不等式的性质(1)
- 格式:doc
- 大小:492.00 KB
- 文档页数:5
教学设计一、教学目标1.知识与技能目标:(1)掌握不等式的基本性质.(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.过程与方法目标:(1)能说出一个不等式为什么可以从一种情势变形为另一种情势,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯.(2)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.3.情感态度与价值观目标目标:(1)尊重学生的个体差异,关注学生的学习情感和自信心的建立. (2)关注学生对问题的实质性认识与理解.二、教学重点与难点重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.三、教学准备教具:多媒体、苹果、书本.学具:教材、笔、练习本.四、教学方法直观演示法、讲授法、自学指点法、小组合作探究法.五、学法指点引导学生学习、运用、视察、思考、抽象、归纳、分析、对照等方法. 六、教学过程本节课设计了五个教学环节:(一)情景引入,提出问题;(二)新知探究;(三)巩固练习;(四)例题讲授及运用巩固;(五)课堂小结;(六)当堂检测;(一)情景引入,提出问题老师手中呈现两本一模一样的书,假如其中一本书的质量为m㎏,另一本书的质量为n㎏,我们如何来表示这两本书的质量关系呢?现在,老师手中有两个苹果(一大一小),如果一个苹果的质量为c㎏,另一个的质量为d㎏,请问:你可以用一个怎样的式子来表示这两个苹果的质量关系呢?设计意图:由两本书的质量相同,引导学生得出m=n,通过直接视察得出两个苹果的质量关系为c>d,从而得出一个等式与一个不等式。
通过回顾等式的基本性质,引导学生类比等式的基本性质来探索不等式的基本性质。
(二)新知探究Ⅰ.对于4<6,那么(1)4+2 ____ 6+2 (2)4-2 ____ 6-2 (3)4+0____ 6+0 (4)4-0____6-0 类比“等式基本性质1”,尝试总不等式的性质.新知归纳:不等式的性质1:不等式的两边________,不等号的方向 ____ 。
不等式的性质★考试大纲解读★考点知识梳理(I )不等式的性质1. 对称性:a b b a >⇔<;2. 传递性:a b >,b c >a c ⇒>;3. 加法法则:(1)a b a c b c >⇔+>+;(2)a b >,c d >a c b d ⇒+>+;4. 乘法法则:(1)a b >,0c >ac bc ⇒>;(2)a b >,0c <ac bc ⇒< (3)0a b >>,0c d >>ac bd ⇒>; 5. 倒数法则:a b >,0ab >11a b⇒<; 6. 乘方法则:0a b >>n n a b ⇒>(n N *∈且1n >);7. 开方法则:0a b >>>n N *∈且1n >).注意:⑴同向可加性及同向同正可乘性可以推广到两个以上的不等式;⑵不等式性质的单向性或双向性,也就是说每条性质是否具有可逆性.只有a b b a >⇒<,a b a c >⇒+> b c +是可以逆推的,而其余几条性质不可逆推,在应用性质时要准确把握条件是结论的充分条件还是必要条件.★题型分类精讲题型一 实数大小的比较作差比较两数(式)大小的依据是:0a b a b >⇔->;0a b ab <⇔-<;a b =⇔ 0a b -=.作商比较两数(式)大小的依据是:a 、0b > ,1a a b b >⇒>;a 、0b < ,1a a b b>⇒<.【例1】比较下列各组中两个数或代数式的大小:(1 (2)()()4422a b a b ++与()233a b+【例2】设0a >,0b >且a b ≠,试比较a b a b 与b a a b 的大小.【例3】(1)已知a ,b ,m ,n 均为正数,且1a m b n <<,比较am bn 与a mb n++的大小. (2)已知0a >,0b >且a b ≠,比较a ba b 与()2a b ab +的大小.【例4】已知0a b +>,则22a b b a +与11a b+的大小关系是__________________. 在使用不等式的性质时,一定要搞清它们成立的前提条件.1. 作差法证明不等式:【例5】已知a 、b R +∈ ,n N +∈,m N +∈,且1m n ≤≤.求证:n n n m m m n m a b a b a b --+≥+.1. 作商法证明不等式:【例6】已知a ,b ,c 为互不相等的正数,求证:222a b c b c c a a b a b c a b c +++>.2. 用不等式性质证明不等式【例7】若0a b >>,0c d <<,0e <,求证:e e a c b d>--.在使用不等式的性质时,一定要高清它们成立的前提条件. 例如:①在应用传递性时,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a b ≤,b c <a c ⇒<.②在乘法法则中,要特别注意“乘数c ”的符号,例如当0c ≠时,有22a b ac bc >⇒>;若无0c ≠这个条件,则22a b ac bc >⇒>就是错误结论.③“0a b >>()0,1nna b n N n ⇒>>∈>”成立的条件是“n 为大于1的自然数,0a b >>”,假如去掉“n 为大于1的自然数”这个条件,取1n =-,3a =,2b =,那么就会出现“1132-->,即1132>”的错误结论;假如去掉“0b >”这个条件,取3a =,4b =-,2n =,那么就会出现“()2234>- ” 的错误结论.注意:⑴使用不等式性质判断一些不等式是否成立是高考考查的重点内容,在正确使用不等式性质的同时,还要注意不等式与指数、对数函数性质的综合应用;⑵此类题目常用的解法:一是直接使用不等式性质,逐个验证;二是利用赋值法排除错误答案. 【例8】适当增加不等式条件使下列命题成立. (1)若a b >,则ac bc ≤; (2)若22ac bc >,则22a b >; (3)若a b >,则()()lg 1lg 1a b +>+; (4)若a b >,c d >,则a b d c>.【例9】设11a b >>>-,则下列不等式恒成立的是( ) A. 11a b < B. 11a b> C. 221a b > D. 2a b >【例10】设x ,y 为实数,满足238xy ≤≤,249x y ≤≤,则34x y的最大值是_________.处理此类问题严格根据不等式的基本性质和运算法则,是解答此类题目的关键. 【例10】设()2f x ax bx =+,且()112f ≤-≤,()214f ≤≤,则()2f -的取值范围为____________________.错解:(很多学生容易犯这种错误)若由1224a b a b ≤-≤⎧⎨≤+≤⎩ ,得332302a b ⎧≤≤⎪⎪⎨⎪≤≤⎪⎩,得()324212f a b ≤-=-≤,错因在于多次运用同向不等式相加这一性质(单向性),不是等价变形,导致()2f -取值范围扩大,而正确的取值范围应为它的子集.另外,题中a ,b 不是相互独立的,而是相互制约的,故不可分割开来.先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的一条途径.(此外,本题可利用线性规划求解)解法一:设()()()211f mf nf -=-+ (m 、n 为待定系数)则, ()()42a b m a b n a b -=-++ 即, ()()42a b m n a n m b -=++-于是,得 42m n n m +=⎧⎨-=-⎩ ,解得31m n =⎧⎨=⎩∴ ()()()2311f f f -=-+又 ()112f≤-≤,()214f ≤≤ ∴ ()()531110f f ≤-+≤,故 ()5210f ≤-≤解法二:此题也可以这样处理:由()()11f a b f a b -=-⎧⎪⎨=+⎪⎩ ,得()()()()11121112a f f b f f ⎧=-+⎡⎤⎣⎦⎪⎪⎨⎪=--⎡⎤⎣⎦⎪⎩ ∴ ()()()242311f a b f f -=-=-+ 又 ()112f≤-≤,()214f ≤≤ ∴ ()()531110f f ≤-+≤ , ∴ ()5210f ≤-≤【例10】已知13a b -<+<且24a b <-<,求23a b +的取值范围.分析:将23a b +用a b +和a b -表示出来,再利用不等式的性质求解23a b +的取值范围.警示:此类题常见的错误解法是由a b +,a b -的范围得出a 、b 的范围,又进一步得ma nb ±的范围,容易扩大范围,本题还可以利用线性规划的方法求解.同 步 习 题(一)一、基本训练 1.下列结论对否:(1),,n n a b c d ac bd n N >=⇒>∈( )()222a b a b c c >⇒>( ) ()1130a b ab a b><⇒<且 ( )()40,0a b c d ac bd <<<<⇒> ( )()N n b a b a n n ∈〉⇒〉,5 ( )()b a b b a 〈〈-⇒〈6 ( ) 2. 11a b a b>⇔<成立的充要条件为 3. 已知A n (n,a n )为函数y=12+x 上的点,B n (n,b n )为函数y=x 上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c 1+n 的大小关系为___________二、能力提高4. 比较下面各小题中a 与b 的大小:(1)a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3 (2)a =3x 2-x +1与b =2x 2+x -1 (3)10231=-=b a 与 .5. a >0,a ≠1,t >0,比较m =t a log 21与n =21log +t a 的大小.6. 6. 设()2f x px qx =+,且()214f ≤-≤,()416f ≤≤,求()2f -的取值范围.同 步 习 题(二)一、基础练习1、下列命题中正确的是…………………………………………………… ( ) (A )22,a b a b >>若则 (B ) 22,a b a b >>若则 (C ) 22,a b a b >>若则(D ) 22,a b a b >>若则2、设110a b<< ,则 ……………………………………………………… ( )(A ) 22a b > (B ) a b +> (C ) 2ab b < (D ) 22a b a b +>+ 3、若,0a b c a b c >>++=,则有…………………………………………… ( ) (A ) ac ab 〉 (B ) bc ac 〉 (C ) bc ab 〉 (D )以上皆错 4、若,0ac bd a b >>>, …………………………………………………………( ) (A ) 0c d >> (B ) c d > (C ) c d < (D )c 、d 大小不确定 5、以下命题:⑴a >b ⇒|a |>b ;⑵a >b ⇒a 2>b 2 ;⑶|a |>b ⇒ a >b ;⑷a >|b | ⇒ a >b 正确的个数有………………………………………………………………( ) (A ) 1个 (B ) 2个 (C ) 3个 (D )4个6、如果二次函数)(x f y =的图象过原点,并且1≤)1(-f ≤2,3≤)1(f ≤4,则)2(-f 的取值范围__________________.7、已知2,2>>b a ,试比较ab b a 与+的大小______________. 8、比较下列各数的大小: (1))11(log ),1(log an a m a a +=+=,则m _______ n 。
不等式的性质(一)不等式是数学中常见的数值关系表达形式之一。
与等式不同,不等式是用不等于号(>、<、≥、≤)表示的数值关系。
在数学中,不等式的性质是对不等式进行理解和应用的基础。
1. 不等关系的定义不等关系是指一个数与另一个数之间的大小关系。
数学中的不等关系分为两类:•大于关系:用符号“>”表示,表示一个数大于另一个数•小于关系:用符号“<”表示,表示一个数小于另一个数2. 不等式的基本性质2.1. 传递性不等式的传递性是指若 a > b 且 b > c,那么必定有 a > c。
例如,若 2 > 1 且 1 > -1,那么必定有 2 > -1。
2.2. 对称性不等式的对称性是指若 a > b,则必定有 b < a。
例如,若 3 > 2,那么必定有 2 < 3。
2.3. 加法性对于不等式 a > b 和 c > d,若在两边同时加上相同的数,不等式的关系保持不变。
例如,若 2 > 1,则对于任意的正数 x,有 2 + x > 1 + x。
2.4. 减法性对于不等式 a > b 和 c > d,若在两边同时减去相同的数,不等式的关系保持不变。
例如,若 4 > 3,则对于任意的正数 x,有 4 - x > 3 - x。
2.5. 乘法性对于不等式 a > b 和 c > d,若在两边同时乘以相同的正数,不等式的关系保持不变;若在两边同时乘以相同的负数,不等式的关系发生变化,即改变不等号的方向。
例如,若 2 > 1,则对于任意的正数 x,有 2x > x。
2.6. 除法性对于不等式 a > b 和 c > d,若在两边同时除以相同的正数,不等式的关系保持不变;若在两边同时除以相同的负数,不等式的关系发生变化,即改变不等号的方向。
例如,若 4 > 2,则对于任意的正数 x,有 4 / x > 2 / x。
不等式的基本性质及求解方法在数学中,不等式是描述数值之间关系的一种表达方式。
与等式不同,不等式表达了两个数中的一个大于、小于或不等于另一个数的关系。
本文将介绍不等式的基本性质以及常见的求解方法。
一、不等式的基本性质1. 传递性:如果a>b,b>c,则a>c。
这个性质说明了不等式的关系具有传递性,即一个数大于另一个数,那么它也大于另一个与后者相等的数。
2. 反对称性:如果a≤b且b≤a,则a=b。
这个性质说明了不等式的关系具有反对称性,即一个数小于等于另一个数,同时另一个数也小于等于前者,则这两个数相等。
3. 相反数性质:如果a>b,则-a<-b。
这个性质说明了不等式的两边取相反数后,不等号的方向会发生翻转。
4. 倍增性:如果a>b,并且c>0,则a*c>b*c。
这个性质说明了不等式在两边同时乘上正数的情况下,不等关系保持不变。
二、求解方法1. 加减法求解:如果a+b>c,则a>c-b;如果a-b>c,则a>c+b。
这种方法适用于对不等式进行加减运算求解的情况。
2. 乘除法求解:如果a*b>c (且b>0),则a>c/b (其中b>0);如果a*b<c (且b<0),则a<c/b (其中b<0)。
这种方法适用于对不等式进行乘除运算求解的情况。
需要注意的是,在乘除法求解中,当乘(除)以负数时,不等号需要进行反向翻转。
3. 绝对值法求解:对于形如|a|>b的不等式,有两种情况:a>b 或 a<-b。
取其并集,即a>b 或 a<-b。
4. 平方法求解:对于形如x^2>a的不等式,有两种情况:x>√a 或 x<-√a。
取其并集,即x>√a 或 x<-√a。
5. 区间法求解:对于形如a<x<b的不等式,解集为(a, b)。
不等式的性质(1)一、引入:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 生活中为什么糖水中加的糖越多越甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>a b 即可怎么证呢?引人课题二、讲解新课:1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.说明:(1)不等号的种类:>、<、≥(≦)、≤(≧)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)(3)不等式研究的范围是实数集R .2.判断两个实数大小的充要条件对于任意两个实数a 、b ,在a >b ,a= b ,a <b 三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:0>-⇔>b a b a ;0=-⇔=b a b a ;0<-⇔<b a b a由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了。
三、讲解范例:例1:比较(a +3)(a -5)与(a +2)(a -4)的大小例2:已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小得出结论:例1,例2是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要例3:已知a>b>0,m>0,试比较m a m b ++与a b 的大小例4:已知1≥a ,试比较a a M -+=1和1--=a a N 的大小。
不等式的基本性质教学目标:1、掌握不等式的基本性质,并能准确使用它们将不等式变形;2、提升学生观察、比较、归纳的水平,渗透类比的思维方法;教学重点和难点:重点:掌握不等式的基本性质并能准确使用它们将不等式变形。
难点:掌握不等式的基本性质并能准确使用它们将不等式变形。
教法:猜想、讨论、总结教学过程:一、导课解标:我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。
在等式的两边都乘以或除以一个非零的常数,等式也不变。
那么在不等式的两边实行上述变形,不等式是否也不变呢?这个节课我们来研究这个问题。
这个节课我们的目标是:1、掌握不等式的基本性质;2、能准确使用不等式的基本性质将简单的不等式变为“x>a ”或者“x<a ”的形式二、检测预习:已知x <y (1)22++y x ; (2)y x 3131; (3)y x --; (4)m y m x --三、精讲达标:1、等式的基本性质得出猜想:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
验证:∵3<4∴3+2<4+2 3-2<4-2 3+a <4-a所以,我们的猜想是准确的。
不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
这个性质用数学语言表述为:a >b ,则a ±c >b ±c 。
现在,老师的年龄比你们大,2年之后,老师的年龄还是比你们大,如果过上3年、4年、5年。
a 年呢?谁能用不等式的基本性质来解释这个现象。
不等式的这条性质和等式相似。
下来我们继续研究不等式的其他性质2、在下列空格中填上“>”或者“<”。
2<3,2×5 3×5;212⨯ 213⨯; 2×(-1) 3×(-1);2×(-5) 3×(-5);2×(21-) 3×(21-) 你发现了什么?小组交流,总结。
当给不等式两边都乘以或除以同一个正数的时候,不等号的方向和原来的方向一致,但是当给不等式的两边同时乘以或除以同一个负数的时候,不等号的方向要改变。
不等式的性质一不等式是数学中常见的一种数值关系表达方式,用于描述两个数之间的大小关系。
与等式相比,不等式中的符号不仅包括等号(=),还包括大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)等。
不等式的性质是研究不等式在数学中的基本特点和规律的重要内容之一。
本文将介绍不等式的基本性质以及应用。
一、不等式的基本性质1. 传递性:对于任意实数 a、b、c,如果 a<b,b<c,则有 a<c。
这说明不等式的大小关系具有传递性,可以通过中间比较数来判断其他数的大小关系。
2. 反身性:对于任意实数 a,a=a。
这说明不等式中的等号是可以成立的,即两个相等的数之间也可以用等号连接。
3. 对称性:如果 a<b,则-b< -a。
这说明不等式中的大小关系在取反时保持不变,即如果一个数 a 小于另一个数 b,则取相反数后,-a 大于-b。
4. 加法性:对于任意实数 a、b、c,如果 a<b,则 a+c<b+c。
这说明不等式的大小关系在两边同时加上相同的数时保持不变,即两个不等式同时加上一个数,其大小关系不变。
5. 减法性:对于任意实数 a、b,如果 a<b,则 a-c<b-c。
这说明不等式的大小关系在两边同时减去相同的数时保持不变,即两个不等式同时减去一个数,其大小关系不变。
二、不等式的应用1. 求解不等式:不等式可以用来求解关于未知数的数值范围。
通过运用不等式性质,我们可以将复杂的不等式转化为简单的形式,并找到解集合。
例题1:求解不等式 2x-5<3。
解:首先,将不等式转化为简单形式,得到 2x<8。
然后,除以 2,得到 x<4。
所以,解集合为 x 的取值范围为 (-∞, 4)。
2. 不等式的证明:通过应用不等式的性质,可以进行不等式的证明。
证明不等式的方法包括直接证明法、间接证明法、数学归纳法等。
例题2:证明对于任意正实数 a,b,有a*b ≤ (a+b)/2²。