新能源储能系统及智能微网解决方案
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
储能系统解决方案一、发电侧解决方案发电侧储能系统分为集中型和分散型,能够改善光伏、风电限发问题,提高经济性;减少瞬时功率变化率,减少电网冲击。
1、风电站储能解决方案储能系统可对现有上网电价较高的风电电站进行改善,解决弃风现象,消除风电随机波动,提高风电电厂电能输出质量,可使风电成为可调度电力,并能参与调峰调频。
·减少弃风,提高经济性。
·平滑输出随机波动,提高电能质量。
·提高功率预测精度,减少电网冲击。
·风电场储能参与辅助服务。
2、火电站联合调频解决方案储能系统具有反应迅速、精度高、调节准确等优点,配合火电站进行联合调频,可弥补火电机组速度慢、精度低、方向错(超调)的调频特性。
·速度快·精度高·调节准3、光伏电站储能解决方案储能系统可对现有上网电价较高的光伏电站进行改善。
解决光伏电站弃光现象,消除光伏随机波动,提高光伏电厂电能输出质量,可使光伏成为可调度电力,并能参与调峰调频等辅助服务。
·减少弃光,提高经济性·提高功率预测精度,减少电网冲击·平滑功率随机波动,提高电能质量·光伏电站储能参与辅助服务直线母线方案交流母线方案二、电网侧储能解决方案随着新能源大幅接入加剧发电侧不平衡且用户侧日峰谷差和季节峰谷差仍在加剧,电网侧储能作用更加凸显,电网侧储能是辅助服务的有效调节工具并可推动电力市场化和电力现货交易的进程。
1、电网储能解决方案储能系统能够实现调峰调频控制,实时监测负荷波动,快速响应电网调度,提高电网频率稳定性。
储能系统也能够根据电网功率因数变化,动态调整电网无功,减少系统损耗,保障电网可靠运行。
·电力调频调峰·独立参与辅助服务·二次调频、有偿调峰、AVC、旋转备用、冷备用、黑启动2、用户侧解决方案结合光伏和储能系统,可以通过生产一存储一消耗来有效地管理家庭和工商业的能源循环,是未来智慧能源系统重要组成部分。
智能微网系统的高效运营为您的能源供应提供最佳解决方案随着能源需求的不断增长和环境问题的加剧,传统的能源供应方式已经不能满足人们对高效、可持续能源的需求。
在这种背景下,智能微网系统应运而生。
智能微网系统是一种基于多能源、多电源、多负荷、多能耗的能源组织形式,能够实现不同能源之间的高效协同运作,为您的能源供应提供最佳解决方案。
一、智能微网系统的定义和构成智能微网系统是一种分布式能源系统,由多个能源源、负荷和储能装置相互连接而成。
它不仅可以接入传统的能源网,还可以与非传统的可再生能源进行接入。
智能微网系统主要由以下三个部分构成:1. 能源源:智能微网系统可以接入各种能源源,如传统的电网、太阳能发电系统、风能发电系统等。
这些能源源可以根据实际需求进行灵活调整和切换,以实现最优能源供应。
2. 负荷:智能微网系统可以接入各种负荷设备,包括家庭、工业和商业负荷。
通过智能控制和优化调度,智能微网系统可以根据实际用电需求灵活分配能源,提高能源利用效率。
3. 储能装置:智能微网系统可以配备多种储能装置,如电池、超级电容器等。
这些储能装置可以在能源供应充裕时存储多余的能量,在能源供应短缺时释放能量,以实现能量的平衡和稳定供应。
二、智能微网系统的优势和应用领域智能微网系统具有以下优势,使其在能源供应领域具有广泛的应用前景:1. 高效性:智能微网系统通过精确的能源管理和智能调度算法,能够实现能源的高效利用,最大限度地降低能源损耗和浪费。
2. 稳定性:智能微网系统具有多能源供应和多储能装置的特点,能够保证能源供应的稳定性,降低能源供应中断的风险。
3. 灵活性:智能微网系统可以根据需要灵活调整能源供应策略,适应不同的能源需求和负荷变化。
4. 可持续性:智能微网系统能够接入可再生能源,如太阳能和风能,从而减少对传统能源的依赖,实现能源供应的可持续发展。
智能微网系统在以下领域具有广泛的应用前景:1. 城市能源供应:智能微网系统可以为城市提供多能源、高效能源供应,实现能源的区域自治和互联互通。
微电网解决方案四方1. 引言随着能源需求日益增长和可再生能源的发展,微电网成为解决能源供应问题的一种可行方案。
微电网是由多个分布式能源资源(DER)组成的小型电力系统,可以独立运行或与主电网互联,在能源供应和可靠性方面提供了更好的灵活性。
本文将介绍四个方面的微电网解决方案:能源管理、智能电网技术、电池储能和智能微电网控制。
2. 能源管理微电网的能源管理是确保稳定供电的关键。
能源管理系统(EMS)通过实时监测和控制能源流动,确保微电网内部各种能源资源的最佳利用。
主要功能包括能源发电控制、能源存储管理和能源供需平衡。
通过合理配置和控制能源资源,能源管理系统可以优化能源利用效率,降低能源消耗,并确保微电网内的电力供应稳定可靠。
3. 智能电网技术智能电网技术在微电网中扮演着重要角色。
智能电网通过先进的通信和控制技术,实现对微电网内部各个组件的集成和协调。
这些组件包括分布式能源资源、储能系统、电动汽车充电桩等。
智能电网技术可以实现对能源的灵活调度,提高系统的可靠性和效率。
此外,智能电网技术还可以实现与主电网的互联,实现双向能量流动。
4. 电池储能电池储能是微电网中的重要组成部分。
借助电池储能系统,微电网可以在需求高峰时段储存过剩的电力,并在需求低谷时段释放电力供应。
电池储能系统具有快速响应、高效率和低环境影响等优点,在微电网的能量管理中起到关键作用。
此外,电池储能系统还可以储存可再生能源,以便在没有太阳能或风能时提供持续的电力供应。
5. 智能微电网控制智能微电网控制是确保微电网运行平稳和可靠的关键。
通过智能微电网控制系统,可以对微电网内的各个组件进行监测和控制。
该系统可以实施智能能源调度策略,动态管理微电网中的能源流动。
此外,智能微电网控制系统还能够实现对微电网内部各设备的优化控制,以提高系统效率和可靠性。
6. 总结微电网作为一种可行的能源供应方案,具有更好的能源管理能力、智能电网技术、电池储能和智能微电网控制等优势。
新能源微电网项目的关键技术解决方案1.能源互联网能源互联网是新能源微电网项目的核心技术之一、它通过互联网技术、物联网技术和大数据技术,将分散的新能源发电系统、能源储存系统和用电负荷系统进行连接管理,实现能源的高效利用和优化配置。
能源互联网技术可以实现多个微电网之间的能源互联互通,提供灵活、可靠的能源供应和需求平衡。
2.能源储存技术新能源微电网项目需要解决新能源波动性和不可控性带来的能源供需平衡问题,这就需要采用能源储存技术实现能源的调峰填谷和调度控制。
目前常用的能源储存技术包括电池储能技术、储氢技术、压缩空气储能技术等。
这些技术可以将不稳定的新能源发电系统产生的能源储存起来,在用电高峰时供给,从而实现能源的平衡供给。
3.智能微电网控制与管理智能微电网控制与管理是新能源微电网项目中至关重要的一个环节。
通过智能化的微电网控制与管理系统,可以实现对能源的智能分配和调度控制,实时监测和响应能源需求,有效管理能源的使用和分配,提高能源系统的效率和可靠性。
智能微电网控制与管理技术包括分散智能控制技术、混合智能控制技术、智能优化调度技术等。
4.安全保障技术5.经济性优化技术新能源微电网项目需要考虑到经济性的问题,即如何在保证能源供应的前提下,降低能源成本和运营成本。
经济性优化技术包括能源成本优化技术、运营成本优化技术、经济调度技术等。
通过对能源的成本和运营进行优化调整,可以降低整个新能源微电网项目的运营成本,提高经济性。
总之,新能源微电网项目的关键技术解决方案包括能源互联网、能源储存技术、智能微电网控制与管理、安全保障技术和经济性优化技术等方面。
这些技术将有助于实现新能源微电网项目的高效运行、能源的平衡供给和优化配置,以及保障项目的安全和经济性。
智能微电网技术方案引言智能微电网技术是当前电力系统领域的热门话题,随着可再生能源和分布式能源的快速发展,微电网技术得到了广泛关注和应用。
本文将介绍智能微电网技术的定义、特点以及构建的技术方案,以及其在能源管理和电力系统调度方面的优势。
一、智能微电网技术的定义智能微电网技术是一种将传统的中央化电网转变为分布式电力系统的技术。
它采用先进的通信、控制和调度技术,将可再生能源、储能技术和智能电网技术结合起来,实现微电网的自主管理和优化运行。
通过智能化的设备和系统,微电网能够实现对电能的高效利用,提高能源利用效率和供电可靠性。
二、智能微电网技术的特点1. 分布式能源接入:智能微电网技术允许分布式能源(如太阳能、风能等)直接接入微电网系统,减少了对传统中央电网的依赖,提高了能源利用效率。
2. 自主管理和调度:智能微电网技术借助先进的智能电网技术,能够自主管理和调度能源的产生、存储和使用,实现对电网的有效控制。
3. 供电可靠性:智能微电网技术能够实现分布式能源和储能系统的互联互通,从而提高供电可靠性和鲁棒性。
4. 节能减排:智能微电网技术可通过优化能源管理和电力调度,减少能源浪费,从而实现节能减排的目标。
三、智能微电网技术方案的构建1. 分布式能源接入技术:通过建设分布式能源发电站,将太阳能、风能等可再生能源接入微电网系统。
同时,通过智能电网技术实现对分布式能源的监控、管理和调度。
2. 储能技术:采用先进的储能技术(如锂离子电池、超级电容器等),对分布式能源进行储存,以便在需要时进行供电。
通过智能化的储能系统管理和控制,实现对能源的灵活调度。
3. 智能电网技术:借助通信、控制和调度技术,实现对微电网的自主管理和优化运行。
通过智能电网系统,能够对能源的生产、传输、储存和使用进行实时监控和调度,提高能源利用效率。
4. 运行管理系统:建设智能微电网运行管理系统,集成微电网的各个组成部分,并实现对微电网系统的集中监控和调度。
储能系统及智能微电网解决方案2014~2015致力于清洁高效Green and Effective中国第一,全球第二—— 始于1997,17年新能源逆变器技术沉淀—— 全球光伏总装机量超过8GW—— 多年稳居中国市场第一,市场占有率超过30%—— 为中国首个储能项目提供变流器设备—— 建立中国首个3MW光伏储能微电网示范系统Contents06-1906-0708-131415-19系统解决方案光储微电网系统储能系统燃料节约系统储能并网系统20-2728-33关键设备企业简介及应用案例SC30/50· SC100· SC500TL· SC500· SC1000TS· MEMS1000· 智能配电柜·MW级储能系统整体解决方案乡村及小型岛屿典型解决方案· 乡镇及中型岛屿典型解决方案县域及大型岛屿典型解决方案燃料节约方案市电节约模式(光储系统)· 辅助新能源平滑并网(发电侧)· 负荷转移(负载侧)·电力调频调压电网客户* 辅助新能源并网,让新能源更可控、更安全、更平滑* 保障电网稳定性,参与调峰、调频* 改善用电质量,提高经济性用电客户* 改善用电质量* 为偏远无电区提供清洁能源,让光明更多一些用户省心一站式解决方案,提供全套系统用户放心经过实际应用检验,离网系统稳定运行已达10年用户舒心从黑暗时代一步跨到光明时代监控系统主要完成储能系统的内部信息采集、监测以及控制,并实现对多个PCS及蓄电池组的系统级管理,协调PCS间、PCS与电池组间的工作。
储能监控系统,通过与EMS或配电网调度系统接口,接受调度指令,完成如削峰填谷、新能源输出平滑、蓄电池充放电PQ控制、独立离网支撑源V/f控制等智能电网应用。
在简单应用场合可省略,其功能由PCS及EMS替代。
蓄电池组包括蓄电池、BMS、蓄电池输出开关配电等。
新能源微电网运行与优化控制解决方案1、引言随着能源需求的不断增长和对环境保护的日益重视,新能源的开发和利用成为当代社会的热门话题。
微电网作为一种灵活性高、可靠性好的能源供应和管理系统,与传统集中式电网相比具有更好的潜力和前景。
然而,由于新能源微电网的不稳定性和复杂性,其运行与优化控制一直是研究的热点和难点。
本文将介绍新能源微电网运行与优化控制的一些解决方案。
2、新能源微电网的基本概念新能源微电网是指基于可再生能源和分布式发电技术,通过电力电子设备和智能控制系统实现的小型能源系统。
它能够将可再生能源(如太阳能、风能等)与传统电力系统有机结合,实现电力的供应和管理。
新能源微电网通常由多种能源和负载组成。
其中的能源可以是太阳能光伏发电系统、风力发电系统、燃料电池系统等。
3、新能源微电网的运行问题3.1能源波动性问题新能源微电网的能源主要来自于太阳能和风力发电等可再生能源,能源的波动性使得供需之间的平衡难以保持。
当太阳能或风力发电不稳定时,供电将受到限制,影响用户的用电需求。
3.2能量存储问题新能源微电网需要解决能量的短期和长期存储问题,以应对能源的波动性。
目前,常用的能量存储技术包括电池储能、压缩空气储能、储氢等。
如何选择和合理利用能量存储技术是一项挑战。
3.3系统运行的可靠性问题新能源微电网的可靠性要求高,因为其能源供应是分散的,一旦发生故障,将影响整个系统的正常运行。
因此,确保系统的稳定性和可靠性是新能源微电网运行与优化控制的核心问题。
4、新能源微电网的优化控制方案4.1 能源供应优化控制通过对新能源微电网中可再生能源和传统电力系统的合理控制,优化能源供应和负载需求之间的平衡关系。
例如,可以根据负载需求和可再生能源的波动性,灵活调节能源的输出和负载的使用,以最大程度地满足用户的用电需求。
4.2 能量存储优化控制通过合理配置和控制能量存储设备,实现能量的短期和长期存储优化。
可以利用智能算法和预测模型来预测能源的供应和需求情况,从而合理使用能量存储设备,提高能源的利用率。
综合能源系统和智慧微网建设方案以下是一个关于综合能源系统和智慧微网建设方案的综合概述,从产业结构改革的角度出发,旨在实现能源的有效管理和资源的最大化利用。
一、实施背景随着全球能源结构的转型,发展清洁、高效、可再生的新能源已成为全球的共识。
然而,传统的能源系统由于其集中式、大规模的特性,无法满足这种多样化的需求。
因此,实施综合能源系统和智慧微网建设方案,能提高能源利用效率,降低环境污染,提高能源安全性,以适应未来可持续发展的需要。
二、工作原理综合能源系统通过集成了各种能源类型(如电力、热力、氢能等),借助先进的能源管理技术和算法,实现能源的优化配置和高效利用。
智慧微网则是由分布式能源(如太阳能、风能等)和储能系统构成的独立能源网络,能够根据实时能源需求和价格波动实现自主能源管理和调度。
三、实施计划步骤1. 基础设施升级:对现有的能源基础设施进行升级和改造,使其满足综合能源系统的需求。
2. 智慧微网建设:构建分布式能源和储能系统,形成智慧微网。
3. 能源管理平台建设:建立一个集成的能源管理平台,实现各种能源类型的统一管理和优化调度。
4. 能源调度和优化:通过实时的能源监测和管理,进行能源调度和优化,提高能源利用效率。
5. 能耗管理和节能:通过先进的能耗管理和节能技术,降低能源消耗,减少能源浪费。
四、适用范围综合能源系统和智慧微网建设方案适用于各类能源用户,包括工业园区、城市、农村等。
其能有效地提高能源供应的可靠性和稳定性,降低能源成本,同时也有助于实现节能减排和绿色能源的发展目标。
五、创新要点1. 实现了多种能源类型的集成和优化:综合能源系统涵盖了电力、热力、氢能等多种能源类型,通过先进的能源管理技术和算法,实现能源的优化配置和高效利用。
2. 提出了智慧微网的概念并成功实施:智慧微网通过分布式能源和储能系统构成的独立能源网络,能够根据实时能源需求和价格波动实现自主能源管理和调度,提高了能源利用效3. 引入了先进的能源管理平台:建立的能源管理平台实现了各种能源类型的统一管理和优化调度,提高了能源管理的效率和可靠性。
能源行业智能电网与储能技术解决方案第一章智能电网概述 (2)1.1 智能电网的定义与发展 (2)1.2 智能电网的关键技术 (2)第二章储能技术在智能电网中的应用 (3)2.1 储能技术的分类与特点 (3)2.2 储能技术的应用领域 (3)2.3 储能技术的经济效益 (4)第三章电网调度与优化 (4)3.1 电网调度技术的发展 (4)3.2 电网优化策略 (5)3.3 电网调度与优化案例分析 (5)第四章分布式能源与微电网 (6)4.1 分布式能源概述 (6)4.2 微电网技术 (6)4.3 分布式能源与微电网的融合 (6)第五章智能电网通信技术 (7)5.1 通信技术在智能电网中的应用 (7)5.2 通信协议与标准 (7)5.3 通信网络的安全与稳定性 (8)第六章电力市场与需求侧管理 (8)6.1 电力市场的发展与运作 (8)6.1.1 电力市场的发展历程 (8)6.1.2 电力市场的运作机制 (9)6.2 需求侧管理策略 (9)6.2.1 峰谷电价 (9)6.2.2 需求响应 (9)6.2.3 能效管理 (9)6.3 电力市场与需求侧管理的协同 (9)6.3.1 电力市场机制与需求侧管理策略的结合 (9)6.3.2 需求侧管理对电力市场的影响 (10)6.3.3 电力市场与需求侧管理的互动 (10)第七章智能电网设备与系统 (10)7.1 智能电网设备的研发与应用 (10)7.1.1 设备研发背景及意义 (10)7.1.2 设备研发方向 (10)7.1.3 设备应用现状 (10)7.2 智能电网系统的集成与优化 (10)7.2.1 系统集成原理 (10)7.2.2 系统集成关键环节 (11)7.2.3 系统优化策略 (11)7.3 智能电网设备的维护与管理 (11)7.3.1 维护管理原则 (11)7.3.2 维护管理措施 (11)第八章电网安全与防护 (11)8.1 电网安全风险与挑战 (12)8.2 电网防护技术 (12)8.3 电网安全监管与政策 (12)第九章储能技术的商业化与市场前景 (13)9.1 储能技术的商业化路径 (13)9.2 储能市场的规模与趋势 (13)9.3 储能技术的市场前景 (14)第十章智能电网与储能技术的未来发展 (14)10.1 智能电网的发展方向 (14)10.2 储能技术的创新与应用 (15)10.3 智能电网与储能技术的融合发展趋势 (15)第一章智能电网概述1.1 智能电网的定义与发展智能电网是新一代电力系统的代表,它是在传统电网基础上,通过集成现代信息技术、通信技术、自动控制技术等,实现电力系统运行、管理及服务的智能化、高效化和绿色化。
新能源微电网项目的关键技术解决方案2019.10创· 领未来能源目录PART 01 微电网概述PART 02相关政策与标准PART 03微电网关键技术PART 04微电网市场推广与项目实践PART 01微电网概述微电网定义微电网由分布式发电、用电负荷、监控、保护和自动化装置等组成(必要时含储能装置),是一个能够基本实现内部电力电量平衡的小型供用电系统。
微电网分为并网型微电网和独立型微电网。
并网型微电网既可以与外部电网并网运行,也可以独立运行,且以并网运行为主的微电网;独立型微电网不与外部电网连接,电力电量自我平衡。
引自GB/T33589-2017《微电网接入电力系统技术规定》微电网的基本特征为清晰合理界定微电网与分布式,微电网与局域网、综合能源,提出了微电网4个基本特征微型清洁自治友好微电网暂行管理办法微电网接入电力系统技术规定配电网规划设计技术导则微型满足要求满足要求不同用电负荷密度情况中,用电负荷到达20MW ,对应中心城区供电范围为1-5km²;乡村地区为20-200km²。
明确分布式电源为“接入35kV 及以下电压等级,位于用户附近,就地消纳为主的电源”。
包括分布式发电和储能。
电压等级一般在35kV 及以下;系统规模小,系统容量不大于20MW ,通常为兆瓦级及以下。
能源发展坚持清洁低碳、安全高效的方针,促进能源清洁生产和就地消纳,提高能源综合利用效率。
提出:微电网电源须以可再生能源为主,或以天然气多联供等能源综合利用为目标的发电型式;并网型微电网可再生能源装机容量与最大负荷的比值在50%以上,或能源综合利用效率在70%以上。
分布式发电是以电源形式与电网连接;微电网是通过并网点与电网进行电量交换,内部含用电负荷设备,具备供需自平衡和黑启动能力;自平衡与黑启动对微电网可靠性提出的要求,鼓励储能装置在微电网中应用,提高微电网自主调控能力;“重要负荷”由微电网运营主体与用电企业在用电协议中自行约定。
智慧微电网系统设计方案智慧微电网系统是基于现有电力系统的基础上,在分布式能源、能量储存、能量管理和智能控制等方面进行的一种创新设计,可以在现有电网的基础上实现对各种能源的高效利用和智能管理。
下面是关于智慧微电网系统设计的方案。
一、系统架构智慧微电网系统由分布式能源发电装置、能量储存装置、能量管理系统和智能控制系统四个部分组成。
1. 分布式能源发电装置:通过太阳能光伏发电、风力发电和生物质发电等方式,将可再生能源转化为电能,并注入到微电网系统中。
2. 能量储存装置:包括电池组和超级电容器等储能装置,它们可以对电能进行储存和释放,以满足系统在高负荷或能源不足的情况下的需求。
3. 能量管理系统:通过对整个系统的能量生产、消耗和储存情况进行监测和管理,实现能量的高效利用和平衡。
同时还可以对能源设备的运行状态进行监控和预测,提前发现故障并采取相应的措施。
4. 智能控制系统:通过对整个系统的各个设备进行监控和控制,实现对系统的智能管理和优化。
可以根据能源的供需关系,自动调整能量的分配和利用,提高系统的稳定性和经济性。
二、功能设计1. 分布式能源发电装置:通过太阳能光伏发电、风力发电和生物质发电等方式,实现对可再生能源的利用。
系统应具备自动识别各种能源发电装置,并能够根据实际情况自动切换或并网运行。
2. 能量储存装置:通过电池组和超级电容器等储能装置,实现对电能的储存和释放。
系统应具备对储能装置的状态进行监控和管理的功能,以确保能量的稳定供应。
3. 能量管理系统:通过对系统能量的监测和管理,实现能量的高效利用和平衡。
系统应具备能量生产、消耗和储存情况的实时监测和统计分析功能,并能根据实际情况进行能量的分配和利用。
4. 智能控制系统:通过对系统各个设备的监控和控制,实现对系统的智能管理和优化。
系统应具备智能调度和控制功能,能够根据能源的供需关系自动调整能量的分配和利用,并对能源设备的运行状态进行监测和预测,提高系统的稳定性和经济性。
电气行业智能电网与储能技术方案第1章智能电网概述 (3)1.1 智能电网的定义与特点 (3)1.2 智能电网的发展历程与现状 (4)1.3 智能电网的关键技术 (4)第2章储能技术概述 (5)2.1 储能技术的种类与特点 (5)2.2 储能技术在智能电网中的应用 (5)2.3 储能技术的关键指标 (5)第3章电池储能技术 (6)3.1 铅酸电池 (6)3.2 锂离子电池 (6)3.3 钠硫电池 (6)3.4 液流电池 (6)第4章超级电容器储能技术 (7)4.1 超级电容器的原理与结构 (7)4.1.1 静电双层电容原理 (7)4.1.2 法拉第赝电容原理 (7)4.1.3 超级电容器结构 (7)4.2 超级电容器的功能与应用 (8)4.3 超级电容器在智能电网中的应用案例 (8)4.3.1 分布式发电系统 (8)4.3.2 电力质量调节 (8)4.3.3 微电网 (8)4.3.4 电动汽车充换电站 (8)4.3.5 节能减排 (9)第5章储能系统设计 (9)5.1 储能系统设计原则 (9)5.1.1 安全性原则:保证储能系统在各种工况下的安全稳定运行,避免电气火灾、爆炸等安全的发生。
(9)5.1.2 可靠性原则:储能系统应具备高可靠性,以保证电力供应的连续性和稳定性。
95.1.3 经济性原则:在满足技术要求的前提下,降低储能系统的投资成本和运行维护成本,提高经济效益。
(9)5.1.4 灵活性原则:储能系统设计应考虑未来可能的扩展和升级,便于适应不同应用场景的需求。
(9)5.1.5 环保性原则:选用环保、节能的设备和材料,降低对环境的影响。
(9)5.2 储能系统容量配置 (9)5.2.1 容量计算:根据实际应用场景,结合电力负荷特性、充放电需求等因素,计算储能系统的容量。
(9)5.2.2 容量配置:在考虑投资成本、占地面积、系统效率等因素的基础上,选择合适的储能设备类型和数量。
(9)5.2.3 容量冗余:为提高系统可靠性,可适当设置容量冗余,以满足高峰时段或应急情况下的电力需求。
新能源储能系统及智能微网解决方案1概述(略)
用电量统计:
应急用电部分:
大陆机电机房:总功率数为36kw,应急时间暂无统计,可按一般水平计算。
2项目具体设计
光伏系统
已建成140KW光伏电站,基本自发自用,只有周末用电量不大时,有余电上网。
3.3.1双向储能逆变器
根据现场实际需求,南楼北楼每天实时用电量为每小时最大300KWH,最小150KWH,应急36KW负荷,建议南北楼各增加一套储能系统,功率在100KW,系统选用双向储能逆变器三相100KW。
3.3.2储能蓄电池
按照数据统计计算,每月7万度电,最少每天用电量在2000KWH以上,光伏每天提供500KWH,建议储能系统蓄电池总共储能1000KWH,直流电压按照500V 设计,需要单体电池2V1000AH,共需要500只。
(这个蓄电池容量可根据投资来设计)南楼500KWH蓄电池,北楼500KWH蓄电池,每个楼蓄电池数量2V1000AH,250只。
3.3.6交流配电柜
36KW负荷整体系统需要配置一套50KW的交流配电柜,用于应急系统馈线管理。
3.5 双向储能逆变器性能特点
1、专为智能电网、智能微网设计,接受电网调度;
2、可满足铅酸蓄电池、锂电、超级电容、钒电池等不同储能形式的接入,适用范围广;
3、双向逆变,恒功率充放电、恒流充放电、恒压充放电等多种电池充放电模式可选,
4、具有时间段工作模式设定功能,根据当地电网特点设置合理的工作方式;
5、具有市电接口和负载接口两路交流接口,实现并网运行及独立孤网运行;
6、完善的孤岛检测及并离网模式切换,当市电突然断电时,储能逆变器可自动无缝切换到离网工作模式,与大电网脱离,建立微电网独立运行;
7、RS485、以太网、CAN总线等多种通讯接口可选,实现远程监控;
8.选配智能电网主控系统,可与光伏并网逆变器、风力并网系统、潮汐发电系统、柴油发电机等多种能源方式实现互联,组成混合能源智能电网,可实现多种组网方式;
四、系统设备清单。