4 平行线的性质
3.如图,AB∥CD,∠B=42°,∠2=35°,则∠1= ,
∠A=
,∠ACB=
,∠BCD=
.
栏目索引
答案 42°;35°;103°;138°
解析 因为AB∥CD,所以∠1=∠B=42°,∠A=∠2=35°,∠BCD=180°∠B=138°. 易得∠ACB=180°-∠1-∠2=103°.
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135°,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180°(两直线平行,同旁内角互 补),又因为∠DOB=135°,所以∠B=180°-135°=45°,又∠A=∠B,所以 ∠A=45°.
4 平行线的性质
栏目索引
4.如图所示,点A、B、C在同一条直线上,且∠1=∠2,∠3=∠D.试说明 BD∥EC.
4 平行线的性质
证明 ∵∠1=∠2(已知), ∴AD∥BE(内错角相等,两直线平行). ∴∠D=∠DBE(两直线平行,内错角相等). 又∵∠D=∠3(已知), ∴∠3=∠DBE(等量代换), ∴DB∥EC(内错角相等,两直线平行).
则∠1=∠A=120°,∵∠ABC=150°,∴∠2=30°. ∵AE∥CD,∴BF∥CD,∴∠2+∠C=180°,∴∠C=150°.