宝钢高炉和转炉煤气洗涤水处理技术
- 格式:doc
- 大小:114.00 KB
- 文档页数:10
钢铁工业水处理工艺简述一、烧结水系统1、系统工艺流程:(1)工艺流程:↓加药↓补水a、生产循环用水→水池(冷却)→泵(旁滤)→设备用水点。
b、原水→软水制备→软水→泵→余热锅炉发生器。
(2) 工艺流程简述:根据各设备生产用水压力要求,泵房加压泵分高低压给水系统。
高压水系统主要供给烧结室设备冷却用水及小流量冲洗地坪,低压水系统主要供给混合、制粒室、机尾整粒电除尘、原料电除尘和抽风机室生产用水及设备冷却用水及一些地面洒水。
各系统用水经泵加压后送至设备用水点,使用后的水靠余压回流至泵房热水池,经上塔泵加压送至冷却塔冷却,冷却降温后的水流入冷水池,又经高低压系统生产给水泵送至设备使用,如此循环。
此外,为保证循环水水质要求,设稳定水质的加药装置和旁滤设施。
为供余热回收利用蒸汽发生器用水,原水需经过软化处理。
原水经过滤装置,进入软化装置,流入软水池,经软水加压泵供给设备使用。
2、主要设备:(1)泵房主要设备:各高低压加压水泵、冷却塔、加药装置、过滤器、起吊设备。
(2)软水站主要设备:过滤器、软化装置、软水加压泵。
二、炼铁水系统1、系统工艺流程:(1) 工艺流程:↓加药↓补水a、冷却壁、风口等生产循环用水→水池(冷却)→泵(旁滤)→设备用水点。
↓补水b、铸铁机生产循环用水→平流沉淀池→泵→铸铁机冷却用水点↓抓渣↓补水c、高炉冲渣水→渣沟→冲渣过滤池→集水井→泵→冲渣(2) 工艺流程简述:根据各设备生产用水压力及水质要求,系统分为净环和浊环给水系统。
其中净环给水泵房加压泵又分高中压给水系统。
高压给水系统主要供高炉冷却壁背部水管冷却、风口小套、铁口套、炉顶打水等设施的冷却用水。
中压给水系统主要供高炉鼓风机站风机电机、稀油站、冷却壁及风口、炉底冷却水、出铁厂、热风炉等设施的冷却用水。
以上高炉净环冷却高中压供水经设备冷却后,开式自流回循环泵站净环热水池,再由冷却上塔泵送至冷却塔,冷却降温后的水流入净环冷水池,再分别由高压循环水泵和中压循环水泵加压送往高炉高中压用水设备进行循环使用。
钢铁厂废水处理的几种有效方式现代工业的快速发展,随着而来的问题一个比一个突出。
钢铁厂工业废水的处理有哪些方法?对于目前我国的钢铁工业的生产过程分析,有关钢铁材料的选择,包括烧结,炼铁,炼钢轧钢等生产工艺等等生产流程。
随着而来的产生的钢铁废水就是来自生产过程用水和一些设别用水,冷却水,洗涤水等。
间接冷却水在使用过程中仅受热污染,经冷却后即可回用;直接冷却水因与产品物料等直接接触,含有污染物质,需经处理后方可回用或串级使用。
矿山废水的处理:矿山废水的特点是水量、水质变化大,废水呈酸性。
要合理确定矿山废水的处理规模,并使被处理水的水质波动不要过大,往往需要设调节水池和调节水库,先把水收集起来,再进行处理。
矿山废水是呈硫酸型的工业废水,一般pH值为1.5〜6,这样低的硫酸含量,显然没有回收价值,因此往往采用中和处理的方法。
矿山工业废水的处理,一般采用石灰中和法。
用石灰中和矿山酸性废水的水质变化,鉴于Fe(0H)3在沉淀和脱水性能方面远比Fe(0H)2好,为使处理构筑物和设备能力减少,从而采取曝气或用一氧化氮催化氧化,然后以石灰中和,可提高沉淀效果和出水水质。
矿山酸性废水的处理离不开中和法,常用的中和剂是石灰石和石灰,因为其他中和剂价格高不宜采用,因此处理后水中的Ca2+往往含量很高或者是饱和的,再利用时应特别注意水质稳定问题,否则引起管道和设备的阻塞,给生产带来更大损失。
烧结厂废水处理与回用烧结的生产过程是把矿粉、燃料和溶剂按一定比例配料,混匀,然后在高温下点火燃烧,利用其中燃料燃烧时所产生的高温,使混合料局部熔化,将散料颗粒粘结成块状烧结矿,作为炼铁原料,在燃烧过程中,同时去除硫、砷、锌、铅、等有害杂质。
烧结矿经冷却、破碎、筛分而成5〜50mm粒状料送入高炉冶炼。
废水的来源及水质、水量烧结厂废水主要来自湿式除尘排水、冲稀地坪水和设备冷却排水。
湿式除排水含有大量的悬浮物,需经处理后方可串级使用或循环使用,如果排放,必须处理到满足排放标准;冲洗地坪水为间断性排水,悬浮物含量高,且含大颗粒物料,经净化后可以循环使用;设备冷却水,水质并未受到污物的污染,仅为水温升高(称热污染),经冷却处理后,一般都能回收重复利用。
摘要对宝钢4号高炉设计采用的新技术及其特点进行了阐述。
根据宝钢原有3座高炉生产经验,4号高炉设计时采用了以下先进技术:上罐固定式串罐无料钟炉顶、热压小炭砖炉缸结构、板壁结合的炉体冷却结构、无填沙层平坦化钢结构出铁场,新型液压泥炮和开口机,新英巴水渣处理、环缝洗涤煤气清洗等先进技术。
关键词高炉串罐无料钟炉顶喷煤炉渣处理煤气清洗I概况由于宝钢分公司原有3座高炉将相继进入末代炉龄,为了减少高炉大修时对后段工序的影响,同时解决铁水不足对宝钢持续发展所带来的瓶颈制约效应,分公司在原有3座4000m3级特大型高炉的基础上,筹建了4号高炉。
新高炉在设计过程中,吸收前几座高炉的各方面的经验,跟踪国际大型高炉先进技术和发展趋势,以高产、长寿为目的,采用先进、成熟的工艺技术、设神材料,优化设计,使高炉综合技术水平世界领先。
新建的4号高炉炉容4350 m3,于2005年4月27日顺和点火投产,6天后利用系数就达到2.27,超过了设计指标,30天内煤比突破200kg/t,为宝钢历次开炉最好水平,从半年的生产情况来看,高炉各项指标良好(见表1)。
2设计采用的新技术及其特点针对宝钢原有高炉一些实际操作中的问题,结合国内外的炼铁技术进展,在4号高炉的设计过程中,采用了41项新技术。
主要有:紧凑的总图布局、旋转布料器加固定料罐的串罐中心卸料式无料钟、炉缸高挂渣性能的热压小炭砖耐材、冷却壁与冷却壁板结合的全炉身冷却型式、国内集成的喷煤技术、新英巴法转鼓水渣处理工艺、环缝洗涤煤气系统、平坦化出铁场等新型实用技术。
2.1 总图布置由于受建设场地的限制,4号高炉厂区用地面积仅为13.96万m2。
为了不影响现有生产设施,保证物流顺畅,为一代炉龄后的大修留出施工通道,设计时采用了如下方法: (1)结合场地条件,采用半岛式布置,同类成组紧凑安排;(2)管线尽量平行于建筑物和道路布置;(3)场地狭窄和管网密集地段采用管廊。
2.2炉顶装料系统宝钢2、3号高炉采用了当时最先进的带旋转罐的串罐中心卸料式无料钟炉顶,这是PW的第一套该型装置。
钢铁厂水处理一、安全供水钢铁厂的产品不含一滴水,但生产钢铁产品的过程却分分秒秒离不开水,钢铁生产对安全供水是非常高的,个别设备供水实行三保险,如高炉炉壁、连铸结晶器,热轧加热炉等。
其一水泵双路供电,一路断电,另一路立即合闸供电。
其二双路断电,柴油机水泵自动启动,即时供水。
其三水搭供水,15分钟内柴油机水泵未能自动启动,水塔可自行供水15分钟左右,15分钟内柴油机人工启动。
宝钢有自备电厂,厂网与华东电网连着,双路断电,几乎不可能,但水塔和柴油机水泵还需定期维护,柴油机每月还需人工启动一次。
养兵千日,一天不用,可谁也不敢不养兵.大型钢铁厂水处理应包括制水和用水两部分,我先讲制水后讲用水。
二、制水由于钢铁厂各单位对水质要求不同,所以要生产不同质量要求的水,如工业水、过滤水、软水,纯水等。
各种水可集中生产,也可分散生产,那种办法好,业内争论不休,始终没有结果。
宝钢初步设计建一个中央水厂(可产工业水、过滤水、软水,纯水),但自备电厂先行投产三年,只能先建个电厂自用的小水厂,宝钢实际上有两个完整的制水厂,两厂原水可以互通共用,即各自有两个取水地。
随着生产发展,所有品种的水都由中央水厂生产的格局很快就被打破了,虽知统一处理的好处,虽工业水仍可满足需要,其他品种的要求因中央水厂就那么点能力那么点地方,不另建是不可能满足需要的,人不可能预知一切,所以统分之争没有结果。
1、制水工艺工业水制水工艺:长江河水—滩边水库-初沉池—沉淀池—PH调整池-贮水池—用户a、原水宝钢水源原选淀山湖湖水,淀山湖在黄浦江的上游,此水是黄浦江重要的补给水源,当时黄浦江下游已经出现黑臭,按初步设计宝钢最终取水量为24万立方米/天,上海市了解后,虽然已经开始施工,仍不同意我们在淀山湖取水。
我们厂就在长江边上,却不能直接从江中取水,因为离东海很近,我们所处河段是潮感河段,江水海水在此来回摆动,江水时咸时淡。
而且崇明岛把此处江段分为南北支河道,宝钢在南支岸边,退潮时北支含盐河水不完全原路退出,而是部分倒流进入南支河道,江水含盐变化和单一潮感河段不同,复杂得多,所以也不能完全按潮期直接取水。
【幼儿园中班手工制作教案】一、教学目标:1. 帮助幼儿了解鸟巢的形状和特点,培养幼儿对大自然的认识和热爱。
2. 激发幼儿的创造力和动手能力,培养他们的手工制作技能。
3. 提供幼儿交流与合作的机会,培养幼儿的团队意识和沟通能力。
二、教学内容:1. 鸟巢的形状和特点介绍。
2. 制作鸟巢的手工过程。
三、教学重点:1. 让幼儿了解鸟巢的结构和特点。
2. 手工制作鸟巢,培养幼儿的动手能力和创造力。
四、教学准备:1. 印有鸟巢形状的模版纸。
2. 粘土或者麦片盒、破纸、麻绳等制作鸟巢需要的材料。
3. 相关的图片和故事书籍,用于教学引导。
五、教学步骤:1. 引入老师向幼儿们介绍鸟巢的形状和特点,可以通过展示相关的图片或故事书籍来引起幼儿的兴趣,让他们了解鸟巢是鸟类用来筑巢生活的场所。
2. 制作前的准备老师在黑板上示范鸟巢的结构,或者播放相关视频,让幼儿们了解鸟巢的外形和构造。
准备好制作鸟巢的材料和工具,让幼儿们安静地坐好并准备动手制作。
3. 制作过程1)指导幼儿们根据模版纸的形状,在合适的位置剪裁材料,比如将麦片盒剪成合适大小的、带有一定深度的碎片。
2)引导幼儿们将麦片盒碎片或者粘土一层层地叠放成适合的形状,使其呈现出鸟巢的模样。
3)让幼儿们用麻绳等材料装饰鸟巢,增加真实感和美观度。
4)鸟巢完成后,鼓励幼儿们分享制作鸟巢的心得,欣赏彼此的作品,可以将鸟巢摆放在教室的窗台上,也可以放在教室的角落,让所有的家长们看一看。
4. 结束老师和幼儿一起欣赏鸟巢作品,鼓励幼儿们解释自己的作品,并分享他们对鸟巢的想法。
结束时,可以邀请幼儿们拍照留念。
1. 本次活动是为了帮助幼儿对鸟巢有一个简单的认识,因为鸟巢是鸟类用来产卵和孵化的场所,同时也是它们的家,所以在制作鸟巢的过程中,也是对大自然的一次尝试和了解。
2. 通过手工制作鸟巢,不仅能够锻炼幼儿的动手能力,更能激发他们的创造力和想象力,让他们在参与制作的过程中更能体验到快乐。
一、烟气除尘——高炉煤气干法布袋除尘高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少;高炉煤气干法布袋除尘技术是钢铁行业重要的综合节能环保技术之一,以其煤气净化质量高、节水、节电、投资省、运行费用低、环境污染小等优点,优于传统的湿法洗涤除尘工艺, 属于环保节能项目,位于国家钢铁行业当前首要推广的“三干一电”高炉煤气干法除尘、转炉煤气干法除尘、干熄焦和高炉煤气余压发电之首;是国家大力推广的清洁生产技术;1、工艺流程与设备系统组成1 干法除尘由布袋除尘器、卸、输灰装置包括大灰仓、荒净煤气管路、阀门及检修设施、综合管路、自动化检测与控制系统及辅助部分组成;2 炉顶温度长期偏高的高炉宜在布袋除尘之前增设降温装置,有热管换热器和管式换热器两类,应优先选用热管式换热器;过滤面积1 根据煤气量含煤气湿分,以下同和所确定的滤速计算过滤面积计算公式:其中 F——有效过滤面积 m2Q——煤气流量m3/h工况状态V——工况滤速 m/min2 工况流量;在一定温度和压力下的实际煤气流量称为工况流量;以标准状态流量乘以工况系数即为工况流量;3工况系数工况体积或流量和标况体积或流量之比称为工况系数,用η表示;计算公式:其中 η——工况系数Q 0——标准状态煤气流量m 3/hQ ——工况状态煤气流量m 3/hT 0——标准状态0℃时的绝对温度273Kt —— 布袋除尘的煤气温度℃P —— 煤气压力表压MPaP 0——标准状态一个工程大气压,为 MPa当t 值按煤气平均温度165℃计算时上述公式简化为:η=1.0P P 此时工况系数η与压力关系见表3—2; 温度取值不同,数值略有变化;表3—2 工况系数η与压力关系煤气放散1 除尘器箱体、前置换热器、荒净煤气主管和密封式眼镜阀应设煤气放散管;2荒煤气总管尾端应设引气用放散管;放散管设置应符合煤气安全规程,管口宜设点火装置;3引气用放散管必须设置可靠隔断装置;予防腐蚀1部分干法除尘煤气冷凝水腐蚀性强,波纹膨胀器材质应当优先选用耐腐蚀不锈钢材料,管壁适当加厚,管道内壁涂以防腐蚀涂料,涂刷前焊缝处仔细打磨;2可设置喷碱液或喷水装置;3煤气管路应全部保温;二、煤气脱硫——干法脱硫具体到某项工程,脱硫方案的确定,既要考虑到可行性,又要考虑到经济性;对于用气量较小比如每小时五、六千立方米以下,而且煤气中含硫量不高的用户,可以考虑单级采用干法脱硫;干法脱硫目前最常用的干法脱硫剂是氧化铁和活性炭;通常,干法脱硫的脱硫工艺流程较为简单,但考虑到环保及经济性,一般都要对脱硫剂再生使用,而氧化铁和活性炭的再生从流程到成本都差别较大;氧化铁脱硫剂氧化铁脱硫剂的使用条件一般限定以下几点:1 温度正常使用温度以20—30℃为宜;温度过高,将使氧化速度加快,相对降低了硫化速度,使脱硫效率降低,同时温度过高将使硫化铁的水合物Fe2S3H2O失去水分,进而影响脱硫剂的湿度及酸碱度,影响脱硫效果;温度过低,会大大降低硫化速度,使脱硫效率下降,同时也将使煤气中的水分冷凝下来,造成脱硫剂过湿;2 水分脱硫剂宜保持25%—35%的水分,若水分小于10%将会影响脱硫操作;水分能保持硫化氢与氧化铁的足够接触时间,减少脱硫剂结块,并可溶解部分盐类,防止其包在氧化铁表面,影响脱硫反应的进行;3 含氧量煤气中含有一定的氧,可以使氧化铁在脱硫的同时实现再生一般以含氧—%为宜;含氧量过高会加速铁的腐蚀和形成煤气胶;4 煤气的杂质含量煤气中的焦油等杂质要脱除干净,否则容易造成脱硫剂表面被焦油等覆盖而失效;5 酸碱度氧化铁脱硫一般要求在弱碱性PH值8—9的环境下进行,PH值过高过低都会影响脱硫效率;活性炭脱硫活性炭脱硫生产主要的工艺条件有:1 温度正常使用温度可以在27—82℃,但最佳使用温度为32—52℃,因此在寒冷地区使用,脱硫塔应该保温;2 硫化物与氧含量的比值应在1:2以上,氧含量不足时可补充空气;3 相对湿度煤气的相对湿度应在70—100%,湿度不足时可补充水蒸汽,但不应带液态水进入活性炭床;4 气体中酸碱性要求活性炭脱硫要求碱性环境,如煤气中不含碱性气体成分,可以使用浸碱活性炭;5 煤气的杂质含量煤气中的焦油等杂质要脱除干净,否则容易造成活性炭表面微孔被焦油等覆盖而失效;6 压力操作压力应小于5Mpa,目前一般的煤气生产工艺都不超过此压力;此外,脱硫塔的设计要考虑到空速、线速度等要求;三、结论——经济适用性1.烟气除尘——高炉煤气干法高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少;干法布袋除尘与湿法除尘相比有以下优点:1 节水,干法除尘基本不用水,而湿法除尘需要大量的冷却水;2可提高TRT发电量,由于采用干法除尘后煤气的温度较高,煤气压力损失少,使得TRT发电量增加,一般多发电30%~50%;3降低焦比,由于干法除尘后的煤气温度较高,供给热风炉后,风温提高50℃以上,可降低焦比;4节电,采用干法除尘后,没有冷却水,也就不需要污水处理系统,可降低电耗;5环保,由于不需要污水处理系统,可减少污染;2.烟气脱硫——干法脱硫干法脱硫——制作成本较低,这种自制的氧化铁脱硫剂,一般脱硫效率较高、脱硫效果较好,但其硫容较低、可再生次数较少;脱硫剂使用一段时间后需要再生,这种自制氧化铁脱硫剂一般采用塔外再生;将脱硫剂取出,放在晒场上充分氧化再生;但这种自制的氧化铁脱硫剂虽然成本低,但制作、再生都需要较大的场地、较多的人工,也比较麻烦,所以现在很多单位购买成型的氧化铁脱硫剂,也有许多单位研制成型的氧化铁脱硫剂销售;这些成型的氧化铁脱硫剂,颗粒均匀、孔隙率大、强度较高、氧化铁含量高、脱硫效率高、硫容大、可再生次数多,其再生可以在塔内进行;3. 结论目前我国煤炭开发和利用造成的生态破坏和环境污染还很严重;如何在经济条件允许的情况下提高煤炭等资源的利用率 ,减少对环境的污染使我们迫切需要解决的问题1实施洁净煤技术是中国能源的战略选择,它将解决三个方面的问题:1污染物及温室气体排放量的控制;2降低对进口石油的依存度;3提高利用效率;2. 实施中国洁净煤战略即煤炭加工与转化能够最经济、有效地解决煤炭利用中的低效率、高污染和替代石油的问题;为使煤炭工业适应国民经济的需求,国家应积极致力于中国洁净煤的研究和开发,促进煤炭加工与转化的迅速发展;3. 进一步提高煤炭利用效率、减少环境污染,促进国民经济和社会可持续发展,是中国的一项基本国策;建议政府有关部门对大型坑口热—电联产和高效干法选煤技术项目给予相应的政策支持,进行工业示范,以达到我国煤炭能源清洁、高效、经济、稳定的供应;参考文献1 2003中国能源发展报告.中国能源报告编辑委员会.北京.中国计量出版社.2003.2 高炉煤气干法布袋除尘设计规范中国冶金建设协会 20093 中国工程院.“十五”高技术产业发展咨询报告——先进能源技术领域. 2001.钢铁厂烧结烟气脱硫技术的探讨2009-10-19 09:37:24 点击数:187随着近两年钢铁行业和火电厂的大规模建设, 对环保提出了新的挑战;钢铁行业是国家重要的基础产业,又是高能耗、高排放、增加环境负荷源头的行业;钢铁生产在其热加工过程中消耗大量的燃料和矿石,同时排放大量的空气污染物;1996年钢铁工业二氧化硫SO2 排放量为万t,占全国工业SO2排放量的7. 5%,仅次于电力、煤气、热水的生产供应业和化工原料及化学制品制造业,居第3位;烧结工艺过程产生的SO2排放量约占钢铁企业年排放量40%~60%,控制烧结机生产过程O2的排放,是钢铁企业SO2污染控制的重点;随着烧结矿产量大幅度增加和烧结机的大型化发展, 单机废气量和SO2排放量随之增大,控制烧结机烟气SO2污染势在必行;国外已投巨资对此进行治理,甚至关闭了烧结厂;目前我国在烧结烟气SO2脱除方面基本上还处于空白,仅有几个小型烧结厂上了脱硫设施,而以烧结矿为主要原料的炼铁生产又不允许大量关闭烧结厂;因此,对烧结烟气进行脱除处理是满足今后日益严格的环保要求的唯一选择;目前的关键是借鉴国外的先进经验,开发应用适合我国烧结特点的先进脱硫工艺;1. 烧结烟气SO2主要控制技术目前,对烧结烟气SO2排放控制的方法有:1低硫原料配入法; 2高烟囱稀释排放; 3烟气脱硫法;1. 1 低硫原料配入法烧结烟气中的SO2的来源主要是铁矿石中的FeS2或FeS、燃料中的S有机硫、FeS2或FeS与氧反应产生的,一般认为S 生成SO2的比率可以达到85%~95%. 因此,在确定烧结原料方案时,适当地选择配入含硫低的原料,从源头实现对SO2排放量的控制,是一种简单易行有效的措施;该法因对原料含硫要求严格,使其来源受到了一定的限制,烧结矿的生产成本也会随着低硫原料的价格上涨而增加;就目前原料短缺的现状来看, 此法难以全面推广应用;1. 2 高烟囱稀释排放烧结烟气中SO2的质量浓度一般在1000~3000 mg/m3且烟气量大,若回收在经济上投资较大,故大多数国家仍以高烟囱排放为主,如美国烟囱最高达360m.我国包钢烧结厂目前采用低含硫原料、燃料,烧结烟气经200m高烟囱排放,SO2最大落地质量浓度在0. 017mg/m3以下;宝钢的烧结厂采用200 m高烟囱稀释排放;这种方法简单易行,又比较经济;从长远来看,高烟囱排放仅是一个过渡;但在当时条件下,采用高烟囱稀释排放作为控制SO2 污染的手段是正确的;1. 3 烟气脱硫法低硫原料配入法和高烟囱排放简单易行,又较经济;但我国SO2的控制是排放浓度和排放总量双重控制,因此,为根本消除SO2污染,烟气脱硫技术在烧结厂的应用势在必行;烟气脱硫是控制烧结烟气中SO2污染最有效的方法;目前世界上研发的烟气脱硫技术有200多种,进入大规模商业应用的只有10余种,我国也先后引进了不同的脱硫装置主要用于火电厂,而国内用于烧结烟气脱硫的技术进展较慢;国内仅有几个小烧结上了脱硫设施;如广钢2台24平烧结机采用双碱法工艺,临汾钢厂利用烧结烟气处理焦化废水等,因脱硫设施或多或少存在一些问题,所以运行也不正常;2. 烧结烟气的特点烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中所产生的含尘废气;它与其他环境含尘气体有着明显的区别,其主要特点是:1 烟气量大,每生产1t烧结矿大约产生4000~6000m3烟气;2 烟气温度较高,随工艺操作状况的变化,烟气温度一般在150 ℃上下;3 烟气挟带粉尘多;4 含湿量大;为了提高烧结混合料的透气性, 混合料在烧结前必须加适量的水制成小球,所以含尘烟气的含湿量较大,按体积比计算,水分含量在 10 %左右;5 含有腐蚀性气体;高炉煤气点火及混合料的烧结成型过程,均将产生一定量的SOx,NOx,它们遇水后将形成酸,对金属结构会造成腐蚀;6 含SO2浓度较低,根据原料和燃料差异而变化,一般在1000~3000 mg/m3 .3. 烧结烟气脱硫技术3. 1 技术现状分析烧结烟气脱硫的研究,日本居于世界领先地位, 按照严格的环境保护标准,在上世纪70年代建设的大型烧结厂采用了烧结烟气脱硫法,脱硫工艺多为湿式吸收法;80年代以后,主要采用钢渣石膏法、氨硫铵法、活性焦吸附法、电子束照射法等;钢渣石膏法是利用转炉废渣研磨制成的浆液为脱硫剂,产品为低浓度石膏;该法脱硫效率高、投资省;利用了废渣,但易结垢、产品不能利用;氨硫铵法脱硫工艺是利用焦化厂产生的氨气, 脱除烧结烟气中的SO2 . 该法脱硫效率高,副产品可利用;但存在氨损、副产物稳定化、副产品品质、副产品的市场化等问题;活性焦吸附法烟气脱硫在脱除SO2的同时,能不同程度脱除废气中的HCl 、HF等有害气体;装置占地面积较小;副产品经综合加工后可利用;但存在运行成本高、设备庞大且造价高、腐蚀问题突出、硫资源回收处理等外围系统复杂、系统长期运行稳定性差等问题;电子束法烟气脱硫能同时脱硫脱硝,过程简单, 不产生废水废渣,副产品可用作化肥;但系统的安全性差,运行成本高,电子加速器价格昂贵,脱硫产物难以有效捕集及利用,应用范围受到限制;3. 2 密相干塔烟气脱硫技术密相干塔烟气脱硫技术是北京科技大学环境工程中心针对我国国情开发的一种先进的半干法烟气脱硫技术,具有脱硫效率高、投资运行费用低、可靠性高、占地面积小、无废水产生、副产物易处理等优点;在欧洲,已有20多家相当规模的电站锅炉、工业锅炉和工业炉窑工业化应用了该技术;3. 2. 1工艺过程该工艺的原理是利用干粉状的钙基脱硫剂,与密相干塔及布袋除尘器除下的大量循环灰一起进入加湿器内进行增湿消化,使混合灰的水分含量保持在3%到5%之间,加湿后的循环灰由塔上部进料口进入塔内,工艺流程如图1所示;含水分的循环灰有极好的反应活性和流动性,与由塔上部进入的烟气发生反应;脱硫剂不断循环利用,脱硫效率可达95%;最终脱硫副产物由灰仓溢流出循环系统,通过气力输送装置送入废料仓;整个工艺流程主要包括:1 SO2的吸收;预除尘后的烟气由塔上部入口进入,在塔内与高活性的钙基脱硫剂进行SO2 吸收反应,反应后的烟气由塔下部烟道出口排出,经除尘器除尘净化后排入大气;2 脱硫剂的循环利用;塔内落下的反应产物、除尘器收集的颗粒物和新吸收剂一起通过输送装置输送到塔上部的加湿器内,在加湿器内加少量水增湿活化后再次进入塔内进行脱硫反应,实现脱硫剂的循环利用;3 该过程发生的主要反应式如1~7 ;CaO + H2O —>Ca OH 2 , 1 Ca OH 2 + SO2 + 1/ 2H2O—>CaSO3 ·1/2H2O + H2O , 2 Ca O H 2 + SO3 + H2O—>CaSO4 ·2H2O , 3 CaSO3 ·1/2H2O + 1/ 2O2 + 3/ 2H2O —>CaSO4 ·2H2O , 4 Ca O H 2 + CO2 CaCO3 + H2O , 5 Ca OH 2 + 2HCl CaCl2 + 2H2O , 6 Ca O H 2 + 2HF CaF2 + 2H2O. 73. 2. 2 工艺特点1 脱硫剂用量少而且利用率高,循环过程中的脱硫剂颗粒在搅拌器的破碎作用及烟气强烈湍流引起的相互摩擦作用下,包裹着CaSO3或CaSO4外壳的未反应的CaOH2不断裸露出来,使脱硫反应不断充分地进行,脱硫率高达95%,同时可以去除SO3、HCl、HF等;2 耗水量低,脱硫剂通过加湿提高其活性所用的水非常少,通常循环脱硫剂的含水质量比为3%~5%;3 塔内的搅拌器强化了传质过程,延长了脱硫反应的时间,保证了系统的运行效果;4 系统对不同SO2 浓度的烟气及负荷变化的适应能力极强,这是该技术的显着优点;5 脱硫剂在整个脱硫过程中处于干燥状态,操作温度高于露点,没腐蚀或冷凝现象,无废水产生;6 塔体用普通钢材制作,无需合金、涂料和橡胶衬里等特殊防腐措施;7 烟气无需再加热即可排放;3. 2. 3 系统的自动控制整个工艺过程设两个控制回路:通过调节加湿器内加入水量来保证密相干塔中反应的温度及恒定的烟气出口温度;通过对进出口烟气流量和SO2 浓度的连续监测,调整吸收剂的加入量;4. 建议目前,烟气脱硫的工艺很多,对于烧结烟气的脱硫处理,要针对烟气特点并结合现场的情况,做出合理的选择;1 工艺选择应坚持以下原则:技术先进成熟且符合企业自身的技术和经济环境状况、设备简单可靠且操作简便、自动化程度高、投资省、脱硫率较高且稳定、运行成本与能耗低、脱硫剂来源广泛、副产品易于处理且不产生二次污染;2 密相干塔烟气脱硫工艺属于半干法脱硫工艺,完全符合上述的工艺选择原则,适合进行烧结烟气的脱硫处理;3 烧结过程中,烟气中SO2的浓度是变化的, 有时变化的幅度大且频率高,其头部和尾部烟气含 SO2浓度低,中部烟气含SO2浓度高;为减少脱硫装置的规模,可只将含SO2浓度高的烟气引入脱硫装置,这样可以节约大部分资金;4 加快推进烧结烟气脱硫技术的工业应用,逐步消除我国SO2和酸雨的污染对经济发展的消极影响,促进钢铁企业的可持续发展;。
宝钢高炉和转炉煤气洗涤水处理技术杨倩宇(宝山钢铁(集团)公司)摘要介绍了宝钢高炉煤气洗涤水和转炉除尘废水两大水处理循环系统的工艺组成及工艺设计特点,通过日常的生产、技术管理,使系统保持水的重复利用率达到95 %以上,污染物综合排放合格率95 %以上,以及对炼钢OG泥浆再利用进行的技术改造。
关键词废水处理高炉煤气洗涤转炉除尘水循环率WASTE WATER TREATMENT FOR BF GAS CLEANINGAND CONVERTER DEDUSTING SYSTEMS AT BAOSTEELYANG Qianyu(Baoshan Iron and Steel Corp.)ABSTRACT The article introduces the composition and design features of two water treatment and circulation systems for BF gas cleaning and converters dedusting,operation experience for maintaining both the water circulation rate and up-to-standard rate in terms of comprehensive pollutant discharge higher than 95% and as well as the experience of technical innovation for reusing the steelmaking OG mug.KEY WORDS waste water treatment,BF gas,cleaning,converter dedusting,water circulation rate1 前言宝钢是一座现代化的大型钢铁联合企业,拥有国内最先进的生产设备和一流的科学管理技术,自1985年9月第一座高炉点火投产至今已经历了十几年,形成了年产钢800万t,销售收入达260亿元的生产规模,具有如此水准的企业,在合理有效利用水资源及防治环境方面从设计及管理上都做了充分的准备。
冶金钢铁企业是用水大户,也是废水排放大户。
其生产用水主要包括工艺用水、冷却用水、洗涤用水、锅炉用水及空调用水。
一般根据冷却水与被冷却介质是否直接接触以及被污染的轻重程度而将冷却水系统划分为净循环、污循环及洗涤用水、冲渣用水四大系统。
下面就以钢铁企业废水处理中较为典型的洗涤用水系统为例,结合宝钢多年的生产管理经验对洗涤污水处理技术作一个简单的介绍与总结。
2 高炉煤气洗涤水系统宝钢1号、2号高炉容积均为4 063 m3,为国内最大型高炉,设计日产铁量1万t,分别于1985年9月、1991年6月投产,3号高炉容积4 350 m3于1994年9月投产,最大煤气发生量7.0×105 m3/h,炉顶最大压力0.25 MPa,吨铁产灰量15 kg。
本系统是为减少高炉煤气含尘量而设置的高炉煤气洗涤水装置,属于湿式除尘法(此前还设有重力除尘器),含尘量为5 g/m3的含尘煤气,经一级文氏管除尘降到100 mg/m3,经二级文氏管后降至<10 mg/m3,即为净煤气,可供用户使用。
2.1 系统的特点的大量逸出所造成的重碳酸盐分解成碳酸钙引起结垢严(1) 不设冷却塔,避免了CO2重、效率下降、难以清洗的故障。
(2) 系统密闭,串接排污,确保了先进的循环率指标和外排污为零的记录。
(3) 采用大型滤布外延式真空过滤机,使瓦斯泥保持小于30 %含水率,保证了低锌泥的回收率。
2.2 工艺流程从高炉发生的煤气经重力干式除尘器除尘后进入一级文氏管和二级文氏管进行煤气洗涤,洗净后的煤气通过余压透平式发电机进入高炉煤气系统。
1VS水槽内的煤气洗涤水由1VS送水泵送到1VS管进行煤气洗涤,洗涤水顺高架水沟流入沉淀池,经沉淀处理后上部清水流入2VS水槽,由2VS水泵送入2VS管进行煤气再洗涤,洗涤水返回1VS水槽继续使用,形成一个循环系统。
循环过程中的水量损失由高炉炉底洒水(污循环水系统)的排污水作为补充。
流程见图1。
图 1 高炉煤气洗涤水处理工艺流程图Fig.1 BF gas cleaning water treatment processdiagram2.3主要设计指标和水质指标主要设计指标见表1,水质指标见表2。
表 1 高炉煤气洗涤水系统主要设计指标Table 1 Major design data of BF gas cleaningwater treatment表 2 高炉煤气洗涤水系统水质管理指标Table 2 Water quality standard of BF gascleaning water treatment2.4日常运行管理基准日常运行管理基准见表3。
表 3 高炉煤气洗涤水系统日常运行管理基准Table 3 Technical data of BF gas cleaning water treatment2.5水质净化及水质稳定处理1VS出水以3 493 kg/h的灰尘携带率流入沉淀池有待去除,若不能及时将其沉降下去,立即会影响循环水水质和煤气洗涤效果。
煤气洗涤水与高炉煤气直接接触,煤气中的SO2、SO2-3、CO2及灰尘中的Ca、Mg、Zn等盐类成分溶解于水中,增加了煤气洗涤水的硬度成分。
又作为补充的污循环水也含有相当数量的Ca2+、Mg2+,它们不可能在沉淀池中全部沉淀而有相当一部分被带入系统中去。
为了保证循环水水质,沉淀池入口投加(0.3~0.7)×10-6的弱阴离子型高分子助凝剂PHP4,它可对无机系统废水进行除浊和浓缩,使得沉淀池入口约0.2 %悬浮物降到沉淀池出口时小于0.01 %。
又为保证水道设备不发生结垢现象,在沉淀池出口管道上投加阻垢剂SN-103 3×10-6(按循环水量计),SN-103对以碳酸钙为主的水垢有很好的防治效果,并能防止与氧化铁、二氧化硅、氢氧化锌等结合生成的水垢。
循环水还要进行必要的pH调整,最好保持在7~9之间,在此范围内有利于水中的部分溶解金属盐类转变为不溶于水的氢氧化物,随着大量悬浮物的沉淀而沉降下来。
如Zn2++2OH-→Zn(OH)2↓2.6处理效果以1987年2月曾在高炉煤气洗涤水进行的一次试验为例,在煤气洗涤水1VS、2VS送水泵出口分别接试验管测试污垢附着速度,试验数据见表4。
表 4 高炉水质试验数据表Table 4 Experimental data of BF gas cleaning water quality从以上试验结果来看,结垢速度平均1VS为8.3 MCM,2VS为0.6 MCM,较控制指标15 MCM 好得多,1VS的情况不如2VS的情况好,其原因为:1VS的悬浮物含量高,药剂有效浓度降低,但试验管经酸洗后,内表面清洁光亮,没有腐蚀疤坑。
三座高炉投产至今,水质处理效果一直比较稳定,从1990年、1995年的水质分析数据可以看出,悬浮物和pH值的控制情况一直良好,但Zn指标的控制有一定的难度,存在部分超标现象。
经调查分析,主要是高炉炉料中含锌成分增高所致,但总体上还是符合设计和生产要求的。
具体的水质数据见表5~7。
表 5 1号高炉水质处理数据统计Table 5 Data statistics of No.1 BF gas cleaningwater quality2.7高炉污泥的回收高炉煤气洗涤水的集尘污泥中含有平均40 %的铁粉,为了不造成资源上的浪费,沉淀池底部污泥由排泥泵送到污泥脱水装置脱水之后,送往烧结烧制小球回收利用。
3 转炉除尘废水处理系统宝钢的3座300 t纯氧顶吹转炉,是我国最大的转炉之一,能形成年产800万t钢的生产规模。
表 6 2号高炉水质处理数据统计Table 6 Data statistics of No.2 BF gas cleaning water quality表 7 3号高炉1995年水质处理数据统计Table 7 Data statistics of No.3 BF gas cleaningwater qualityin 1995本系统是采用直接冷却法,循环水直接与被冷却物接触。
所以,废水主要来源于转炉氧枪吹炼时在第一文氏管及第二文氏管除尘后产生的污水。
3.1工艺流程从第一文氏管排出的除尘废水经回水明渠流入粗粒分离槽,在粗粒分离槽中将含量15 %、粒径大于60 μm的粗颗粒通过分离机将其去除,这些粗颗粒通过专用运输车送往烧结厂小球团直接利用外,还有85 %的悬浮小颗粒流入沉淀池中进行混凝沉淀处理,经沉淀池处理后的上清水流入OG集尘水槽,直接通过0.88 MPa的循环泵送往第二文氏管循环使用。
然后再用0.69 MPa 循环泵送入第一文氏管串接使用。
为了使水中悬浮物沉淀效果良好,还设有高分子聚凝剂加药装置,同时,在沉淀池出水口加注分散阻垢剂SN-103,以防止管道、设备出现结垢现象。
系统在正常运转时一般不进行排污。
如有必要进行少量排污,则作为炉渣冷却循环系统的补充水进行串接使用。
另外,经沉淀池沉淀后的污泥,通过排泥泵或送往脱水系统进行脱水处理后,干泥送往烧结厂小球团做小球,或送原浆槽暂存后经原浆泵直接送往烧结厂小球接收系统进行再处理,水处理流程见图2。
图 2 转炉除尘水处理系统流程图Fig.2 Process diagram of converters dedusting water treatment3.2处理效果OG装置的除尘也是利用文氏管,冷却水与转炉排出的炉气直接接触,使排出的水含有很高的悬浮物,如在第一文氏管排出水中的悬浮物最高时达15 000 mg/L,平均为5 000 mg/L,在第二文氏管排出水中的悬浮物达2 000 mg/L。
使用冷却水的目的,一是把炉气中的含尘量降低,二是把炉气温度从1 000℃以上降低到67 ℃左右。
第一和第二文氏管进行串接循环使用,总的循环水量为3 480 m3/h,总循环率达98 %,有效合理地利用水量,最大限度地发挥了去尘除浊的目的。
本系统于1985年9月投运至今,已经历了十几年,系统运转一直较为正常,从1990~1995年的水质分析资料来看,其中悬浮物的处理效果尤其稳定,一直控制在0.01 %以下,远远满足设计指标,其余pH和钙硬度的水质指标也能达到设计要求,具体分析数据见表8。
为了防止管道和设备结垢,采取了投加分散剂加药处理,通过试管试验,收到了良好的效果。
试管试验时间为两个星期,试验结果平均结垢速度为1.86 MCM,达到了15 MCM 的设计指标。
3.3工程设计特点(1) 本系统中采用粗粒分离机,使废水在流入沉淀池之前,将水中大于60 μm以上的粗颗粒通过分离机予以去除,以减轻沉淀池的处理负荷,尤其是减少集泥设备的负荷量,同时对排泥管道也减少磨损和管道堵塞现象,以利于排泥管道的畅通。