值2102102100000002102102100000、、1非全相运行值2102102050000002122152000000、100、121522518000、50、750、300、322023017001、221、320、500、52052152100000002122052100000、100、12251902100、350、500、300、32301752151、221、2300、500、5四、实验报告要求1、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析。
2、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。
3、比较非全相运行实验的前、后实验数据,分析输电线路输送功率的变化。
五、思考题1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。
THLZD―2型电力系统综合自动化实验平台的教学应用随着电力系统的发展,其在国民经济中起着越来越重要的作用。
电力系统数字仿真虽然已经已成为电力系统研究、规划、运行、设计和教学等各方面不可或缺的工具,特别是电力系统新技术的开发研究、新装置的设计和参数的确定更是需要通过仿真来确认。
但是在电力系统教学中,单纯采用仿真的教学方式,学生由于对物理概念不够直观,难于接触电力系统模型,教学效果并不理想[1-2]。
为此滨州学院采用THLZD-2型电力系统综合自动化实验平台电力系统综合自动化实验平台,把真实的电力系统缩小到实验室中,能够便于学生直观理解与掌握电力系统概念与知识,增强学生学习的积极性与主动性。
一、电力系统综合实验室组成我校电力系统综合实验室主要由4套THLZD-2型电力系统综合自动化实验平台与一套THLDK-2型电力系统监控实验平台组成,可以完成很多涵盖专业领域的实验,包括《电力系统稳态分析》、《电力系统暂态分析》、《电力系统继电保护原理》、《电力系统自动装置原理》、《电力系统自动化》、《电网监控及调度自动化》、《电力系统远动》等专业课程的实验[3]。
1.THLZD-2型电力系统综合自动化实验平台THLZD-2型电力系统综合自动化实验平台是一套集多种功能于一体的综合型实验装置,展示了现代电能发出和输送全过程的工作原理。
这套实验装置由THLZD-2电力系统综合自动化实验台(简称“实验台”)、THLZD-2电力系统综合自动化控制柜(简称“控制柜”)、无穷大系统和发电机组和三相可调负载箱等组成。
(1)发电机机组部分。
用直流电动机(PN=2.2kW,UN=220V,nN=1500rpm)模拟原动机,包括模拟直流电动机,直流电动机和同步发电机经联轴器软联接后,固定在底盘上,机组的底盘装有四个轮子和四个螺旋式的支撑脚,构成可移动式机组,方便移动。
同时,发电机组还装有光电编码器,功角测量装置和其它配套件。
(2)实验操作台主要包括:输电线路单元、微机线路保护单元、.控制方式选择单元监测仪表单元、指示单元、设置单元、外围设备接口单元、电源单元。
电路中的功率定律的实验观察与分析引言:实验仪器与材料:1.直流电源2.毫伏表3.电流表4.电阻箱5.连接线实验步骤:1.将直流电源与电阻箱相连,并调节电阻箱的电阻值为一定大小。
2.将电流表串联在电路中,测量电路中的电流值,并记录下来。
3.将毫伏表串联在电路中,测量电路中的电压值,并记录下来。
4.根据测得的电流值和电压值,计算出电路的功率,并记录下来。
5.重复以上步骤,分别测量不同电阻值下的电流、电压和功率值。
实验结果:我们分别选择了不同的电阻值进行测量,得到了如下数据表格:电阻值(Ω),电流值(I,A),电压值(V,V),功率值(P,W)-----------,-------------,-------------,-------------1,0.5,0.5,0.252,0.5,1,0.53,0.5,1.5,0.754,0.5,2,15,0.5,2.5,1.25实验分析:根据实验结果,我们可以得出以下结论:1.当电流保持不变而电压增加时,功率值也会随之增加。
这可以很好地验证功率定律中的P=IV关系。
2.当电压保持不变而电流增加时,功率值同样会随之增加。
这也符合功率定律的结论。
3.在上述实验中,我们可以看到电阻值与功率值成正比关系。
当电阻值增加时,功率值也相应地增加。
这是因为电阻值的增加使得电路中的电流减小,而功率又可以表示为电流的平方乘以电阻值,因此电阻值增加会导致功率值的增加。
结论:通过本次实验,我们验证了电路中的功率定律,并得出了功率与电流、电压之间的关系。
在电路中,当电流或电压增加时,功率值也会相应地增加,而功率与电阻值成正比关系。
这些实验结果与功率定律的理论推导相吻合,验证了功率定律的准确性。
感想与建议:通过这次实验,我更深入地了解了电路中的功率定律。
在今后的学习和工作中,我会更加注重实验的设计和分析,以提高自己的实验技能和理论知识。
对于本实验,有以下几点建议:1.在实验中,我们只验证了直流电路中的功率定律,对于交流电路的功率定律也应进行实验验证。
电力系统综合实验实验报告1实验目的1.通过实验一,观察发电机的四种运行状态。
2.通过实验二,观察系统在不同电压和不同拓扑结构中的静稳极限,观察失稳之后各相电压和电流波形。
3.通过实验三,观察不同短路情况下,短路切除时间对于电力系统稳定性的影响。
2实验内容2.1实验一:发电机不同象限运行实验2.1.1实验内容通过改变发电机的转速和励磁分别改变发电机的有功功率P与无功功率Q,实现发电机在不同象限的运行。
2.1.2理论分析发电机的四种运行状态:1.迟相运行(常态运行):发电机向电网同时送出有功功率和无功功率(容性)。
2.进相运行(超前运行):发电机向电网送出有功功率,吸收电网无功功率。
3.调相运行:发电机吸收电网的有功功率维持同步运转,向电网送出无功功率(容性)。
4.电动机运行(非正常运行):发电机同时吸收电网的有功功率和无功功率维持同步运行。
2.1.3实验步骤1.按照双回线方式,依次接入断路器,双回线,电动机,无穷大电网,组成简易电力系统。
2.测试各个接线端子的是否能够正常使用,闭合断路器。
3.启动发电机,并网运行。
4.改变发电机设定转速改变其有用功率,改变发电机励磁改变其无功功率,使其运行在四个象限,四个象限各取三组数据。
在正常状态下,设定三组不同转速使其保持正常运行状态,记录机端电压,有功功率,无功功率;然后降低转速,使其运行于第二象限,再次记录三组调相数据;接着降低励磁电压,使发电机运行于第三象限,记录三组电动机数据;最后提高转速使点击运行与第四象限,获得3组进相数据。
2.1.4实验结果具体现象如图所示,图. 1转速设定值0.90图. 2转速设定值0.91图. 3转速设定值0.89图. 4转速设定值0.875图. 5转速设定值0.865图. 6转速设定值0.855图. 7转速设定值0.860 4.P > 0, Q < 0 第四象限图. 8转速设定值0.882图. 9转速设定值0.892图. 10转速设定值0.9022.2实验二:线路静态稳定极限测试实验2.2.1实验内容测试线路的静态稳定运行极限,测试不同电压等级和不同电抗条件下,电压静态稳定极限的变化情况。
功率实验报告实验目的:通过实验测量电路中的功率,并学习如何计算和理解功率的概念。
实验材料:1. 直流电源供应器2. 多用表3. 电阻器4. 连接线实验步骤:1. 将直流电源供应器连接到电路中。
2. 将多用表的电流探头连接到电路中,测量电流的数值。
3. 将多用表的电压探头连接到电路中,测量电压的数值。
4. 记录电流和电压的数值,计算功率。
实验结果:根据实验测得的电流和电压数值,可以使用以下公式计算功率:功率(P)= 电流(I)×电压(V)实验讨论:在本次实验中,我们学习了如何通过测量电流和电压来计算功率。
功率是一个表示电路中能量转化的重要参数。
通过实验我们发现,功率的值与电路中的电流和电压成正比。
当电流或电压的数值增加时,功率的数值也会相应增加。
在电路中,功率的单位通常使用瓦特(W)来表示。
瓦特是国际单位制中的功率单位,表示每秒传输的能量量。
本实验可以帮助我们深入理解电路中能量转换的过程,并了解电流、电压和功率之间的关系。
实验结果还可以帮助我们理解电器的功率需求,并为正确选择电器的使用提供参考。
需要注意的是,在实验中我们使用的是直流电路,因此实验结果适用于直流电路分析。
对于交流电路,由于其复杂性,需要使用更复杂的方法来计算功率。
结论:通过本次实验,我们成功地测量了电路中的功率,并了解了功率的计算方法。
功率是电路中能量转化的重要指标,它与电流和电压有着密切的关系。
通过实验结果,我们深化了对电路中能量转换过程的理解,并能够更好地理解和运用功率的概念。
附注:本实验报告仅为示范,具体实验结果和内容可能根据具体实验条件和要求而有所不同。
在撰写实验报告时,请根据实际实验情况和指导要求进行内容的调整和修改。
YZFDZ-I虚拟电力自动化软件说明书湖南依中紫光电气科技有限公司2019年07月修订目录第1章系统简介 (3)1.1系统主要功能 (3)1.2系统主要部分简介 (3)1.3系统运行环境 (3)第2章软件界面基本介绍 (4)2.1系统的启动 (4)2.2系统的退出 (4)2.3软件界面说明 (4)第3章基本操作介绍 (6)3.1调速装置的基本操作 (6)3.2励磁装置的基本操作 (8)3.3同期装置的基本操作 (10)3.4负荷调节 (11)3.5无穷大系统 (12)3.6仿真速度调节 (13)3.7同期波形 (13)3.8数据记录 (14)第4章实验内容 (16)4.1发电机组的启动与运转实验 (16)4.1.1 调速装置及原动机控制 (17)4.1.2 励磁装置及简单励磁控制 (18)4.2准同期并列运行 (20)4.2.1 频差与压差的整定 (21)4.2.1 手动准同期并网 (24)4.2.2 半自动准同期并网 (27)4.2.3 自动准同期并网 (29)4.3同步发电机励磁控制 (32)4.3.1 同步发电机起励 (33)4.3.2 伏赫限制实验 (37)4.3.3 欠励限制实验 (38)4.3.4 调差特性实验 (42)4.3.5 过励限制实验 (48)4.4单机-无穷大系统稳态运行方式实验 (50)4.4.1 单回路稳态对称运行实验 (51)4.4.2 双回路对称运行与单回路对称运行比较实验 (52)4.5电力系统功率特性和功率极限实验 (53)4.5.1 无调节励磁时,功率特性和功率极限的测定 (54)4.5.2 手动调节励磁时,功率特性和功率极限的测定 (57)4.5.3 自动调节励磁时,功率特性和功率极限的测定 (58)4.5.4 单回路、双回路输送功率与功角关系 (58)4.5.5 提高电力系统静态稳定性 (58)第1章系统简介本软件是一款专业的电力系统综合自动化仿真软件,是一套集多种功能于一体的综合型实验平台,目的在于使学生掌握系统运行的原理及特性,学会通过故障运行现象及相关数据分析故障原因,并排除故障。
电力系统实验报告学院:核技术与自动化工程学院专业:电气工程及其自动化指导老师:顾珉姓名:许新学号:200706050209实验一发电机组的启动与运转实验一实验目的1 了解微机调速装置的工作原理和掌握其操作方法。
2 熟悉发电机组中原动机(直流电动机)的基本特征。
3 掌握发电机组起励建压,并网,接列和停机的操作。
二原理说明在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。
装于原动机上的编码器蒋转速信号以脉冲的形式送入THLWT-3型微机调速装置,该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置,采用双闭环来调节原动机的电枢电压,最终改变原动机的转速和输出功率。
三实验内容与步骤1 发电机组起励建压(1)先将试验台的电源插头插入控制柜左侧的大四芯插座(两个大四芯插座可通用)。
接着依次打开控制柜的“总电源”,“三相电源”,“单相电源”的电源开关,再次打开试验台的“三相电源”“单相电源”开关。
(2)将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出呼呼的声音。
(3)按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定自动方式,开始默认方式为自动方式。
(4)按下THLWT-3型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机正在启动。
当发电机组转速上升到1500rpm时,THLWT-3型微机调速装置面板上的增速灯熄灭,启动完成。
(5)当发电机转速接近或略超过1500rpm时,可手动调整使转速为1500rpm,即按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。
按下THLWT-3型微机调速装置面板上的“+”或“—”键即可调整发电机转速。
电力系统实验指导书第四章 电力系统功率特性和功率极限实验一、实验目的1. 初步掌握电力系统物理模拟实验的基本方法;2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3. 通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。
二、原理与说明所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。
对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为:δδ2sin 2sin 2∑∑∑∑∑⋅-⨯+=q d q d d q Eq X X X X U X U E P当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。
根据一般励磁调节器的性能,可认为保持发电机E 'q (或E ')恒定。
这时发电机的功率特性可表示成:δδ2sin 2sin 2∑∑∑∑∑⋅'-'⨯+''='q dq dd qEq X X X X U X U E P或 δ'''='∑sin dq EX U E P这时功率极限为∑'='d EmX UE P随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相机或中继电力系统以稳定系统中继点电压等手段实现。
三、实验项目和方法(一)无调节励磁时功率特性和功率极限的测定1.网络结构变化对系统静态稳定的影响(改变x)在相同的运行条件下(即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q),测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和达到功率极限时的功角值。
同时观察并记录系统中其他运行参数(如发电机端电压等)的变化。
将两种情况下的结果加以比较和分析。
实验步骤:(1)输电线路为单回线;(2)发电机与系统并列后,调节发电机使其输出的有功和无功功率为零;(3)功率角指示器调零;(4)逐步增加发电机输出的有功功率,而发电机不调节励磁;(5)观察并记录系统中运行参数的变化,填入表4-1中;(6)输电线路为双回线,重复上述步骤,填入表4-2中。
表4-1 单回线δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-2 双回线δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0注意:(1)有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。
(2)当系统失稳时,减小原动机出力,使发电机拉入同步状态。
2.发电机电势E q不同对系统静态稳定的影响在同一接线及相同的系统电压下,测定发电机电势E q不同时(E q<U x或E q>U x)发电机的功一角特性曲线和功率极限。
实验步骤:(1)输电线为单回线,并网前E q<U x;(2)发电机与系统并列后,调节发电机使其输出有功功率为零;(3)逐步增加发电机输出的有功功率,而发电机不调节励磁;(4)观察并记录系统中运行参数的变化,填入表4-3中;(5)输电线为单回线,并网前E q>U x,重复上述步骤,填入表4-4中。
表4-3 单回线并网前E q<U x δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0-表4-4 单回线并网前E q>U xδ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0+(二)手动调节励磁时,功率特性和功率极限的测定给定初始运行方式,在增加发电机有功输出时,手动调节励磁保持发电机端电压恒定,测定发电机的功一角曲线和功率极限,并与无调节励磁时所得的结果比较分析,说明励磁调节对功率特性的影响。
实验步骤:(1)单回线输电线路;(2)发电机与系统并列后,使P=0,Q=0,δ=0,校正初始值;(3)逐步增加发电机输出的有功功率,调节发电机励磁,保持发电机端电压恒定或无功输出为零;(4)观察并记录系统中运行参数的变化,填入表4-5中。
表4-5 单回线手动调节励磁δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-6 双回线手动调节励磁δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0(三)自动调节励磁时,功率特性和功率极限的测定将自动调节励磁装置接入发电机励磁系统,测定功率特性和功率极限,并将结果与无调节励磁和手动调节励磁时的结果比较,分析自动励磁调节器的作用。
1.微机自并励(恒流或恒压控制方式),实验步骤自拟;表4-7 单回线微机自并励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-8 双回线微机自并励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 02.微机它励(恒流或恒压控制方式),实验步骤自拟。
表4-9 单回线微机它励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-10 双回线微机它励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0注意事项:1.调速器处停机状态时,如果“输出零”灯不亮,不可开机;2.实验结束后,通过励磁调节使无功输出为零,通过调速器调节使有功输出为零,解列之后按下调速器的停机按钮使发电机转速至零。
跳开操作台所有开关之后,方可关断操作台上的操作电源开关。
四、实验报告要求1.根据实验装置给出的参数以及实验中的原始运行条件,进行理论计算。
将计算结果与实验结果进行比较。
2.认真整理实验记录,通过实验记录分析的结果对功率极限的原理进行阐述。
同时对理论计算和实验记录进行对比,说明产生误差的原因。
并作出Uz(δ),P(δ) Q(δ)特性曲线,对其进行描述。
3.分析、比较各种运行方式下发电机的功—角特性曲线和功率极限。
五、思考题1.功率角指示器的原理是什么?如何调节其零点?当日光灯供电的相发生改变时,所得的功角值发生什么变化?2.多机系统的输送功率与功角δ的关系和简单系统的功—角特性有什么区别?3.自并励和它励的区别和各自特性是什么?4.自动励磁调节器对系统静态稳定性有何影响?5.实验中,当发电机濒临失步时应采取哪些挽救措施才能避免电机失步?第五章电力系统暂态稳定实验一、实验目的1.通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。
2.学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施。
3.用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。
二、原理与说明电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。
在各种扰动中以短路故障的扰动最为严重。
正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1;短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2;故障切除发电机功率特性为:P3=(Eo×Uo)×sinδ3/X3;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。
而系统保持稳定条件是切除故障角δc小于δmax,δmax可由等面积原则计算出来。
本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax也不同,使对故障切除的时间要求也不同。
同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使δmax增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。
这二种方法都有利于提高系统的稳定性。
三、实验项目与方法(一)短路对电力系统暂态稳定的影响1.短路类型对暂态稳定的影响本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接地短路和三相短路试验。
固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。
短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。
在手动励磁方式下通过调速器的增(减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。
将实验结果与理论分析结果进行分析比较。
P max为系统可以稳定输出的极限,注意观察有功表的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-Ⅲ型微机保护装置读出,具体显示为:GL-⨯⨯⨯三相过流值GA-⨯⨯⨯A相过流值GB-⨯⨯⨯B相过流值GC-⨯⨯⨯C相过流值微机保护装置的整定值代码如下:01:过流保护动作延迟时间02:重合闸动作延迟时间03:过电流整定值04:过流保护投切选择05:重合闸投切选择另外,短路时间T D由面板上“短路时间”继电器整定,具体整定参数为表5-1。
表5-1整定值代码01 02 03 04 05 T D整定值0.5(s) / 5.00(A) On Off 1.0(s)微机保护装置的整定方法如下:同时按“△”“▽”进入整定值修改画面。
进入整定值修改画面后,通过“△”“▽”选01整定项目,再按压触摸按钮“+”或“-”选择当保护时间(s);通过“△”“▽”选03整定项目,再按压触摸按钮“+”或“-”选择当过电流保护值;通过“△”“▽”选04整定项目,再按压触摸按钮“+”或“-”选择当过电流保护投切ON;通过“△”“▽”选05整定项目,再按压触摸按钮“+”或“-”选择重合闸投切为OFF。
(详细操作方法WDT-ⅢC综合自动化试验台使用说明书。
)注:同时按下“+”“—”按钮可以恢复到出厂默认值。
自动方式开机,建压,并网,待机组运行稳定后,在下面4种不同线路组合下做各种短路试验,观察并记录短路发生时的最大有功P max和最大短路电流。
表5-2 短路切除时间t=0.5s线路组合1:QF1=1 QF2=1 QF3=1 QF4=1 QF5=0 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路(0:表示对应线路开关断开状态1:表示对应线路开关闭合状态)表5-3 短路切除时间t=0.5s线路组合2:QF1=0 QF2=1 QF3=0 QF4=1 QF5=0 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路表5-4 短路切除时间t=0.5s线路组合3:QF1=1 QF2=1 QF3=0 QF4=1 QF5=1 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路表5-5 短路切除时间t=0.5s线路组合4:QF1=0 QF2=1 QF3=1 QF4=1 QF5=1 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路2.故障切除时间对暂态稳定的影响固定短路地点,短路类型和系统运行条件,通过调速器的增速按钮增加发电机向电网的出力,在测定不同故障切除时间能保持系统稳定时发电机所能输出的最大功率,分析故障切除时间对暂态稳定的影响。