第5章 刚体的定轴转动 习题解答
- 格式:pdf
- 大小:547.04 KB
- 文档页数:6
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。
- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
一、选择题[ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.参考答案:逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >[ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A)MLm v . (B)MLm 23v . (C)MLm 35v . (D)MLm 47v .图5-9[ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-7m图5-11v21v俯视图[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.二、填空题6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β=-0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad .7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .图 5-128、基础训练(10)如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。
第五张 刚体力学平动中见彼此,转动中见分高低.运动美会让你感受到创造的乐趣.走过这遭,也许会有曾经沧海难为水的感叹.别忘了,坐标变换将为你迷津救渡,同时亦会略显身手.【要点分析与总结】1 刚体的运动(1)刚体内的任一点的速度、加速度(A 为基点) (2)刚体内的瞬心S :()21s A A r r ωυω=+⨯〈析〉ω为基点转动的矢量和,12ωωω=++值得注意的是:有转动时r '与r ω'⨯的微分,引入了r ω'⨯与()r ωω'⨯⨯项。
2 刚体的动量,角动量,动能 (1)动量:c P m υ=(2)角动量: x x xx xy xz i i i y yxyy yz y zx zyzz z z L J J J L r m L J J J J J J J L ωυωωω⎛⎫⎛⎫⎛⎫-- ⎪ ⎪⎪=⨯===-- ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭∑式中:转动惯量()()()222222xx yy zz J y z dmJ z x dm J x y dm ⎧=+⎪⎪=+⎨⎪=+⎪⎩⎰⎰⎰惯量积xx yy zz J xydmJ yzdm J zxdm ⎧=⎪⎪=⎨⎪=⎪⎩⎰⎰⎰且c c cL r m L υ'=⨯+ * l e 方向(以l 为轴)的转动惯量: (,,αβγ分别为l e 与,,x y z 轴夹角的余弦) * 惯量主轴惯量主轴可以是对称轴或对称面的法线若X 轴为惯量主轴,则含X 的惯量积为0,即: 0==xy xz J J 若,,x y z 轴均为惯量主轴,则:xx yy zz L J i J j J k =++ 〈析〉建立的坐标轴轴应尽可能的是惯量主轴,这样会降低解题繁度。
(3) 动能:22211112222c i i c c iT m m m J υυυωω'=+=+∑* 定轴转动时: 212T J ω=* 平面平行运动: 221122c c T m J υω=+3刚体的动力学方程与质点动力学方程相同。
第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。
5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。
积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。
则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。
刚体也是物体的一种理想模型。
5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。
这种运动称为刚体的平动或平移。
6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。
如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。
如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。
刚体的一般运动,可以看作平动和转动所合成。
7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。
对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。
质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。
对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。