现代控制理论 3-1 可控可观的概念 3-2 线性系统的可控性
- 格式:pdf
- 大小:671.82 KB
- 文档页数:32
名词解释线性系统的可控性在现代控制理论中,线性系统的可控性是一个重要的概念。
可控性指的是对于一个给定的线性系统,是否存在一种控制方法,可以将系统从任意初始状态控制到任意目标状态。
在本文中,我们将对线性系统的可控性进行解释。
1. 线性系统首先,我们需要了解什么是线性系统。
线性系统是指满足线性等式的系统,其输出仅依赖于输入和系统本身的性质。
线性系统具有许多重要的特性,例如可以通过叠加原理来分析系统的行为,使得控制设计变得相对简单。
2. 可控性的定义可控性是指在给定时间范围内,系统的状态可以从任意初始状态控制到任意目标状态的性质。
换句话说,如果一个线性系统是可控的,那么存在一种控制方法,可以使得系统从任何初始状态到达任何目标状态。
这种控制方法可能需要对系统施加一系列的输入信号,以实现对系统状态的精确调节。
3. 可控性矩阵要判断一个线性系统是否是可控的,我们需要引入可控性矩阵的概念。
可控性矩阵是由系统的状态方程和控制输入组成的矩阵,用于描述系统的可控性。
该矩阵的秩可以告诉我们系统的可控性。
4. 可控性判据通过可控性矩阵的秩的计算,我们可以得到一个重要的结论:当且仅当可控性矩阵的秩等于系统状态的维数时,系统才是可控的。
要注意的是,当系统的可控性矩阵的秩小于系统状态的维数时,系统是不可控的。
5. 可控性的意义为什么可控性是一个重要的概念呢?可控性是控制系统设计的基础,它决定了我们是否能够通过适当的输入信号实现对系统状态的控制。
如果一个系统是不可控的,那么无论我们采取怎样的控制策略,都无法将系统从某个初始状态控制到目标状态,这是控制系统设计中的一个致命缺陷。
6. 提高可控性的方法对于一个不可控的系统,我们需要采取措施来提高其可控性。
一种常用的方法是增加系统的输入维度。
通过引入更多的控制输入,我们可以扩展控制空间,从而增加系统可控性矩阵的秩。
另一种方法是通过设计适当的反馈控制策略,利用系统动态特性来增强系统的可控性。
线性系统的可控性和可观性摘要:线性系统的可控性和可控性是线性系统最基本的概念。
本文从这个基本概念着手,介绍了线性系统的可控标准形和可观标准形,并且对系统可控性和可观性的判据做了详细的介绍。
本文的研究有利于对线性系统可控性和可观性的知识体系有一个比较好的了解,对进一步学习现代控制理论提供一个扎实的基础,同时通过对相关知识的归纳总结,为以后的学习研究提供了一个好的方法。
通过对其中大量高等数学的学习与应用,可以提高应用高等数学解决相关问题的意识与能力。
关键词:线性系统;可控性;可观性Linear system controllability and observabilityHou Shibo Liu Yingrui Wang linlin Lin HuanAbstact: Controllability of linear systems and control is the most basic concepts of linear systems. This paper started from this basic concept, introduced the form of linear system controllability and observability of the standard normal form, and the system controllability and observability criterion for a detailed description. This study is beneficial to the linear system controllability and observability of knowledge have a better understanding of the further study of modern control theory provides a solid foundation, through summarized the relevant knowledge for the future of learning Study provides a good method. Through which a large number of learning and application of advanced mathematics, applied mathematics can improve awareness of the problem solving and capacity-related.Key words: Linear system ;Controllable ;Observability0 引言在控制工程中,有两个问题经常引起设计者的关心。
8.4 线性系统的可控性和可观测性8.4.1 可控性和可观测性的概念第三节介绍了系统的稳定性,本节接着介绍系统另外两个重要特性,即系统的可控性和可观测性,这两个特性是经典控制理论所没有的。
在用传递函数描述的经典控制系统中,输出量一般是可控的和可以被测量的,因而不需要特别地提及可控性及可观测性的概念。
现代控制理论用状态方程和输出方程描述系统,输出和输入构成系统的外部变量,而状态为系统的内部变量,系统就好比是一块集成电路芯片,内部结构可能十分复杂,物理量很多,而外部只有少数几个引脚,对电路内部物理量的控制和观测都只能通过这为数不多的几个引脚进行。
这就存在着系统内的所有状态是否都受输入控制和所有状态是否都可以从输出反映出来的问题,这就是可控性和可观测性问题。
如果系统所有状态变量的运动都可以通过有限的控制点的输入来使其由任意的初态达到任意设定的终态,则称系统是可控的,更确切的说是状态可控的;否则,就称系统是不完全可控的,简称为系统不可控。
相应地,如果系统所有的状态变量任意形式的运动均可由有限测量点的输出完全确定出来,则称系统是可观测的,简称为系统可观测;反之,则称系统是不完全可观测的,简称为系统不可观测。
可控性与可观测性的概念,是用状态空间描述系统引伸出来的新概念,在现代控制理论中起着重要的作用。
可控性、可观测性与稳定性是现代控制系统的三大基本特性。
下面举几个例子直观地说明系统的可控性和可观测性。
(a ) (b) (c)图8-20 电路系统可控性和可观测性的直观判别 对图8-20所示的结构图,其中图(a )显见1x 受u 的控制,但2x 与u 无关,故系统不可控。
系统输出量y =1x ,但1x 是受2x 影响的,y 能间接获得2x 的信息,故系统是可观测的。
图(b )中的1x 、,2x 均受u 的控制,故系统可控,但y 与2x 无关,故系统不可观测。
图(c )中的1x 、2x 均受u 的控制,且在y 中均能观测到1x 、2x ,故系统是可控可观测的。