虾体内氨基酸含量变化及其影响因素的研究进展
- 格式:pdf
- 大小:222.24 KB
- 文档页数:4
2020.6基金项目:广东省科技创新战略专项资金竞争性分配项目(2018A04001);广东省科技创新战略专项资金竞争性分配项目(2018A03005)。
通信作者:张海涛。
刘敏1张海涛1,2孙广文1,2王卓铎1,2(1.广东恒兴饲料实业股份有限公司,农业农村部华南水产与畜禽饲料重点实验室,广东湛江524022;2.湛江恒兴特种饲料有限公司,广东湛江524094)四、红螯螯虾对维生素和矿物质的需求研究1.对维生素的需求维生素非生物体组成部分,但却担负着特殊的代谢功能。
动物需要从外界(通常是饲料)摄入微量的维生素,以维持机体生长。
目前有关红螯螯虾对维生素需求的研究仅见维生素C、维生素E、维生素A 1(视黄醇)需求量的报道。
左迪(2016)研究了不同饲料V C 水平(0~3200毫克/千克)对红螯螯虾免疫性能的影响。
结果表明,饲料中添加适量的V C 能够促进红螯螯虾的生长,机体的增重率和特定生长率増高,但V C 对其成活率、肝体指数无显著影响。
V C 的主要合成部位是肝胰腺,V C 添加量过高或不足时均会抑制红螯螯虾的生长,结合增重率、特定生长率及肝胰腺中V C 含量的变化,红螯螯虾饲料中V C 的适宜添加量为400毫克/千克。
基于免疫性能考虑,建议螯虾饲料中V C 的添加量为800毫克/千克。
左迪的研究同时表明V C 能增强红螯螯虾的抗病毒能力,对螯虾防御WSSV 侵染起到一定的作用。
吴东蕾(2015)采用了与左迪类似的方法研究红螯螯虾对V C 需求,得出了相似的结果:400毫克/千克的V C 水平最适合红螯螯虾的生长。
罗文等(2005)探讨了不同饲料V E 水平(0.0085%~0.0276%)对红螯螯虾繁殖性能的影响。
结果发现饲料中19.2毫克/千克的V E 可明显提高红螯螯虾的繁殖性能,且V E 主要是通过提高红螯螯虾受精卵的质量来提高其胚胎发育的成活率和孵化率。
Liñán-Cabello 等(2004)的研究也发现类胡萝卜素和视黄醇(维生素A 1)可促进红螯螯虾卵母细胞发育,且这两种物质是雌虾卵母细胞成熟过程中的必需营养素。
食品中氨基酸含量与口感的相关性研究导语:食物对人类而言是基本的生存需求,而在追求满足口腹之欲的同时,人类对食物的味道和口感也有着不同的追求。
而食物的味道和口感,往往与其中的氨基酸含量息息相关。
本文将探讨食品中氨基酸含量与口感的相关性。
一、氨基酸对食品口感的影响氨基酸是构成蛋白质的基本组成单位,也是组成食物味道的重要成分之一。
例如,谷氨酸和谷氨酰胺是食物中重要的味觉物质,能够增强食物的鲜味。
精氨酸则具有增强甜味的作用。
而丙氨酸则能增强酸味的感知。
因此,不同氨基酸的含量和比例,会直接影响食物的味道和口感。
二、氨基酸含量与食物的咸味关系研究研究表明,食物中谷氨酸的含量与食品的咸味感知密切相关。
一方面,谷氨酸能够与食物中的钠离子结合,增强钠离子在味蕾上的感知,进而增加食物中咸味的感知。
另一方面,谷氨酸还可以直接作用于味蕾细胞,增强味蕾对咸味的敏感性。
因此,食物中谷氨酸含量的多少会直接影响食物的咸味感知,而适当的谷氨酸含量可以增加食物的咸味感。
三、氨基酸含量与食物的酸味和苦味关系研究食物中丙氨酸的含量与食物的酸味感知相关。
研究发现,随着食物中丙氨酸含量的增加,食物的酸味感知也增强。
这是由于丙氨酸能够与食物中的酸类成分结合,进一步增强酸味的感知。
而在酸味的基础上,苦味的感知也有一定的关联。
比如,某些氨基酸的味觉质体上存在两种受体,一种受体接受酸味的刺激,另一种受体则接受苦味的刺激。
因此,食物中氨基酸含量的变化,不仅会影响到酸味的感知,也会对苦味感知产生一定的影响。
四、氨基酸含量与食物的甜味关系研究食物中精氨酸的含量与食品的甜味感知相关。
精氨酸在食物中能够与食物中的甜味物质结合,使甜味物质在味蕾上的感知增强。
同时,精氨酸还能够刺激味蕾细胞释放更多的甜味感知信号,进一步增强食物的甜味。
因此,适当增加食物中精氨酸的含量,可以增强食物的甜味感。
结语:食品中的氨基酸含量直接影响着食物的口感和味道。
食物的咸味、酸味、苦味、甜味等味觉的感知都与其中的氨基酸含量密切相关。
鲜虾贮藏期间蛋白水解产物变化及其对品质的影响鲜虾作为一种美味可口的海鲜食材,备受人们喜爱。
然而,由于其易腐败的特性,如何在贮藏期间保持其新鲜度和优质品质是鲜虾加工和销售过程中亟待解决的问题之一。
本文将讨论鲜虾贮藏期间蛋白水解产物的变化以及这些变化对鲜虾品质的影响。
首先,我们需要了解什么是蛋白水解产物。
蛋白水解产物是指蛋白质在贮藏过程中被酶水解分解产生的化合物。
这些水解产物包括氨基酸、肽和多肽等。
在鲜虾贮藏期间,由于微生物的作用和自身酵素的作用,蛋白质开始发生水解分解,从而产生各种蛋白水解产物。
蛋白水解产物的变化对鲜虾的品质有着重要的影响。
首先,蛋白水解产物的生成会导致鲜虾的香气和味道的改变。
研究表明,鲜虾贮藏过程中,蛋白水解产物的生成会释放出一种特殊的气味,常常被描述为鱼腥味。
这种气味的产生会降低鲜虾的口感和风味,使其失去原有的鲜美。
因此,对于加工和销售鲜虾的企业来说,必须采取措施来减少蛋白质的水解,从而降低香气和味道的改变。
除了香气和味道的改变,蛋白水解产物还会对鲜虾的质地和口感产生影响。
研究发现,蛋白质的水解会导致鲜虾肌肉的变软和脱水,从而使其质地变差。
此外,蛋白水解产物的生成也会导致鲜虾肌肉中的肌纤维断裂,使其失去原有的结构和弹性。
这些变化会影响鲜虾的咀嚼感和口感,使其变得柔软和易碎。
在研究和实践中,人们对鲜虾贮藏期间蛋白水解产物的控制和减少进行了一些尝试。
一种常用的方法是在鲜虾贮藏过程中添加抗氧化剂和抑菌剂来抑制蛋白质的水解。
抗氧化剂可以延缓蛋白质的氧化过程,从而减少蛋白水解产物的生成。
抑菌剂则可以抑制微生物的生长和酶的活性,进一步减少蛋白质的水解。
此外,调节贮藏条件,如温度和湿度,也可以减缓蛋白质的水解反应。
需要注意的是,尽管控制蛋白水解产物的生成可以减少鲜虾贮藏期间的品质变化,但这并不意味着完全可以消除这些变化。
鲜虾作为一种易腐败食材,其品质变化是不可避免的。
因此,在加工和销售鲜虾时,企业应该尽量减少贮藏时间,提高产品周转率,以保证鲜虾的新鲜度和品质。
红螯螯虾研究进展及在江苏的产业发展前景分析殷悦;严维辉;郑友;彭刚【摘要】该文主要介绍了红螯螯虾的生物学特性和主要研究进展,通过优劣势及产业现状对比,分析认为该品种在江苏具有良好的产业发展前景.【期刊名称】《水产养殖》【年(卷),期】2018(039)010【总页数】5页(P9-13)【关键词】红螯螯虾;研究进展;产业发展;江苏【作者】殷悦;严维辉;郑友;彭刚【作者单位】江苏省淡水水产研究所,江苏南京,210017;江苏省淡水水产研究所,江苏南京,210017;江苏省淡水水产研究所,江苏南京,210017;江苏省淡水水产研究所,江苏南京,210017【正文语种】中文【中图分类】S932红螯螯虾又叫澳洲淡水龙虾,学名四脊光壳拟螯虾(Cherax quadricarinatus),隶属节肢动物门,甲壳纲,十足目,拟螯虾科,光壳虾属[1]。
原产澳大利亚,个体较大,外形和海中的龙虾接近,但属于在淡水中生活繁殖的虾类品种,其肉质紧实滑脆、味道鲜美可口,是世界上经济价值较高的虾类品种之一。
红螯螯虾体色为绿色或褐绿色,雄性成虾第一步足大螯的外侧顶端有一鲜红、柔软的膜质带[2],故称其为红螯螯虾。
红螯螯虾适温范围较广,为5~35℃,个体规格一般在100~150 g,个别规格甚至可达500~600 g。
雌雄异体。
外生殖器官位于头胸甲腹面,雌虾的生殖孔位于第三步足基部,雄虾的生殖孔位于第五步足基部。
红螯螯虾昼伏夜出,白天基本躲避在水草或缝隙角落等易于隐蔽的地方,傍晚外出觅食,一般在浅水生活,营底栖爬行。
红螯螯虾是一种杂食性的淡水虾类,和小龙虾类似,其植物性和动物性饲料均能食用,植物性饵料如玉米、黄豆、青饲料、有机碎屑、丝状藻类、水生植物的根茎叶等都可食用,但更喜食动物性的如螺蚌、鱼肉、丝蚯蚓、水生昆虫等食物,具有贪食争食和相互残杀的习性。
红螯螯虾耐低氧,一般养殖条件下不会出现缺氧现象,但不耐低温。
该虾生长速度较快,夏秋季为生长旺季,一般在经过3~4个月的生长后,其个体规格能达到60~80 g/尾左右,当年养殖成品虾规格在100 g。
表1几种常见鱼的初级嗅板数目鱼类品种初级嗅板数目/对鱼类品种初级嗅板数目/对大口鲶30~45日本鳗鲡54革胡子鲶17~22斑点叉尾25~28黄颡鱼32~34泥鳅5~8长吻50~66鲤鱼15~16基金项目:安徽省重大科技专项(0701*******)*通讯作者研究表明,外源性氨基酸类物质不仅具有营养作用,而且对水产动物的摄食行为有着极强的刺激作用,是水产动物良好的诱食剂。
本文就国内外关于氨基酸类物质作为诱食剂的研究作一综述,为氨基酸诱食剂的进一步研究和在水产养殖中的应用提供参考。
本文所述的氨基酸类物质不仅包括一般形式的氨基酸单体,还包括复合氨基酸、氨基酸衍生物和含氨基酸提取物等。
1水产动物的摄食感受器系统与诱食机理水产动物的摄食感受器系统主要包括嗅觉感受器与味觉感受器。
1.1嗅觉感受器鱼类的嗅觉感受器由一些嗅觉上皮内陷形成的嗅囊,以及嗅囊内的嗅觉上皮通过褶皱形成的初级嗅板构成。
初级嗅板的多少与鱼类的嗅觉灵敏度相关,嗅板数目多其嗅觉上皮的相对面积就大,鱼类的嗅觉也就较灵敏。
表1为几种常见鱼的初级嗅板数目。
嗅觉检测结果证明,欧洲鳗能感受浓度为2×10-6mol/L 的芷香酮和3×10-19mol/L 的苯乙醇,是人类嗅觉能力的1000多倍。
另外,鱼类的嗅觉灵敏度因其不同发育阶段而有差异,研究发现,牙鲆的初孵鱼仔嗅囊内没有嗅觉上皮细胞,而25日龄的稚鱼嗅囊中各嗅觉细胞均已分化成熟,嗅觉功能出现。
对甲壳类动物的研究表明,其嗅觉感受器与脊椎动物的相比有较大的不同,如龙虾的嗅觉感受器主要集中在附肢第一对触角上,通过神经元树突感受外界信息。
在电镜下,龙虾的嗅觉神经元数目为35万个,能对三甲基甘氨酸、半胱氨酸、谷氨酸、牛磺酸等物质产生不同的反应(曾瑞和杨春贵,2002)。
1.2味觉感受器味觉系统的外部器官是味蕾。
鱼类的味蕾遍布体内外,不仅存在于口腔、咽、食管和鳃上,也存在于唇、触须、体侧和鳍上,而甲壳类动物的味觉感受器则主要分布在口器和颚足上。
海水养殖日本对虾的营养需求与饲养管理研究近年来,养殖业的快速发展对满足日益增长的人口对水产品的需求起到了关键作用。
其中,海水养殖日本对虾作为高品质的水产品之一,受到广大消费者的青睐。
然而,对虾在海水养殖过程中需要满足一定的营养需求,并且需要进行科学的饲养管理,才能够实现理想的生长效果。
本文将重点针对海水养殖日本对虾的营养需求和饲养管理进行研究和探讨。
海水养殖日本对虾的营养需求是保证其正常生长和免疫能力的基础。
对于日本对虾来说,主要的营养需求包括蛋白质、脂肪、碳水化合物、维生素和矿物质。
其中,蛋白质是对虾身体组织的构建和修复起着关键作用,能够提供所需的氨基酸。
脂肪则不仅是对虾能量的主要来源,也是维持其正常生理功能的必需物质。
碳水化合物则用于为对虾提供能量。
维生素和矿物质对于对虾的生长发育也是非常重要的,能够提供必需的营养物质,维持正常的生理代谢。
在养殖过程中,对于日本对虾的饲养管理至关重要。
正确的饲养管理可以提高养殖效率,预防疾病的发生,并且保持对虾的健康生长。
首先,养殖者应该选择合适的养殖场地,注意保持适宜的水质环境,确保对虾能够在稳定的环境中生长。
其次,对虾的饲料需要科学配方,应满足其营养需求。
饲料应该均衡,并且具有良好的可消化性,以提高对虾的饲料利用率。
饲喂量需要根据对虾的生长情况进行调整,避免过度喂食或是饥饿。
此外,饲养过程中还需要关注对虾的健康状况。
对虾容易受到各种疾病的影响,如传染病、寄生虫等。
因此,养殖者需要密切关注对虾的行为、食欲、外观等指标,及时发现异常情况并采取相应的措施进行预防和治疗。
定期清理养殖环境,保证水质的清洁和流通,也能够有效预防疾病的发生。
饲养密度也是影响海水养殖日本对虾的要素之一。
合理的饲养密度能够提高对虾的生长效率,但是过高的饲养密度则会增加对虾间的竞争,造成营养不足和疾病传播的风险。
因此,对养殖场容量和饲养密度进行科学的计算和评估是必要的。
同时,注意定期进行养殖场的清洁和消毒,保持良好的水质环境。
虾类肌肉品质及其种间差异的比较研究一、课题来源及选题依据(国内外研究动态、研究目的、意义)1.研究目的、意义虾类是重要的经济水生动物,其肉味道鲜美,具有较高的营养价值,其平均蛋白质含量为17.8%,脂肪含量为1.3%,另外还含有多种氨基酸。
虾类浸出物成分中含多量的甜菜碱、精氨酸等成分,具有独特的风味。
它们生活于海水或淡水水域,不仅是渔业生产的重要捕捞对象,又是增养殖的主要种类。
该类动物在水产业中占有重要的地位。
大面积养殖的种类主要为沼虾属和对虾属的部分种。
近几年,由于养殖技术水平、营养饲料研究和新型渔业机械等方面的发展,虾类养殖由原来的粗放式养殖向高密度、全人工配合饲料投饵并辅以渔业机械的池塘精养方式转变,全国虾产量逐年成倍增长。
另外,由于海水养殖爆发性流行病后有关虾病病原、病因、病理、传播途径、快速诊断及防治方法等的研究不能适应其发展,促使水产养殖科技研究工作者探索海产虾淡水养殖技术。
目前,主要的发展种类为适应盐度较广的海产虾类,如南美白对虾和斑节对虾等。
然而,随着养殖模式的转变,虾类产量的提高,虾肉品质明显下降,主要表现为个体趋小,肌肉变粗,营养成分下降[1],口味、口感失去虾肉的特有风味。
近年来,随着我国人民生活水平的不断提高,膳食结构将发生很大的变化,动物性食品占据的比重越来越大,水产品在动物食品中的比重不断增大(目前已超过20%),作为高档食品原料的虾产品已进入寻常被百姓家庭。
我国国民对虾肉品质的要求也愈来愈高。
这种现状不仅难以满足我国消费者不断增长的质量需求,而且显著降低了虾肉品质的国际市场竞争力,严重制约我国虾养殖业的可持续发展[2],提高虾肉品质已成为当前水产业科技领域的一项重要任务。
因此,从虾类肌肉的营养成分和风味物质组成、肌肉组织结构特性等方面研究虾肉品质的形成机理、种类间的差异和影响虾肉品质的内源性及环境等因素,将为虾类品种改良、肌肉品质改善提供理论上的指导。
2 国内外研究动态2.1 动物肉品质性状及其影响因素2.1.1 动物肉品质性状及评定肉品质是一个复杂的概念,研究比较多且深入的动物类群是畜、禽类。
动物营养学报2020,32(12):5516⁃5523ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.12.004水产动物亮氨酸营养研究进展张圆圆㊀王连生∗(中国水产科学研究院黑龙江水产研究所,黑龙江省水生动物病害与免疫重点实验室,哈尔滨150070)摘㊀要:亮氨酸作为支链氨基酸中唯一的生酮氨基酸,是水产动物的必需氨基酸之一,对水产动物的营养生理作用至关重要㊂本文综述了水产动物亮氨酸需求量㊁亮氨酸与其他氨基酸的相互作用㊁亮氨酸对蛋白质代谢㊁抗氧化能力㊁免疫功能㊁肠道发育的影响,以期为亮氨酸在水产动物营养需求㊁功能机理与健康养殖方面的深入研究提供参考㊂关键词:水产动物;亮氨酸;需求量;免疫;肠道中图分类号:S963㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)12⁃5516⁃08收稿日期:2020-04-24基金项目:黑龙江省应用技术研究与开发计划项目(GA18B202);国家大宗淡水鱼产业技术体系资金(CARS⁃45);黑龙江水产研究所基本科研业务费专项资金(HSY202002M);国家自然科学基金项目(31802305);中国水产科学研究院基本科研业务费(2018HY⁃ZD0503)作者简介:张圆圆(1985 ),女,黑龙江哈尔滨人,助理研究员,博士,从事水产动物营养与饲料研究㊂E⁃mail:zhangyuanyuan@hrfri.ac.cn∗通信作者:王连生,副研究员,E⁃mail:wangliansheng@hrfri.ac.cn㊀㊀必需氨基酸在水产动物生长和健康方面发挥着重要作用㊂支链氨基酸(branched⁃chainaminoacid,BCAA)属于必需氨基酸㊂由亮氨酸㊁缬氨酸和异亮氨酸组成的支链氨基酸,在动物蛋白质总氨基酸中的占比为18% 20%,主要在骨骼肌中被支链氨基酸脱氢酶复合物氧化,为肌肉内源合成谷氨酰胺提供α-氨基[1-2]㊂亮氨酸在机体合成蛋白质㊁能量代谢㊁葡萄糖平衡等方面具有重要作用[3],是一种功能性氨基酸㊂亮氨酸通过激活雷帕霉素靶蛋白(targetofrapamycin,TOR)信号通路,调控机体蛋白质合成㊁分解代谢和免疫功能[4]㊂同时,亮氨酸在血红蛋白生成及胁迫条件下血糖水平调节方面具有重要作用[5]㊂本文综述了水产动物亮氨酸需求量㊁亮氨酸对蛋白质代谢㊁抗氧化能力㊁免疫功能㊁肠道发育的影响,以期为亮氨酸在水产动物营养需求㊁功能机理与健康养殖方面的深入研究提供参考㊂1 水产动物亮氨酸需求量㊀㊀亮氨酸是水产动物的必需氨酸之一,亮氨酸缺乏会降低草鱼(Ctenopharyngodonidella)[6]㊁印度鲤鱼(Cirrhinusmrigala)[7]㊁印度囊鳃鲶(Het⁃eropneustesfossilis)[8]㊁异育银鲫(Carassiusaura⁃tusgibeliovar.CASⅢ)[9]等水产动物的生长性能㊁饲料转化率及蛋白质沉积率[6-9]㊂近年发表的水产动物亮氨酸需求量见表1,由此表可知鱼类对亮氨酸的需求量为1.29% 3.41%,虾蟹类对亮氨酸的需求量为1.70% 2.48%㊂不同品种水产动物的亮氨酸需求量不同,由表1可知,吉富罗非鱼(Oreochromisniloticus)的亮氨酸需求量仅为1.25%,而卵形鲳鲹(Trachinotusovatus)的亮氨酸需求量高达3.29%㊂同一品种不同规格的水产动物对亮氨酸的需求量也不同,体重为2.25㊁295.85g草鱼的亮氨酸需求量分别为1.52%㊁1.30%,一般小规格水产动物的亮氨酸需求量高于大规格水产动物[6,10]㊂不同评价指标对水产动物亮氨酸需求量也有较大影响,杂交石斑鱼(Epi⁃nephelusfuscoguttatusɬˑEpinepheluslanceolatus)分别以增重率㊁蛋白质沉积率为评价指标,回归分析得出的亮氨酸需求量为3.25%㊁3.41%[11]㊂此外,不同的计算模型也影响水产动物的亮氨酸需求量,0.38g凡纳滨对虾(Litopenaeusvannamei)分别以二次多项式模型㊁折线模型进行估算,得出的亮氨酸需求量为2.36%㊁2.48%[12-13]㊂12期张圆圆等:水产动物亮氨酸营养研究进展表1 水产动物亮氨酸需求量(占饲料的百分比)Table1㊀Leucinerequirementofaquaticanimal(percentageofdiet)品种Species体重Bodyweight/g模型Mode评价指标Evaluationindicator需求量Requirement/%参考文献Reference鱼类Fish草鱼Grasscarp295.85二次多项式模型增重率血氨含量丙二醛含量1.301.291.32Deng等[6]2.25折线模型增重率饲料转化率1.521.53黄爱霞等[10]杂交鲶鱼HybridCatfish23.19折线模型增重率2.81Zhao等[14]团头鲂Bluntsnoutbream23.27二次多项式模型增重率特定生长率1.401.56Liang等[15]10.2二次多项式模型特定生长率饲料转化率1.441.61Ren等[16]青鱼Blackcarp2.9二次多项式模型增重率饲料转化率2.352.39Wu等[17]露斯塔野鲮Indianmajorcarp0.40二次多项式模型增重率饲料转化率1.571.55Abidi等[5]0.60二次多项式模型增重率1.58Ahmed等[7]杂交石斑鱼Hybridgrouper6.92二次多项式模型增重率蛋白质沉积率3.253.41Zhou等[11]眼斑拟石首鱼Reddrum1.42二次多项式模型增重率蛋白质沉积率1.571.63Castillo等[18]吉富罗非鱼Niletilapia1.94二次多项式模型增重率1.25Gan等[19]卵形鲳鲹Goldenpompano5.76二次多项式模型增重率特定生长率3.283.29Tan等[20]印度囊鳃鲶Stingingcatfish6.80二次多项式模型增重率饲料转化率1.651.69Farhat等[8]建鲤Jiancarp7.88二次多项式模型增重率1.29伍曦[21]花鲈Japaneseseabass167.82二次多项式模型增重率饲料转化率2.762.80路凯[22]8.0二次多项式模型增重率2.39Li等[23]吉富罗非鱼Niletilapia53.65二次多项式模型增重率饲料转化率2.332.28石亚庆等[24]大黄鱼Largeyellowcroaker6.0二次多项式模型增重率2.92Li等[25]卡特拉鱼Catlacatla3.75二次多项式模型增重率1.57Zehra等[26]甲壳类Crustacean三疣梭子蟹Swimmingcrabs3.75折线模型增重率2.21Huo等[27]凡纳滨对虾Pacificwhiteshrimp0.38二次多项式模型增重率饲料转化率2.362.40Liu等[12]0.38折线模型增重率2.48刘福佳等[13]0.53折线模型增重率2.46王用黎[28]斑节对虾Tigershrimp0.02二次多项式模型增重率1.70Millamena等[29]中华绒螯蟹Chinesemittencrabs0.90折线模型特定生长率2.36杨霞等[30]7155㊀动㊀物㊀营㊀养㊀学㊀报32卷2㊀亮氨酸与其他氨基酸的相互作用㊀㊀由于支链氨基酸在细胞膜上的转运载体相同,在水产动物上已开展了关于亮氨酸㊁缬氨酸和异亮氨酸之间及与其他氨基酸的协同或拮抗作用的相关研究㊂2.1㊀亮氨酸与缬氨酸的相互作用㊀㊀Han等[31]采用2ˑ3双因素(亮氨酸含量:1.6%㊁5.0%;缬氨酸含量:1.2%㊁1.8%㊁2.5%)试验明确了亮氨酸能够显著影响增重率㊁特定生长率及饲料转化率,且与缬氨酸之间存在交互作用;低亮氨酸含量时,增重率和特定生长率与随着缬氨酸含量的增加而升高,在亮氨酸含量为1.6%㊁缬氨酸含量为2.5%时,增重率最高;在亮氨酸含量为5.0%㊁缬氨酸含量为2.5%时,增重率最低;与1.6%亮氨酸组相比,5.0%亮氨酸组血细胞比容㊁血红蛋白含量㊁乳酸脱氢酶㊁谷草转氨酶活性及甘油三酯含量显著降低㊂亮氨酸与缬氨酸对牙鲆(Paralichthysolivaceus)消化酶㊁免疫酶活性存在显著的交互作用,且亮氨酸含量为2%㊁缬氨酸含量为2.27%时,脂肪酶㊁超氧化物歧化酶的活性得到显著提高[32]㊂上述研究结果表明饲料高亮氨酸㊁高缬氨酸之间存在拮抗作用,在虹鳟(On⁃corhynchusmykiss)[33]㊁红点鲑(Salvelinusnamay⁃cush)[34]的研究中也得到类似的结果㊂2.2㊀亮氨酸与异亮氨酸的相互作用㊀㊀王丽萍等[35]采用2ˑ3(亮氨酸含量:2.58%㊁5.08%,异亮氨酸含量:1.44%㊁2.21%㊁4.44%)试验研究了亮氨酸和异亮氨酸对生长性能㊁消化酶活性的影响,在亮氨酸含量为5.08%㊁异亮氨酸含量为1.44%时,增重率㊁特定生长率和蛋白酶活性显著高于低亮氨酸低异亮氨酸组;在亮氨酸含量为2.58%㊁异亮氨酸含量为4.44%时,脂肪酶活性显著高于低亮氨酸低异亮氨酸组,且亮氨酸和异亮氨酸之间存在显著的交互作用㊂此外,随着亮氨酸含量的升高,大马哈鱼(Oncorhynchusketa)的异亮氨酸需求量也相应升高[36]㊂2.3㊀亮氨酸与其他氨基酸的作用关系㊀㊀研究发现,眼斑拟石首鱼饲料中亮氨酸含量为0.90%时血清中异亮氨酸㊁缬氨酸的含量显著高于亮氨酸含量为2.50%时[18];草鱼肌肉中异亮氨酸㊁缬氨酸含量随着饲料中亮氨酸含量的升高而显著降低,但肌肉中总氨基酸的含量显著升高[37];随着饲料中亮氨酸含量的升高,杂交石斑鱼血清中缬氨酸㊁异亮氨酸的含量显著降低[11]㊂以上结果显示亮氨酸与异亮氨酸㊁缬氨酸存在拮抗作用,随着饲料中亮氨酸含量的升高,其他2种支链氨基酸的含量显著降低㊂另有研究结果表明,随着饲料中亮氨酸含量的升高,团头鲂(Megalo⁃bramaamblycephala)血清中异亮氨酸的含量显著降低,但对血清中缬氨酸含量的影响未达到显著水平[16]㊂饲料中高亮氨酸含量未对青鱼(Mylo⁃pharyngodonpiceus)肌肉中缬氨酸㊁异亮氨酸的含量产生显著影响,但必需氨基酸苏氨酸㊁赖氨酸㊁亮氨酸㊁苯丙氨酸的含量显著升高,非必需氨基酸谷氨酸㊁天冬氨酸㊁甘氨酸㊁丝氨酸㊁半胱氨酸㊁脯氨酸的含量同样显著升高[17]㊂饲料中亮氨酸含量对凡纳滨对虾肌肉中异亮氨酸㊁缬氨酸的含量均无显著影响,但适量的亮氨酸可提高肌肉中苯丙氨酸㊁苏氨酸的含量[13]㊂随着饲料中亮氨酸含量的升高,中华绒螯蟹(Eriocheirsinensis)肌肉中亮氨酸和缬氨酸的含量随之升高,丝氨酸㊁半胱氨酸㊁总氨基酸㊁总必需氨基酸的含量也随之升高[30]㊂亮氨酸的吸收也受其他氨基酸的影响,肠道主要功能物质谷氨酰胺可以促进草鱼肠道对亮氨酸和脯氨酸的吸收,并显著提高肠道蛋白质的合成水平[38]㊂综上所述,饲料中的亮氨酸与异亮氨酸㊁缬氨酸㊁其他氨基酸的作用关系可能与品种㊁饲料组成等有关㊂3㊀亮氨酸对水产动物蛋白质代谢的影响㊀㊀亮氨酸缺乏或过量阻碍机体蛋白质的沉积㊂亮氨酸缺乏或过量降低凡纳滨对虾蛋白质沉积率㊁出肉率㊁肌肉蛋白质含量,且亮氨酸缺乏还会降低肌肉总氨基酸含量[12]㊂眼斑拟石首鱼(Sci⁃aenopsocellatus)饲料中亮氨酸含量由0.90%提高至2.50%时,蛋白质沉积率㊁出肉率均得到显著提高[18]㊂对于异育银鲫㊁团头鲂㊁草鱼㊁杂交石斑鱼,亮氨酸缺乏显著降低肝脏㊁肌肉TOR基因的表达量,抑制下游基因核糖体S6激酶1(S6K1)基因的表达,降低蛋白质的合成代谢[9,11,16,37]㊂亮氨酸缺乏或过量降低杂交石斑鱼脑垂体生长激素㊁肝脏生长激素受体1㊁胰岛素样生长因子-1的基因表达量[11]㊂孙姝娟等[39]注射亮氨酸24h后,对虾TOR表达量是对照组的3 4倍,表明亮氨酸对TOR的表达具有调节作用㊂815512期张圆圆等:水产动物亮氨酸营养研究进展4㊀亮氨酸对水产动物免疫功能的影响㊀㊀亮氨酸缺乏显著降低水产动物肠道㊁肝脏㊁鳃等器官的免疫功能,主要通过降低非特异性免疫相关酶活性㊁抗炎因子的基因表达量㊁免疫器官结构的完整性产生不良影响㊂亮氨酸缺乏或过量显著降低草鱼前肠㊁中肠㊁后肠溶菌酶㊁酸性磷酸酶活性及补体3(complement3,C3)的含量,以溶菌酶活性为指标,进行二次多项式回归分析得到草鱼亮氨酸需求量为1.29%;亮氨酸缺乏显著提高促炎因子白细胞介素-8(interleukin⁃8,IL⁃8)㊁肿瘤坏死因子-α(tumornecrosisfactor⁃α,TNF⁃α)的基因表达量,降低抗炎因子白细胞介素-10(interleu⁃kin⁃10,IL⁃10)㊁转化生长因子-β(transforminggrowthfactor⁃β,TGF⁃β)的基因表达量[40]㊂此外,亮氨酸缺乏或过量显著提高团头鲂肝脏TNF⁃α的基因表达量[16]㊂亮氨酸预处理可显著降低脂多糖(lipopolysaccharide,LPS)诱导露斯塔野鲮(Labeorohita)肝细胞的促炎因子IL⁃8㊁TNF⁃α㊁白细胞介素-1β(interleukin⁃1β,IL⁃1β)的基因表达量,提高抗炎因子IL⁃10的基因表达量,降低Toll样受体4(Tolllikereceptor4,TLR4)信号通路的TLR4㊁转录因子p65㊁髓样分化因子88㊁丝裂原活化蛋白激酶p38的基因及蛋白表达量[41]㊂上述研究表明,亮氨酸缺乏引发肠道炎症反应,影响肠道健康㊂亮氨酸缺乏显著降低卵形鲳鲹(Trachinotusova⁃tus)血清溶菌酶活性㊁全血血红蛋白含量及血细胞比容[20]㊂亮氨酸缺乏显著降低青鱼血清溶菌酶活性㊁C3含量;亮氨酸缺乏或过量均会显著降低血液中天然抗性相关巨噬细胞蛋白㊁溶菌酶㊁C3㊁补体9(complement9,C9)㊁干扰素-α(interferon⁃α,IFN⁃α)㊁肝杀菌肽等基因的表达量,从而影响鱼类非特异性免疫功能[17]㊂鳃不仅是鱼类呼吸㊁调节渗透压㊁酸碱平衡㊁氨氮排放的器官,同时也是主要的淋巴组织,具有重要的免疫功能[42-43]㊂亮氨酸缺乏通过使细胞凋亡㊁紧密连接蛋白受损等方式破坏鳃结构的完整性,鳃结构完整性受损会降低免疫功能,甚至造成死亡[44]㊂注射或灌喂亮氨酸显著降低罗非鱼(Oreochromisniloticus)海豚链球菌攻毒后的死亡率,主要作用途径是促进机体缬氨酸㊁亮氨酸㊁异亮氨酸的代谢及氨基酰-转移核糖核酸(tRNA)的生物合成[45]㊂5㊀亮氨酸对水产动物抗氧化能力的影响㊀㊀活性氧自由基(ROS)可能是引起水产动物机体氧化损伤的主要因素㊂机体非抗氧化酶系统和抗氧化酶系统是抑制氧化损伤的主要防御系统[46]㊂机体抗氧化酶系统主要受Kelch样环氧氯丙烷相关蛋白α/核因子E2相关因子2(Kelch⁃likeepichlorohydrin⁃associatedprotein1α⁃nuclearfactor⁃E2⁃relatedfactor2,Keap1α/Nrf2)信号通路调控[47]㊂亮氨酸缺乏或过量均会显著提高肠道㊁肌肉丙二醛(malondialdehyde,MDA)㊁蛋白羰基的含量,降低谷胱甘肽(glutathione,GSH)含量以及铜锌超氧化物歧化酶(copper/zincsuperoxidedis⁃mutase,CuZnSOD)㊁谷胱甘肽过氧化物酶(gluta⁃thioneperoxidase,GPx)的活性,其作用机理可能是亮氨酸缺乏或过量通过Keap1α/Nrf2信号通路降低CuZnSOD㊁GPx的基因表达量,进而降低机体抗氧化能力[6,37]㊂亮氨酸缺乏或过量降低团头鲂血清总抗氧化能力(totalantioxidantcapacity,T⁃AOC)与SOD㊁GPx㊁过氧化氢酶(catalase,CAT)的活性,提高MDA含量,降低核因子E2相关因子2(nuclearfactor⁃E2⁃relatedfactor2,Nrf2)㊁血红素氧化酶-1(hemeoxygenase⁃1,HO⁃1)㊁GPx㊁谷胱甘肽转移酶(glutathionetransferase,GST)㊁SOD的基因表达量[15]㊂亮氨酸缺乏显著降低卵形鲳鲹血清SOD活性㊁T⁃AOC,提高MDA含量[20]㊂亮氨酸缺乏显著降低三疣梭子蟹(Portunustritubercu⁃latus)血清SOD活性,提高MDA含量[27]㊂亮氨酸含量在1.57% 2.07%时,卵形鲳鲹血清中T⁃AOC㊁SOD活性显著升高,MDA含量显著降低[48]㊂综上可知,适量的亮氨酸可以通过Keap1α/Nrf2信号通路提高水产动物机体抗氧化酶活性,缓解机体氧化损伤㊂6㊀亮氨酸对水产动物肠道发育的影响㊀㊀肠道在水产动物消化吸收㊁抗氧化及免疫方面发挥重要作用,且肠道消化吸收能力与肠道黏膜结构完整性具有相关性㊂因此,肠道发育情况直接影响水产动物生长及健康㊂亮氨酸缺乏显著降低罗非鱼肠道表皮生长因子和肠道表皮生长因子受体的表达量,降低肠Na+⁃K+⁃ATP酶以及胃蛋白酶㊁肠蛋白酶㊁肠脂肪酶㊁肠淀粉酶的活性;添加亮氨酸显著提高吉富罗非鱼肠道表皮生长因子9155㊀动㊀物㊀营㊀养㊀学㊀报32卷(epidermalgrowthfactor,EGF)㊁表皮生长因子受体(epidermalgrowthfactorreceptor,EGFR)的含量,EGF与EGFR结合后促进肠道黏膜微绒毛的发育,进而提高肠道消化酶的活性和肠道结构的完整性[24]㊂亮氨酸缺乏显著降低青鱼肠道α-淀粉酶㊁胰蛋白酶㊁糜蛋白酶㊁弹性蛋白酶的活性[17]㊂此外,亮氨酸作为支链氨基酸可以为谷氨酰胺合成提供碳源和氮源,促进肠道谷氨酰胺的合成,谷氨酰胺可以为肠道提供能量,进而促进肠道发育[38]㊂亮氨酸缺乏降低肠道消化酶活性的主要原因可能是由于肠道发育受到抑制㊂亮氨酸缺乏显著降低卵形鲳鲹肠道微绒毛数量㊁长度,提高隐窝深度[20]㊂亮氨酸缺乏或过量显著降低杂交石斑鱼褶皱高度㊁褶皱宽度㊁肠上皮细胞高度㊁微绒毛高度[11]㊂亮氨酸含量在1.57% 2.07%时,显著提高卵形鲳鲹肠淀粉酶㊁胃蛋白酶的活性[48]㊂亮氨酸促进肠道完整性主要是通过提高肠道紧密连接蛋白 闭合蛋白(claudin)b㊁claudinc㊁claudin3㊁claudin15㊁闭锁蛋白(occludin)㊁闭锁小带蛋白-1(zonulaoccluden⁃1,ZO⁃1)等基因的表达量,进而促进肠道发育㊁提高消化酶活性[40]㊂7 小结与展望㊀㊀近年来,研究人员开展了大量亮氨酸的相关研究,确定了鱼类对亮氨酸的需求量为1.29% 3.41%,虾蟹类对亮氨酸的需求量为1.70% 2.48%;分析了亮氨酸与缬氨酸㊁异亮氨酸氨基酸的相互作用的;探讨了亮氨酸对蛋白质代谢㊁免疫功能㊁抗氧化功能的影响㊂未来对于亮氨酸的研究,应不局限于鱼类的小规格阶段,需拓展至生长中后期;作为支链氨基酸,其与其他氨基酸和营养物质的互作关系亦是值得深入的方向,从而更全面地了解亮氨酸的功能以及营养作用机制,为水产养殖业㊁动物健康保障和功能性物质的开发奠定基础㊂参考文献:[1]㊀LIP,MAIKS,TRUSHENSKIJ,etal.Newdevelop⁃mentsinfishaminoacidnutrition:towardsfunctionalandenvironmentallyorientedaquafeeds[J].AminoAcids,2009,37(1):43-53.[2]㊀LIP,YINYL,LIDF,etal.Aminoacidsandim⁃munefunction[J].BritishJournalofNutrition,2007,98(2):237-252.[3]㊀LYNCHCJ,ADAMSSH.Branched⁃chainaminoacidsinmetabolicsignallingandinsulinresistance[J].NatureReviewsEndocrinology,2014,10(12):723-736.[4]㊀MEIJERAJ,DUBBELHUISPF.Aminoacidsignal⁃lingandtheintegrationofmetabolism[J].Biochemi⁃calandBiophysicalResearchCommunications,2004,313(2):397-403.[5]㊀ABIDISF,KHANMA.DietaryleucinerequirementoffingerlingIndianmajorcarp,Labeorohita(Hamil⁃ton)[J].AquacultureResearch,2007,38(5):478-486.[6]㊀DENGYP,JIANGWD,LIUY,etal.Differentialgrowthperformance,intestinalantioxidantstatusandrelativeexpressionofNrf2anditstargetgenesinyounggrasscarp(Ctenopharyngodonidella)fedwithgradedlevelsofleucine[J].Aquaculture,2014,434:66-73.[7]㊀AHMEDI,KHANMA.Dietarybranched⁃chainami⁃noacidvaline,isoleucineandleucinerequirementsoffingerlingIndianmajorcarp,Cirrhinusmrigala(Hamilton)[J].BritishJournalofNutrition,2006,96(3):450-460.[8]㊀FARHAT,KHANMA.Responseoffingerlingstin⁃gingcatfish,Heteropneustesfossilis(Bloch)tovar⁃yinglevelsofdietaryL⁃leucineinrelationtogrowth,feedconversion,proteinutilization,leucineretentionandbloodparameters[J].AquacultureNutrition,2014,20(3):291-302.[9]㊀ZOUT,CAOSP,XUWJ,etal.Effectsofdietaryleucinelevelsongrowth,tissueproteincontentandrelativeexpressionofgenesrelatedtoproteinsynthesisinjuvenilegibelcarp(Carassiusauratusgibeliovar.CASⅢ)[J].AquacultureResearch,2018,49(6):2240-2248.[10]㊀黄爱霞,孙丽慧,陈建明,等.饲料亮氨酸水平对幼草鱼生长㊁饲料利用及体成分的影响[J].饲料工业,2018,39(2):26-32.[11]㊀ZHOUZY,WANGX,WUXY,etal.Effectsofdiet⁃aryleucinelevelsongrowth,feedutilization,neuro⁃endocrinegrowthaxisandTOR⁃relatedsignalinggenesexpressionofjuvenilehybridgrouper(Epineph⁃elusfuscoguttatusɬˑEpinepheluslanceolatus)[J].Aquaculture,2019,504:172-181.[12]㊀LIUFJ,LIUYJ,TIANLX,etal.Quantitativedieta⁃ryleucinerequirementofjuvenilePacificwhite025512期张圆圆等:水产动物亮氨酸营养研究进展shrimp,Litopenaeusvannamei(Boone)rearedinlow⁃salinitywater[J].AquacultureNutrition,2014,20(3):332-340.[13]㊀刘福佳,李雪菲,刘永坚,等.低盐度条件下的凡纳滨对虾幼虾亮氨酸营养需求[J].中国水产科学,2014,21(5):963-972.[14]㊀ZHAOY,LIJY,JIANGQ,etal.Leucineimprovedgrowthperformance,musclegrowth,andmusclepro⁃teindepositionthroughAKT/TORandAKT/FOXO3asignalingpathwaysinhybridcatfishPel⁃teobagrusvachelliˑLeiocassislongirostris[J].Cells,2020,9(2):327.[15]㊀LIANGHL,MOKRANIA,JIK,etal.Dietaryleu⁃cinemodulatesgrowthperformance,Nrf2antioxidantsignalingpathwayandimmuneresponseofjuvenilebluntsnoutbream(Megalobramaamblycephala)[J].Fish&ShellfishImmunology,2018,73:57-65.[16]㊀RENMC,HABTE⁃TSIONHM,LIUB,etal.Dietaryleucinelevelaffectsgrowthperformance,wholebodycomposition,plasmaparametersandrelativeexpres⁃sionofTORandTNF⁃αinjuvenilebluntsnoutbream,Megalobramaamblycephala[J].Aquaculture,2015,448:162-168.[17]㊀WUCL,CHENL,LUZB,etal.Theeffectsofdieta⁃ryleucineonthegrowthperformances,bodycomposi⁃tion,metabolicabilitiesandinnateimmuneresponsesinblackcarpMylopharyngodonpiceus[J].Fish&ShellfishImmunology,2017,67:419-428.[18]㊀CASTILLOS,GATLINⅢDM.Dietaryrequirementsforleucine,isoleucineandvaline(branched⁃chaina⁃minoacids)byjuvenilereddrumSciaenopsocellatus[J].AquacultureNutrition,2018,24(3):1056-1065.[19]㊀GANL,ZHOULL,LIXX,etal.Dietaryleucinere⁃quirementofjuvenileNiletilapia,Oreochromisnilotic⁃us[J].AquacultureNutrition,2016,22(5):1040-1046.[20]㊀TANXH,LINHZ,HUANGZ,etal.Effectsofdiet⁃aryleucineongrowthperformance,feedutilization,non⁃specificimmuneresponsesandgutmorphologyofjuvenilegoldenpompanoTrachinotusovatus[J].Aq⁃uaculture,2016,465(1):100-107.[21]㊀伍曦.亮氨酸对幼建鲤生长性能和免疫功能的影响[D].硕士学位论文.雅安:四川农业大学,2011:15-29.[22]㊀路凯.花鲈对亮氨酸㊁异亮氨酸和色氨酸需求量的研究[D].硕士学位论文.青岛:中国海洋大学,2015:16-31.[23]㊀LIY,CHENGZY,MAIKS,etal.DietaryleucinerequirementofjuvenileJapaneseseabass(LateolabraxJaponicus)[J].JournalofOceanUniversityofChina,2015,14(1):121-126.[24]㊀石亚庆,孙玉轩,罗莉,等.吉富罗非鱼亮氨酸需求量研究[J].水产学报,2014,38(10):1778-1785.[25]㊀LIY,AIQH,MAIKS,etal.Dietaryleucinerequire⁃mentforjuvenilelargeyellowcroakerPseudosciaenacrocea(Richardson,1846)[J].JournalofOceanUni⁃versityofChina,2010,9(4):371-375.[26]㊀ZEHRAS,KHANMA.DietaryleucinerequirementoffingerlingCatlacatla(Hamilton)basedongrowth,feedconversionratio,RNA/DNAratio,leu⁃cinegain,bloodindicesandcarcasscomposition[J].AquacultureInternational,2015,23(2):577-595.[27]㊀HUOYW,JINM,SUNP,etal.Effectofdietaryleu⁃cineongrowthperformance,hemolymphandhepato⁃pancreasenzymeactivitiesofswimmingcrab,Portu⁃nustrituberculatus[J].AquacultureNutrition,2017,23(6):1341-1350.[28]㊀王用黎.凡纳滨对虾幼虾对苏氨酸㊁亮氨酸㊁色氨酸和缬氨酸需要量的研究[D].硕士学位论文.湛江:广东海洋大学,2013:16-26.[29]㊀MILLAMENAOM,TERUELMB,KANAZAWAA,etal.Quantitativedietaryrequirementsofpostlarvaltigershrimp,Penaeusmonodon,forhistidine,isoleu⁃cine,leucine,phenylalanineandtryptophan[J].Aqua⁃culture,1999,179(1/2/3/4):169-179.[30]㊀杨霞,叶金云,周志金,等.中华绒螯蟹幼蟹对亮氨酸和异亮氨酸的需要量[J].水生生物学报,2014,38(6):1062-1070.[31]㊀HANYZ,HANRZ,KOSHIOS,etal.InteractiveeffectsofdietaryvalineandleucineontwosizesofJapaneseflounderParalichthysolivaceus[J].Aquacul⁃ture,2014,432:130-138.[32]㊀王旭,周婧,薛晓强,等.牙鲆饲料中异亮氨酸与缬氨酸的交互作用对消化酶和部分免疫酶的影响[J].饲料工业,2018,39(20):23-28.[33]㊀YAMAMOTOT,SHIMAT,FURUITAH.Antagonis⁃ticeffectsofbranched⁃chainaminoacidsinducedbyexcessprotein⁃boundleucineindietsforrainbowtrout(Oncorhynchusmykiss)[J].Aquaculture,2004,232(1/2/3/4):539-550.[34]㊀HUGHESSG,RUMSEYGL,NESHEIMMC.Effectsofdietaryexcessesofbranchedchainaminoacidsonthemetabolismandtissuecompositionoflaketrout(Salvelinusnamaycush)[J].Comparative1255㊀动㊀物㊀营㊀养㊀学㊀报32卷BiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology,1984,78(3):413-418.[35]㊀王丽萍.牙鲆(Paralichthysolivaceus)饲料中亮氨酸与异亮氨酸交互作用的研究[D].硕士学位论文.大连:大连海洋大学.2017:11-39.[36]㊀CHANCERE,MERTZET,HALVERJE.Nutritionofsalmonoidfishes.Ⅻ.Isoleucine,leucine,valineandphenylalaninerequirementsofchinooksalmonandin⁃terrelationsbetweenisoleucineandleucineforgrowth[J].TheJournalofNutrition,1964,83(3):177-185.[37]㊀DENGYP,JIANGWD,LIUY,etal.DietaryleucineimprovesfleshqualityandaltersmRNAexpressionsofNrf2⁃mediatedantioxidantenzymesinthemuscleofgrasscarp(Ctenopharyngodonidella)[J].Aqua⁃culture,2016,452:380-387.[38]㊀叶元土,王永玲,蔡春芳,等.谷氨酰胺对草鱼肠道L-亮氨酸㊁L-脯氨酸吸收及肠道蛋白质合成的影响[J].动物营养学报,2007,19(1):28-32.[39]㊀孙姝娟,刘梅,彭劲松,等.中国明对虾TOR基因的克隆及精氨酸㊁亮氨酸对其表达的影响[J].海洋科学,2010,34(6):71-80.[40]㊀JIANGWD,DENGYP,LIUY,etal.Dietaryleucineregulatestheintestinalimmunestatus,immune⁃relatedsignallingmoleculesandtightjunctiontranscriptabun⁃danceingrasscarp(Ctenopharyngodonidella)[J].Aquaculture,2015,444:134-142.[41]㊀GIRISS,SENSS,JUNJW,etal.Protectiveeffectsofleucineagainstlipopolysaccharide⁃inducedinflam⁃matoryresponseinLabeorohitafingerlings[J].Fish&ShellfishImmunology,2016,52:239-247.[42]㊀EVANSDH,PIERMARINIPM,CHOEKP.Themultifunctionalfishgill:dominantsiteofgasex⁃change,osmoregulation,acid⁃baseregulation,andex⁃cretionofnitrogenouswaste[J],PhysiologicalRe⁃views,2005,85(1):97-177.[43]㊀MARTINSC,DEMATOSAPA,COSTAMH,etal.Alterationsinjuvenileflatfishgillepitheliainducedbysediment⁃boundtoxicants:acomparativeinsituandexsitustudy,Mar[J].MarineEnvironmentalRe⁃search,2015,112:122-130.[44]㊀JIANGWD,DENGYP,ZHOUXQ,etal.Towardsthemodulationofoxidativedamage,apoptosisandtightjunctionproteininresponsetodietaryleucinede⁃ficiency:alikelycauseofROS⁃inducedgillstructuralintegrityimpairment[J].Fish&ShellfishImmunolo⁃gy,2017,70:609-620.[45]㊀MAYM,YANGMJ,WANGSY,etal.Liverfunc⁃tionalmetabolomicsdisclosesanactionofL⁃leucinea⁃gainstStreptococcusiniaeinfectionintilapias[J].Fish&ShellfishImmunology,2015,45(2):414-421.[46]㊀MARTÍNEZ⁃ÁLVAREZRM,MORALESAE,SANZA.Antioxidantdefensesinfish:bioticandabi⁃oticfactors[J].ReviewsinFishBiologyandFisher⁃ies,2005,15(1/2):75-88.[47]㊀GIULIANIME,REGOLIF.IdentificationoftheNrf2⁃Keap1pathwayintheEuropeaneelAnguillaan⁃guilla:roleforatranscriptionalregulationofantioxi⁃dantgenesinaquaticorganisms[J].AquaticToxicolo⁃gy,2014,150:117-123.[48]㊀黄忠,周传朋,林黑着,等.饲料异亮氨酸水平对卵形鲳鲹消化酶活性和免疫指标的影响[J].南方水产科学,2017,13(1):50-57.225512期张圆圆等:水产动物亮氨酸营养研究进展∗Correspondingauthor,associateprofessor,E⁃mail:wangliansheng@hrfri.ac.cn(责任编辑㊀菅景颖)ResearchProgressofLeucineNutritioninAquaticAnimalsZHANGYuanyuan㊀WANGLiansheng∗(KeyLaboratoryofAquaticAnimalDiseasesandImmuneTechnologyofHeilongjiangProvince,HeilongjiangRiverFisheriesResearchInstituteofChineseAcademyofFisherySciences,Harbin150070,China)Abstract:Leucineisabranched⁃chainaminoacidandisoneoftheessentialaminoacidsforaquaticanimals.Leucine,astheonlyketogenicaminoacidinbranched⁃chainaminoacids,isessentialforthenutritionalandphysiologicalroleofaquaticanimals.Thisarticlereviewedtherequirementofleucineinaquaticanimals,theinteractionbetweenleucineandotheraminoacids,andtheeffectsofleucineonproteinmetabolism,antioxi⁃dantability,immunefunctionandintestinaldevelopment,inordertoprovidereferencesforfurtherresearchofnutritionalrequirement,functionalmechanismandhealthfulaquacultureonleucineinaquaticanimals.[ChineseJournalofAnimalNutrition,2020,32(12):5516⁃5523]Keywords:aquaticanimals;leucine;requirement;immune;intestinaltract3255。