第1讲不等式的性质与一元二次不等式
- 格式:doc
- 大小:59.50 KB
- 文档页数:6
第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c ;a >b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒na>nb(n∈N,n≥2).3.三个“二次”间的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}⎩⎨⎧⎭⎬⎫x|x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅[微点提醒] 1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m (b -m >0).(2)若ab >0,且a >b ⇔1a <1b .2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形.3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )2.(必修5P74例1改编)若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d3.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( )A.(-2,3)B.(-2,2)C.(-2,2]D.[-2,2]4.(2018·衡阳联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >abD.a 2>ab >b 25.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.6.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.考点一不等式的性质多维探究角度1比较大小及不等式性质的简单应用【例1-1】(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c 的大小关系是()A.c≥b>aB.a>c≥bC.c>b>aD.a>c>b(2)(一题多解)若1a<1b<0,给出下列不等式:①1a+b<1ab;②|a|+b>0;③a-1a>b-1b;④lna2>ln b2.其中正确的不等式是()A.①④B.②③C.①③D.②④角度2利用不等式变形求范围【例1-2】(一题多解)设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p⇒q和q⇒p是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】(1)(2019·东北三省四市模拟)设a,b均为实数,则“a>|b|”是“a3>b3”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] (2)(2019·清远一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( ) A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0 B.-2 C.-52 D.-3[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化2.已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x >2y B.lg x >lg y C.1x >1yD.x 2>y 23.不等式|x |(1-2x )>0的解集为( ) A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 4.若实数m ,n 满足m >n >0,则( ) A.-1m <-1n B.m -n <m -n C.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn5.已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)二、填空题6.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.8.(2019·阳春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( ) A.log 2a >0B.2a -b <12 C.log 2a +log 2b <-2 D.2a b +b a <1212.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2) B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.。
一元一次不等式与一元二次不等式不等式是数学中非常重要的概念,它描述了数之间的大小关系。
在不等式中,一元一次不等式和一元二次不等式是我们常见的两种形式。
本文将详细介绍一元一次不等式和一元二次不等式的定义、性质以及解法。
一、一元一次不等式一元一次不等式是形如ax + b > 0 (a ≠ 0)或ax + b < 0 (a ≠ 0)的不等式,其中a、b分别为实数,x是未知数。
一元一次不等式的解法与一元一次方程非常相似。
我们可以通过移项、合并同类项等基本的等式运算,将不等式转化为等价的形式,从而求解出不等式的解集。
例如,我们考虑一元一次不等式2x + 3 > 5。
我们首先将3移项,得到2x > 5 - 3,即2x > 2。
接着,我们将不等式两边同时除以2,得到x > 1。
因此,不等式2x + 3 > 5的解集为x > 1。
在解一元一次不等式时,需要注意一元一次不等式的方向。
当系数a大于0时,不等式的方向与等号相同;当系数a小于0时,不等式的方向与等号相反。
二、一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0 (a ≠ 0)或ax^2 + bx + c < 0 (a ≠ 0)的不等式,其中a、b、c分别为实数,x是未知数。
与一元一次不等式相比,一元二次不等式的解法稍微复杂一些。
一元二次不等式的解集可以通过求解对应的一元二次方程的解集来确定。
首先,我们可以将一元二次不等式转化为相应的一元二次方程。
对于一元二次不等式ax^2 + bx + c > 0,我们可以先求出对应的一元二次方程ax^2 + bx + c = 0的解集,然后再根据一元二次方程的解集确定不等式的解集。
例如,考虑一元二次不等式x^2 - x - 2 > 0。
首先,我们找到相应的一元二次方程x^2 - x - 2 = 0的解。
通过使用因式分解或配方法,我们可以求得(x - 2)(x + 1) = 0,得到方程的解为x = 2和x = -1。
第一节 不等式的性质及一元二次不等式[考纲要求]1.了解现实世界和日常生活中存在着大量的不等关系. 2.了解不等式(组)的实际背景. 3.掌握不等式的性质及应用.4.会从实际问题情境中抽象出一元二次不等式模型.5.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. 6.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.突破点一 不等式的性质[基本知识]1.比较两个实数大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b (a ,b ∈R ),a -b =0⇔a =b (a ,b ∈R ),a -b <0⇔a <b (a ,b ∈R ).(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的基本性质(1)倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质若a >b >0,m >0,则:①b a <b +m a +m ;b a >b -m a -m (b -m >0).②a b >a +m b +m ;a b <a -mb -m(b -m >0).[基本能力]一、判断题(对的打“√”,错的打“×”)(1) 若1a <1b <0,则1a+b <1ab . ( )(2)若a c >bc ,则a >b .( )(3)若a >b ,c >d ,则ac >bd .( ) 答案:(1)√ (2)× (3)× 二、填空题 1.若a <b <0,则1a -b 与1a大小关系是__________. 答案:1a -b <1a2.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. 答案:(-∞,-1)[典例感悟]1.设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <ND .M ≤N解析:选A 因为M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,所以M >N ,故选A.2.(2018·吉安一中二模)已知下列四个关系式:①a >b ⇒ac >bc ;②a >b ⇒1a <1b ;③a >b >0,c >d >0⇒a d >bc ;④a >b >1,c <0⇒a c <b c .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B 当c =0时,①不正确. 当a >0>b 时,②不正确. 由于c >d >0,所以1d >1c >0,又a >b >0,所以a d >bc >0,③正确.由于a >b >1,当x <0时,a x <b x , 故a c <b c ,④正确.故选B. 3.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”). 解析:易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案:<4.已知-12≤2x +y ≤12,-12≤3x +y ≤12,则9x +y 的取值范围是________.解析:设9x +y =a (2x +y )+b (3x +y ),则9x +y =(2a +3b )x +(a +b )y ,于是比较两边系数得⎩⎨⎧2a +3b =9,a +b =1,得a =-6,b =7.由已知不等式得-3≤-6(2x +y )≤3,-72≤7(3x +y )≤72,所以-132≤9x +y ≤132.答案:[]-132,132[方法技巧]1.比较两个数(式)大小的两种方法2.不等式性质应用问题的常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合的问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用. (3)与命题真假判断相结合的问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.突破点二 一元二次不等式[基本知识]1.三个“二次”之间的关系有两个相等实根x =x =-(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c >0或⎩⎨⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎨⎧ a =b =0,c <0或⎩⎨⎧a <0,Δ<0.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为空集.( ) (3)若不等式ax 2+bx +c ≥0对x ∈R 恒成立,则其判别式Δ≤0.( ) 答案:(1)√ (2)× (3)× 二、填空题 1.不等式1x -1≥-1的解集是________________. 解析:原不等式可化为xx -1≥0,即x (x -1)≥0,且x -1≠0,解得x >1或x ≤0. 答案:(-∞,0]∪(1,+∞)2.设a <-1,则关于x 的不等式a (x -a )()x -1a <0的解集是________________.答案:(-∞,a )∪()1a ,+∞3.不等式ax 2+bx +2>0的解集是()-12,13,则a +b 的值是________. 答案:-144.若不等式ax 2-ax +1<0的解集为∅,则实数a 的取值范围为________. 答案:[0,4][全析考法]考法一 一元二次不等式的解法解一元二次不等式的方法和步骤[例1] (1)(2019·衡阳月考)不等式2x +3-x 2>0的解集是( ) A .{x |-1<x <3} B .{x |x >3或x <-1} C .{x |-3<x <1}D .{x |x >1或x <-3}(2)(2019·深圳月考)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,2x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-1,1)C .(-2,1)D .(-1,2)[解析] (1)原不等式变形为x 2-2x -3<0, 即(x -3)(x +1)<0,解得-1<x <3.故选A.(2)∵f (x )=⎩⎨⎧x 2+2x ,x ≥0,2x -x 2,x <0,∴函数f (x )是奇函数,且在R 上单调递增, ∴f (2-a 2)>f (a )等价于2-a 2>a ,即a 2+a -2<0, 解得-2<a <1,∴实数a 的取值范围是(-2,1),故选C. [答案] (1)A (2)C[例2] (2019·六安阶段性考试)已知常数a ∈R ,解关于x 的不等式12x 2-ax >a 2. [解] ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为{ x |x <-a 4,或x >a3}; ②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为{ x |x <a 3,或x >-a4}. 综上所述:当a >0时,不等式的解集为{ x |x <-a 4,或x >a3}; 当a =0时,不等式的解集为{x |x ∈R ,且x ≠0}; 当a <0时,不等式的解集为{}x |x <a 3,或x >-a4. [方法技巧]解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式. 考法二 由一元二次不等式恒成立求参数范围考向一 在实数集R 上恒成立[例3] (2019·大庆期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2]D .(-2,2) [解析] 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0时,则有⎩⎨⎧a -2<0,4(a -2)2+16(a -2)<0,解得-2<a <2,∴-2<a ≤2,故选C. [答案] C考向二 在某区间上恒成立[例4] (2019·忻州第一中学模拟)已知关于x 的不等式x 2-4x ≥m 对任意的x ∈(0,1]恒成立,则有( ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-4[解析] 令f (x )=x 2-4x ,x ∈(0,1],∵f (x )图象的对称轴为直线x =2,∴f (x )在(0,1]上单调递减,∴当x =1时f (x )取得最小值,为-3,∴m ≤-3,故选A.[答案] A [方法技巧]解决一元二次不等式在某区间恒成立问题常转化为求二次函数的最值问题或用分离参数法求最值问题.[集训冲关]1.[考法一]如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( ) A .-81 B .81 C .-64D .64解析:选B 不等式x 2<ax +b 可化为x 2-ax -b <0,其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎨⎧1+3=a ,1×3=-b ,得⎩⎨⎧a =4,b =-3,所以b a =(-3)4=81.故选B. 2.[考法二·考向一]已知关于x 的不等式x 2-(k -1)x -k +1≥0对任意实数x 都成立,则实数k 的取值范围是( ) A .(-∞,-3]∪[1,+∞) B .(-∞,1]∪[3,+∞) C .[-1,3]D .[-3,1]解析:选D 关于x 的不等式x 2-(k -1)x -k +1≥0对任意实数x 都成立,则Δ=(k -1)2+4(k -1)≤0,解得-3≤k ≤1,故选D.3.[考法二·考向二]若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________. 解析:由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎨⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,即⎩⎨⎧2m 2-1<0,2m 2+3m <0,解得-22<m <0.答案:()-22,0 [课时跟踪检测][A 级 基础题——基稳才能楼高]1.下列结论正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a 2>b 2,则a >bC .若a >b ,c <0,则a +c <b +cD .若a <b ,则a <b解析:选D 选项A 中,当c =0时不满足ac 2>bc 2,所以A 错;选项B 中,当a =-2,b =-1时,满足a 2>b 2,不满足a >b ,所以B 错;选项C 中,a +c >b +c ,所以C 错;选项D 中,因为0≤a <b ,所以a <b ,所以D 正确.故选D.2.(2019·郑州模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件,故选A.3.(2019·武汉武昌区调研)已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( ) A .(-∞,-3)∪(1,+∞) B .(-∞,-3) C .(-3,1)D .(1,+∞)解析:选A 依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1,故选A. 4.(2019·江淮十校联考)|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪()0,12 B .()-∞,12C.()12,+∞D .()0,12解析:选A 原不等式等价于⎩⎨⎧1-2x >0,x ≠0,解不等式组可得实数x 的取值范围是(-∞,0)∪()0,12.5.(2019·遂宁诊断)若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB .b a >b +1a +1C .a -1b >b -1aD .2a +b a +2b >ab解析:选A 不妨取a =2,b =1,排除B 和D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上单调递减,在[1,+∞)上单调递增,所以当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )不一定成立,因此a -1a >b -1b ⇔a +1b >b +1a,故选A. [B 级 保分题——准做快做达标]1.(2019·郑州模拟)已知p :1a >14,q :∀x ∈R ,ax 2+ax +1>0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由1a >14得0<a <4.∀x ∈R ,ax 2+ax +1>0,必有⎩⎨⎧ a =0,1>0或⎩⎨⎧a >0,a 2-4a <0,则0≤a <4,所以p 是q 的充分不必要条件,故选A.2.(2019·青岛三地名校联考)已知不等式ax 2-bx -1≥0的解集是[]-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.()13,12D .()-∞,13∪()12,+∞解析:选A ∵不等式ax 2-bx -1≥0的解集是[]-12,-13,∴a <0,方程ax 2-bx -1=0的两个根为-12,-13,∴--b a =-12-13,-1a =16,∴a =-6,b =5,又x 2-bx -a <0,∴x 2-5x +6<0,∴(x -2)(x -3)<0,∴不等式的解集为(2,3).3.(2019·深圳中学模拟)已知a >b >0,c <0,下列不等关系中正确的是( ) A .ac >bcB .a c >b cC .log a (a -c )>log b (b -c )D .a a -c >bb -c解析:选D 因为c <0,a >b ,所以ac <bc ,故A 错;当c <0时,幂函数y =x c 在(0, +∞)上是减函数,所以a c <b c ,故B 错;若a =4,b =2,c =-4,则log a (a -c )=log 48<2< log b (b -c )=log 26,故C 错;a a -c -bb -c=ab -ac -ab +bc (a -c )(b -c )=(b -a )c (a -c )(b -c )>0,所以a a -c >bb -c成立,故D 正确.选D.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.(2019·包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( )解析:选C 由题意得⎩⎨⎧a <0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2.则函数y =f (-x )=-x 2+x +2,由二次函数的图象可知选C.6.(2019·绵阳诊断)国庆节期间,绵阳市某大型商场举行“购物送券”活动.一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( ) A .300元 B .400元 C .500元D .600元解析:选B 设购买的商品的标价为x 元,则(x -200)×20%>x ·10%,且(x -200)×20%>30,解得x >400,选B. 7.(2019·南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)解析:选A 记f (x )=x 2+(m -1)x +m 2-2,依题意有⎩⎨⎧f (-1)<0,f (1)<0,即⎩⎨⎧1-(m -1)+m 2-2<0,1+(m -1)+m 2-2<0,解得0<m <1.选A.8.规定符号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为非负实数),若1⊙k 2<3,则k 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)D .(0,2)解析:选A 因为定义a ⊙b =ab +a +b (a ,b 为非负实数),1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.9.(2019·西北工业大学附属中学模拟)已知a >b >1,c <0,在不等式①c a >cb ;②ln(a +c )>ln(b +c );③(a -c )c <(b -c )c ;④b e a >a e b 中,所有正确命题的序号是( )A .①②③B .①③④C .②③④D .①②④解析:选B ∵a >b >1,∴0<1a <1b ,又c <0,∴c a >cb ,∴①正确;∵a >b >1,c <0,∴不妨取a =3,b =2,c =-4,此时ln(a +c )>ln(b +c )不成立,∴②错误;易知函数y =x α(α<0)在(0,+∞)上单调递减,∵a -c >b -c >0,c <0,∴(a -c )c <(b -c )c,∴③正确;令y =e x x (x ≠0),则y ′=(x -1)e x x 2,令y ′=0,得x =1,令y ′>0,得x >1,故函数y =e xx在(1,+∞)上单调递增,∵a >b >1,∴e a a >e bb,即b e a >a e b ,∴④正确,故选B.10.(2019·启东中学调研)已知△ABC 的三边分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为________.解析:由已知及三角形的三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a,∴⎩⎪⎨⎪⎧1<b a +c a ≤3,-1<c a -b a <1,两式相加得,0<2×c a <4,∴ca的取值范围为(0,2).答案:(0,2)11.(2019·青岛模拟)设a ,b 为正实数,现有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有____________.(写出所有真命题的序号)解析:对于①,由条件可得a >1,b >0,则a +b >1,又a 2-b 2=(a +b )(a -b )=1,所以a -b <1,故①正确.对于②,令a =2,b =23,则1b -1a =1,但a -b =43>1,故②错.对于③,令a =4,b =1,则|a -b |=1,但|a -b |=3>1,故③错.对于④,|a 3-b 3|=|(a -b )(a 2+ab +b 2)|=1,由条件可得,a ,b 中至少有一个大于等于1,则a 2+ab +b 2>1,则|a -b |<1,故④正确.综上,真命题有①④.答案:①④12.(2019·江苏海安高级中学月考)已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.解析:设f (x )=x 2-2(a -2)x +a .因为对于任意的x ∈(-∞,1)∪(5,+∞),都有f (x )=x 2-2(a -2)x +a >0,所以令f (x )=0,有Δ<0或⎩⎨⎧Δ≥0,1≤a -2≤5,f (1)≥0,f (5)≥0,解得1<a <4或4≤a ≤5,即1<a ≤5.答案:(1,5]13.(2019·重庆凤鸣山中学月考)若不存在整数x 满足不等式(kx -k 2-4)(x -4)<0,则实数k 的取值范围是________. 解析:容易判断k =0或k <0时,均不符合题意,所以k >0.所以原不等式即为k ()x -k 2+4k (x -4)<0,等价于()x -k 2+4k (x -4)<0,依题意应有3≤k 2+4k ≤5且k >0,所以1≤k ≤4.答案:[1,4]14.(2019·南昌模拟)定义域为R 的函数f (x )满足f (x +3)=2f (x ),当x ∈[-1,2)时,f (x )=⎩⎨⎧x 2+x ,x ∈[-1,0),-()12|x -1|,x ∈[0,2),若存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,则实数t 的取值范围是___________.解析:由题意知f (x )=12f (x +3).当x ∈[-1,0)时,f (x )=x 2+x =()x +122-14∈[]-14,0;当x ∈[0,2)时,f (x )=-()12|x -1|∈[]-1,-12.所以当x ∈[-1,2)时,f (x )min =-1.故当x ∈[-4,-1)时,x +3∈[-1,2),所以f (x +3)min =-1,此时f (x )min =12×(-1)=-12.由存在x ∈[-4,-1),使得不等式t 2-3t ≥4f (x )成立,可得t 2-3t ≥4×()-12,解得t ≤1或t ≥2.答案:(-∞,1]∪[2,+∞)15.(2019·南昌摸底)已知函数f (x )=ax 2+bx -a +2.(1)若关于x 的不等式f (x )>0的解集是(-1,3),求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式f (x )>0.解:(1)由题意知a <0,且-1,3是方程ax 2+bx -a +2=0的两个根,则⎩⎨⎧ b =2,8a +3b +2=0,∴⎩⎨⎧a =-1,b =2.(2)当b =2时,f (x )=ax 2+2x -a +2=(ax -a +2)(x +1),∵a >0,∴f (x )>0可化为()x -a -2a(x +1)>0, ①当a -2a ≥-1,即a ≥1时,不等式的解集为{}x |x <-1或x >a -2a; ②当a -2a <-1,即0<a <1时,不等式的解集为{}x |x <a -2a或x >-1.16.(2018·正定中学二模)已知f (x )=ax 2+x -a ,a ∈R.(1)若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的实数x ∈[-1,1]恒成立,求实数a 的取值范围; (2)若a <0,解不等式f (x )>1.解:(1)原不等式等价于x 2-2ax +2a +1>0对任意的实数x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1(x ∈[-1,1]),①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,得a >-12,所以a ∈∅;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1; ③当a >1时,g (x )min =g (1)=1-2a +2a +1>0,得a >1. 综上,a 的取值范围为(1-2,+∞). (2)ax 2+x -a -1>0,即(x -1)(ax +a +1)>0, 因为a <0,所以(x -1)()x +a +1a<0, 因为1-()-a +1a =2a +1a ,所以当-12<a <0时,1<-a +1a ,解集为{}x |1<x <-a +1a; 当a =-12时,(x -1)2<0,解集为∅;当a <-12时,1>-a +1a,解集为{}x |-a +1a<x <1.。
第一节不等式的性质与一元二次不等式[考纲传真]1. 了解现实世界和日常生活中存在着大量的不等关系,了解不等式 实际背景2会从实际问题的情境中抽象出一元二次不等式模型 次不等式与相应的二次函数、一元二次方程的联系 .4.会解一元二次不等式,对给定的一兀次不等式,会设计求解的程序框图.知识全通关两个实数比较大小的方法2 .不等式的性质加法法则:a >b , c >d ? a + c >b + d ;(单向性) 可乘性:a >b, c >0? ac >bc ;(单向性)a >b ,c <0? ac <bc ;(单向性)b >1? a > b a € R, b > 0ab = 1? a = b a € R, b > 0av 1? a v b a € R, b > 0a作商法乘法法则: a >b >0, 乘方法则: a >b >0? c >d >0? ac >bd ;(单向性) a n>b n( n A2, n € ";(单向性)(8) n A2, n € N);(单向性) 元二次不等式与相应的二次函数及一元二次方程的关系开方法则: a >b >0?A >0 A <0.3.通过函数图象了解一兀(1)a —b > 0?作差法a — b = 0? a = b a, a , b€ Rb € R a — b v 0? a v b a , b € R对称性: a >b ? b <a ;(双向性) 传递性: a >b, b >c ? a >c ;(单向性) 可加性: a >b ? a +c >b + c ;(双向性)有关倒数的性质a> b, ab>0? 1-< b.a ba>b> 0,0 <c< d?简单的分式不等式f x------ >0?g xf xg x >0? g x > 0, 丰0.1.有关分数的性质若a> b> 0, rm> 0,则b b+ m —< ---- a a+ m b b- ma> a-m b- m>0);a a+ mb> b T ma< 冷b- m> 0).(思考辨析)判断下列结论的正误.(1)a> b? ac2>bc2.⑵ a>b>0, c>d>0? a>b.d c[基础自测](正确的打“2”(x i , X2),则必有,错误的打“ X”)⑶若不等式ax2+ bx+ c<0的解集为2⑷ 若方程ax + bx + c= 0( a* 0)没有实数根,则不等式a>0.()2ax + bx+ c>0的解集为R.[答案](1) X (2) V (3) V (4) X2.(教材改编)下列四个结论,正确的是() ①a >b , c <d ? a — c >b — d ;③ a >b >0? ④ a >b >0?D [利用不等式的同向可加性可知①正确;对于②,根据不等式的性质可知1 3②不正确;因为函数 y = x 是单调递增的,所以③正确;对于④,由a >b >0可知a 2>b 2>0,所所以④不正确.] (教材改编)设a , b , c € R 且a >b ,则()f 3 I 3 D. a > b[取 a = 1, b = — 2, c =— 1,排除 A, B, C,故选 D.] (教材改编)不等式(x + 1)( x + 2) < 0的解集为()1.若 a > b > 0, c < d < 0,则一定有()a b A.d > ca b D.c < d1 1 1 1B [由 c <d <0 得 1< 1<0,则—1> —c > o 」②a >b >0, c <d <0? ac >bd ;A.①② B .②③ C ①④ D.①③ac <bd ,故A. ac > bc1 1 B.a < bC.A. {x | — 2 < x <— 1} B .{x | — 1< x < 2}C. {x | x <— 2 或 x > 1}D. {x | x <— 1 或 x > 2}[方程(x + 1)( x + 2) = 0的两根为x =— 2或x =— 1,则不等式(x + 1)( x + 2) < 0的解集为{x |—2< x <— 1},故选 A.] 不等式x 2+ax + 4W0的解集不是空集,则实数 a 的取值范围是 _____________ .2 2)[由题意知 A = a — 4 >0,解得 a 》4 或 a < — 4.]考点全面'方法简沽I 题型1|不等式的性质及应用-d >-£••• a < b 故选 B.] d c d c2. (2016 •北京高考)已知X , y € R,且x >y >0,则() 1 A. x — •->0(—n, 2 n)[设 3a — 3 = a — 3 ) + n ( a + 3 ),则从而3 a —卩=2( a —卩)+ ( a +卩), 又一n< 2( a — 3 ) <n,0< a +3<n,—n< 2( a — 3 ) + ( a + 3 ) < 2 n .][规律方法]利用不等式的性质判断正误及求代数式的范围的方法验证;二是利用特殊值法排除错误答案2比较大小常用的方法①作差商法:作差商?变形?判断,②构造函数法:禾U 用函数的单调性比较大小,,③中间量法:利用中间量法比较两式大小, 般选取0或1作为中间量.3由a <f X , y <b , c <g x , y <d 求F x , y 的取值范围,要利用待定系数法B. sin X — sin y >01 C. 2<0D. In x + In y >0C [函数X1y = 2在(0,+s)上为减函数,.••当 x >y >0 时,1 <2X1,即2 — 1 2 V0, 故C 正确;函数 y = -在 (0,+s)上为减函数,由x >y >0? X1 1_V_? X y■X -严,故A 错误;函数y =sin X 在(0,+s)上不单调,当 x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;x >y >0? xy >^^ln( xy )>0 ? / lnx +In y >0,故 D 错误.]3 .若 a = 20.6, b = log n 3, c = log 2 sin A. a >b > cB. b >a > cC. c >a > bD. b >c >aA [因为 a = 20.6> 20= 1,又 log 1 < log 2 nn 3< log n n,所以 0< b < 1 ,c = log 2sin < log 215=0,于是a >b >c .故选A.]4.已知角a 7t,卩满足一二-< a —卩< —,0< a + 3 <n ,贝U 3 a —卩的范围是m + n = 3,rn= 2, n — m =— 1,解得 n = 1,1利用不等式的范围判断正误时,常用两种方法:是直接使用不等式的性质逐个当a = 0时,解集为{X |X> 1};解决,即设 F X , y = mf X , y + ng x , y ,用恒等变形求得 m n ,再利用不等式的 性质求得F x ,y 的取值范围.I 麵型2|?考法1不含参数的一元二次不等式【例1】(1)不等式2x 2— X — 3>0的解集为⑵ 不等式—X 2— 3X + 4>0的解集为 _________ 3亠(1) X x >2或X <— 1元二次不等式的解法.(用区间表示) ⑵(一4,1) [(1)方程 2x 2— X — 3 = 0 的两根为 X 1=— 1, X 2 =3 3、2,则不等式2X 2— X — 3>0的解集为X x >2或X <— 1⑵ 由一X 2— 3x + 4>0得X 2+ 3X — 4<0,解得一4<X <1,所以不等式一X 2— 3x + 4>0的解集为(-4,1).]?考法2含参数的一元二次不等式 一 一 2【例2】(1)解关于X 的不等式:X — (a + 1)x + a <0. [解] 原不等式可化为(X — a )( X — 1) < 0, 当a > 1时,原不等式的解集为(1 , a ); 当a = 1时,原不等式的解集为 ? 当a < 1时,原不等式的解集为(a, 1). ⑵解关于X 的不等式:ax —(a + 1)x + 1 <0. [解] 若a = 0,原不等式等价于—X + 1< 0, 解得X > 1.若a < 0,原不等式等价于 1X — -(X —1) >0, a解得X < a 或x > 1.a若a > 0,原不等式等价于1X — a (X —1) < 0.①当 a = 1 时,X — 1 (X — 1) < 0 无解;②当 a > 1 时, 1 1X — - (X — 1) < 0,得-< X <1; a a ③当 0 < a < 1 1时,a >1,1 解X —-a1 (X — 1) < 0,得 1 <X <-.a 综上所述,当 a <0时,解集为x < 一或 x >1[规律方法]1.解一元二次不等式的步骤: 1使一端为0且把二次项系数化为正数;2先考虑因式分解法,再考虑求根公式法或配方法或判别式法; 3写出不等式的解集.2.解含参数的一元二次不等式的步骤:一次不等式或二次项系数为正的形式;3确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.a >0的解集是()0< a v 1 时,解集为1x 1< X < aa = 1 时, 解集为?;a > 1 时, 解集为x 1-< x < 1a1二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为2判断方程的根的个数,讨论判别式A 与0的关系;[®KES 习:(1)已知不等式ax 2— bx — 1>0的解集是x | - 1<x <-3,则不等式X 2— bx —A. {x |2<x <3}B. {x | x <2 或 x >3}C. x | 1<x <1'32D.1 X x <3或x >2[•••不等式ax 2— bx — 1>0的解集是x |1 1一一 <x < —••• ax 2— bx — 1 = 0 的解是 X 1 = — 2和 X 2= — 3,且a <0,2 3a 1 1 ——X 23aa = 一6, 解得b = 5.则不等式x 2— bx — a >0即为 2X — 5x + 6>0,解得 X <2 或 X >3.] (2)解不等式 X + ax + 1< 0(a € F).A = a 2— 4.①当 A = a 2—4w0,即一2w a w2时,原不等式无解.②当 2 2 A = a — 4 > 0,即a > 2或a <— 2时,方程x + ax + 1 = 0的两X 1 =—a +寸 a 2— 4—a —J a 2— 4 x2= —2 —则原不等式的解集为—a+^a 2— 42综上所述,当—2W a<2时,原不等式无解.成立的条件是2 ax 2 + bx + c <0 aK 恒成立的条件是[:①1 b -4ac <0,当a >2或 a <— 2时,原不等式的解集为L—a -寸a 2—4—a r/ a 2+4 < x < 2【例3】 I 題型3|已知函数 f (x ) = mx — mx- 1.(1)若对于 x € R, f (x ) < 0恒成立,求实数 m 的取值范围;(2)若对于 x € [1,3] , f (x ) < 5 — m 恒成立,求实数 m 的取值范围.当m= 0时,f (x ) =— 1 < 0恒成立.m< 0,当 m#0 时,贝U 2 即一4< m< 0.A = m + 4m< 0,综上,—4< me 0,故m 的取值范围是(—4,0].⑵ 不等式 f (x ) <5— m 即(x 2— x + 1)m< 6,26 6x —x +1>0, •贰x —石对于x € [1,3]恒成立,只需求x —石的最小值,6记 g (x ) = x 2—x1,x € [1,3],21 23记 h (x ) = x — x + 1 = x — 2 +h (x )在x € [1,3]上为增函数,则 g (x )在[1,3]上为减函数,6 6•••[g(x)] min = g(3) = 7,.・.m<7.所以m 的取值范围是 一8, 7 .[规律方法]与二次函数有关的不等式恒成立的条件 21 ax + bx + c > 0 a M0 恒即一元二次不等式 2kx 2+ kx — -< 0对一切实数X 都成立. 8k < 0,则2A = k — 4X2 k x解得—3< k < 0.3综上,满足不等式 2kX 2+ kX —< 0对一切实数X 都成立的k 的取值范围是(—3,0].8 (2)由题意得,函数f (X ) = X 2+ mx-1在[m 耐1]上的最大值小于 0,又抛物线f (X )=X 2 + mX- 1开口向上,所以只需f m = m + m — 1 < 0,2f m^ 1 = m+1+ m n u 1— 1< 0,2m —心‘解得-吳m K 0.] 2m + 3^^ 0,2【例4】 甲厂以X 千克/小时的速度匀速生产某种产品(生产条件要求 K X < 10),每小时可获得的利润是 100 •5X + 1 — X 元.X⑵要使生产900千克该产品获得的利润最大, 问:甲厂应该选取何种生产速度?并求最大利润.[解](1)根据题意, 得 200 5x + 1 — 3>3 000 ,—3整理得 5X — 14 — ->0,1 卩 5X 2—(1)要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;3习i (1)若不等式2kX 2+ kX —-<0对一切实数X 都成立,则k 的取值范围为()8A. ( — 3,0)B. [ — 3,0)C. [ — 3,0] (2)若不等式D. ( — 3,0]X 2+ mx- 1< 0对于任意 X C [m m + 1]都成立,则实数 m 的取值范围是(1) D (2)—乎,0[(1)当k = 0时,显然成立;当k M0时,I 麵型又 K X W 10,可解得 3< x < 10.14X — 3>0,X即要使生产该产品2小时获得的利润不低于 3 000元,X的取值范围是[3,10].(2)设利润为y元,则900 y r -100 5X+ 1 —-X4 =9X 10 1 3 ------- 2 X X4 =9X 10 —31 —12 + 61 3X 6 十 12 ,故当x = 6 时,y max= 457 500 元.即甲厂以6千克/小时的生产速度生产 900千克该产品时获得的利润最大,最大利润为457 500 元.[规律方法]求解不等式应用题的四个步骤:阅读理解,认真审题,把握问题中的关键量,找准不等关系;引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型;解不等式,得出数学结论,要注意数学模型中自变量的实际意义;回归实际问题,将数学结论还原为实际问题的结果[sain嫁习]汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,12 m,乙车的刹车距离略超过 10 m 又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)之间分别有如下关系:s甲=0.1 x + 0.01 x2, s乙=0.05 X + 0.005 X2,问:甲、乙两车有无超速现象?但还是相碰了•事后现场勘查测得甲车的刹车距离略超过[解]由题意知,对于甲车,2有 0.1 X+ 0.01 X > 12, 即X2+ 10X— 1 200 >0,解得x > 30或X V — 40(不合实际意义,舍去),这表明甲车的车速超过30 km/h.但根据题意刹车距离略超过12 m ,由此估计甲车车速不会超过限速40 km/h.2对于乙车,有 0.05X + 0.005X > 10,2即X + 10x— 2 000 >0,解得X > 40或X V — 50(不合实际意义,舍去),这表明乙车的车速超过 40 km/h,超过规定限速.自我感悟:最新修正版。
我们知道,二次函数322--=x x y 的图像是一条开口向上的抛物线,它与x 轴有两个交点,由方程0322=--x x 的解可得交点的横坐标分别是1-=x ,3=x ,容易看出,当31>-<x x 或时上述函数的图像在x 轴上方,0322>--x x ;当31<<-x 时,上述函数的图像在x 轴下方,即0322<--x x ,于是可得不等式解集为}31|{<<-x x 。
[说明]解法一中解两个一元一次不等式组中涉及的“或”和“且”的关系可用集合中的交集和并集来说明。
解法三利用二次函数的图象更加直观,清晰,是高中阶段解一元二次不等式的主要方法。
例1.利用二次函数图像解下列不等式。
(1)0322<--x x(2)0442>+-x x练习:解下列不等式:(1)2x 2-3x-2≥0 (2)-3x 2+x+1>0 (3)9x 2+6x+1>0 (4)4x-x 2<5 (5)2x 2+x+1≤0(二)一元二次不等式的解法一般的一元二次不等式可利用一元二次方程02=++c bx ax 与二次函数c bx ax y ++=2的有关性质求解,具体见下表:0>a ,ac b 42-=∆ 0>∆ 0=∆ 0<∆ 二次函数c bx ax y ++=2的图象一元二次方程 02=++c bx ax的根有两实根21x x x x ==或 有两个相等的实根ab x x x 221-===无实根一元二次不等不等式02>++c bx ax的解集}|{21x x x x x ><或}|{1x x x ≠Ryx0 -1 32|a a -<(a R ∈)20aa -<-。
第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。
一元二次不等式的性质及解法一、不等式基本性质1.不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;(4)可乘性:a >b ,c >0⇔ac >bc ;a >b ,c <0⇔ac <bc ;a >b >0,c >d >0⇔ac >bd ;(5)可乘方:a >b >0⇔a n >b n (n ⇔N ,n ≥2);(6)可开方:a >b >0⇔n a >n b (n ⇔N ,n ≥2);(7) a >b,ab>0⇔11a b < ;a >b >0,0<c<d⇔a b c d> . 【例1】判断下列命题的真假。
(1)若a >b ,那么ac >2bc 2。
() (2)若ac >2bc 2,那么a >b 。
() (3)若a >b ,c >d ,那么a -c >b -d 。
() (4)若c d a b <,那么ad bc <。
( )(5)若b a R b a >∈,,,那么n n b a >。
( )(6)若1,,<<∈b a R b a ,那么b a ->-11。
()【例4】给出下列命题:①a >b ①ac 2>bc 2;①a >|b |①a 2>b 2;①a >b ①a 3>b 3;①|a |>b ①a 2>b 2.其中正确的命题是 ( ).A .①①B .①①C .①①D .①①二、比较大小比较两式大小的方法常见的有两种:作差法、作商法作差法:第一步:作差;第二步:变形,常采用配方,因式分解等恒等变形手段;第三步:定号,重点是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.注1:有的问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到比较易于判断符号时,再作差,予以比较;注2:如果式中含有字母,不能定号,必须对字母根据式子具体特点分类讨论才能定号.此时要注意分类合理恰当.【例6】已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b,则M 、N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定三、一元二次不等式解法1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.【例1】解下列不等式(1)()()x x x 2531-<--; (2)()()21311+>+x x x ; (3)()()()233122+>-+x x x ; (4)2223133x x x ->+-; (5)()13112->+-x x x x .2.含参的一元二次不等式含参数的不等式应适当分类讨论。
第1讲 不等式的性质与一元二次不等式一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).答案 B2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有( )A.1个B.2个C.3个D.4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C.答案 C3.(2017·河北省三市联考)若集合A ={x |3+2x -x 2>0},集合B ={x |2x <2},则A ∩B 等于( )A.(1,3)B.(-∞,-1)C.(-1,1)D.(-3,1)解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).答案 C4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.答案 D5.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定 解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.答案 C二、填空题6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.答案 {x |x >1}7.(2016·重庆模拟)若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析 由已知ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝ ⎛⎭⎪⎫-1,45. 答案 ⎝ ⎛⎭⎪⎫-1,45 8.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立, 由二次不等式的性质可得,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.答案 [-8,4]三、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 11.下面四个条件中,使a >b 成立的充分而不必要条件是( )A.a >b +1B.a >b -1C.a 2>b 2D.a 3>b 3解析 A 项:若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;B 项:当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;C 项:当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;D 项:a >b 是a 3>b 3的充要条件,综上所述答案选A.答案 A12.(2017·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是( )A.{x |x <-ln 2或x >ln 3}B.{x |ln 2<x <ln 3}C.{x |x <ln 3}D.{x |-ln 2<x <ln 3} 解析 法一 依题意可得f (x )=a ⎝ ⎛⎭⎪⎫x -12(x -3)(a <0),则f (e x )=a ⎝ ⎛⎭⎪⎫e x -12(e x -3)(a <0),由f (e x )=a ⎝ ⎛⎭⎪⎫e x -12(e x -3)>0,可得12<e x <3, 解得-ln 2<x <ln 3,故选D.法二 由题知,f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |12<x <3,令12<e x <3,得-ln 2<x <ln 3,故选D.答案 D13.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________. 解析 设f (x )=x 2+ax -2,由题知:Δ=a 2+8>0,所以方程x 2+ax -2=0恒有一正一负两根,于是不等式x 2+ax -2>0在区间[1,5]上有解的充要条件是f (5)>0,即a ∈⎝ ⎛⎭⎪⎫-235,+∞. 答案 ⎝ ⎛⎭⎪⎫-235,+∞ 14.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ; 当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧⎭⎬⎫x |x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1a <x <2.。