Sensor动作原理与灵敏度调整
- 格式:ppt
- 大小:1.42 MB
- 文档页数:7
感应sensor工作原理一、引言感应sensor是一种常见的传感器,广泛应用于各个领域,如工业自动化、环境监测、智能家居等。
本文将从感应sensor的工作原理进行探讨,介绍其基本原理和应用。
二、感应sensor的基本原理感应sensor是利用物理效应来感知周围环境的一种设备。
其基本原理是根据感应原理,通过感应元件的感应作用来实现对某种被测量参数的测量。
1. 电磁感应原理电磁感应原理是感应sensor最常用的工作原理之一。
根据法拉第电磁感应定律,当感应元件中的磁通量发生变化时,会在感应元件上产生感应电动势。
感应sensor利用这一原理,通过测量感应电动势的大小来得到被测量参数的值。
2. 压阻效应原理压阻效应原理是另一种常用的感应sensor工作原理。
压阻效应是指某些材料在受力作用下会发生电阻值的变化。
感应sensor利用这一原理,通过测量材料的电阻值来实现对被测量参数的测量。
3. 光电效应原理光电效应原理是感应sensor中的一种常见原理。
光电效应是指当光照射到某些材料上时,会产生电子的释放或电离现象。
感应sensor 利用这一原理,通过测量光电效应产生的电流或电压来实现对被测量参数的测量。
三、感应sensor的应用领域感应sensor广泛应用于各个领域,下面介绍几个常见的应用领域。
1. 工业自动化在工业自动化领域,感应sensor被用于检测物体的位置、速度、压力等参数。
例如,在生产线上,通过安装感应sensor可以实现对物体的自动检测和控制,提高生产效率和质量。
2. 环境监测感应sensor在环境监测领域也有广泛的应用。
例如,利用温度感应sensor可以监测环境温度的变化,通过湿度感应sensor可以监测环境湿度的变化,通过气体感应sensor可以监测空气中某种气体的浓度等。
3. 智能家居感应sensor在智能家居领域也起到了重要的作用。
例如,通过安装人体感应sensor可以实现对家居设备的自动控制,例如自动开关灯、自动调节温度等,提高家居的舒适性和便捷性。
光电sensor原理光电传感器是一种基于光电效应的传感器,其原理是利用光电效应将光信号转化为电信号。
光电效应是指光照射到物质表面时,光子的能量被物质吸收,电子从束缚态跃迁到导带态,产生电子-空穴对。
根据光电效应的不同机制,光电传感器有多种类型,包括光电二极管、光电三极管、光电二极管阵列等。
光电二极管是最简单的一种光电传感器,其结构由PN结组成。
当光照射到PN结时,光子的能量被光电二极管吸收,使得PN结中的载流子发生变化,产生电流。
光电二极管的电流与光照强度成正比,因此可以通过测量光电二极管的电流来间接测量光照强度。
光电三极管是在光电二极管的基础上发展而来的一种光电传感器。
光电三极管在PN结的基础上增加了一层N型或P型材料,形成了PNP或NPN结构。
当光照射到光电三极管时,光子的能量被吸收,使得PN结中的载流子发生变化,进而改变了PNP或NPN结的导电特性。
通过测量光电三极管的电流或电压变化,可以得到光照强度的信息。
光电二极管阵列是一种由多个光电二极管组成的阵列结构。
每个光电二极管对应一个像素点,通过测量每个像素点的电流或电压变化,可以获取物体的光强分布信息,从而实现图像的采集和传输。
光电二极管阵列广泛应用于光电显示、光电扫描等领域。
除了光电二极管、光电三极管和光电二极管阵列,还有其他类型的光电传感器,如光电开关、光电编码器等。
光电开关是一种能够通过光信号控制开关状态的传感器。
当光照射到光电开关的光敏元件上时,光电开关的开关状态发生变化。
光电编码器是一种能够将机械位移转化为光信号的传感器。
通过测量光电编码器输出的光信号,可以获取机械位移的信息。
光电传感器具有响应速度快、灵敏度高、精度高等优点,广泛应用于工业自动化、光电测量、遥感探测等领域。
在工业自动化中,光电传感器可以用于检测物体的存在、位置、颜色等信息,实现自动化控制。
在光电测量中,光电传感器可以用于测量光强、光功率等参数,实现精密测量。
在遥感探测中,光电传感器可以用于获取地球表面的光谱信息,实现遥感图像的获取和分析。
光电传感器的工作原理及灵敏度改进方法光电传感器是一种利用光电效应进行光电转换的装置,广泛应用于光电测量、图像采集、光学通信等领域。
本文将详细介绍光电传感器的工作原理,并提出几种改善光电传感器灵敏度的方法。
一、光电传感器的工作原理光电传感器主要由光源、光电二极管(或光敏电阻)、信号处理电路以及输出装置等组成。
其工作原理是通过光源发出的光线照射到被测物体上,经过物体的反射、散射等过程后,被光电二极管接收,并产生电信号。
该电信号进入信号处理电路进行放大和过滤等处理,最终输出给外部设备。
1.1 光源光电传感器的光源通常选择发光二极管(LED)或激光二极管(LD)。
LED具有体积小、功耗低以及响应速度快等优点,适用于绝大多数测量场景。
LD的激光特性使其在远距离测量方面具有较大优势。
1.2 光电二极管光电二极管是光电转换的关键组件,具有对光的敏感度,其材料常用硅、锗等。
由于硅光电二极管的响应速度较快,敏感光谱范围较广,因此在大多数光电传感器中被广泛采用。
1.3 信号处理电路信号处理电路主要由放大器、滤波器、模数转换器等组成,用于放大、滤波和数字化光电二极管输出的电信号。
该电路可以根据具体需求进行设计,以提高信号的精确度和稳定性。
二、光电传感器灵敏度的改进方法光电传感器的灵敏度直接影响其测量精度和可靠性。
在实际应用中,有一些方法可以改善光电传感器的灵敏度,下面将介绍其中几种常见的方法。
2.1 光源优化优化光源的选择和驱动电路设计是提高光电传感器灵敏度的重要手段。
可以选择具有较高光强度和较小波长的光源来增加光电二极管的接收光量。
此外,合理设计驱动电路,确保光源的稳定性和可调性,也能有效提高光电传感器的灵敏度。
2.2 信号放大增益调整信号放大增益是影响光电传感器灵敏度的关键参数之一。
通过调整信号放大器的增益,可以提高光电二极管输出信号的幅度,从而增强光电传感器的灵敏度。
但是需要注意的是,过高的放大增益可能会引入噪声,因此在调整增益时需要综合考虑信噪比的问题。
mems传感器原理MEMS传感器原理。
MEMS传感器(Micro-Electro-Mechanical Systems Sensor)是一种微型化的传感器,它利用微机电系统技术,将微型机械结构、微电子器件和微加工技术相结合,实现了对微小物理量的检测和测量。
MEMS传感器在许多领域都有着广泛的应用,比如汽车行业、医疗设备、智能手机等。
本文将介绍MEMS传感器的原理及其工作机制。
1. MEMS传感器的原理。
MEMS传感器的原理基于微机电系统技术,其核心是微型机械结构和微电子器件。
在MEMS传感器中,微机械结构起着感应作用,而微电子器件则负责信号的处理和输出。
微机械结构通常由微米级的机械零件组成,比如微型弹簧、振动结构等,这些微机械结构对外界的物理量变化非常敏感。
当外界物理量作用于微机械结构时,微机械结构会产生微小的位移或变形,这种微小的位移或变形会引起微电子器件中的信号变化,最终输出检测到的物理量。
2. MEMS传感器的工作机制。
MEMS传感器的工作机制可以简单分为三个步骤,感应、转换和输出。
首先是感应阶段,当外界物理量作用于MEMS传感器时,微机械结构会产生微小的位移或变形。
这个过程类似于传统传感器中的敏感元件受到刺激后的变化,只不过在MEMS传感器中,这种变化是微米级甚至纳米级的微小变化。
接着是转换阶段,微机械结构的微小位移或变形会引起微电子器件中的信号变化。
这些微电子器件可以是微型电容、微型电阻、微型压电器件等,它们会将微小的位移或变形转换为电信号或其他形式的信号。
最后是输出阶段,经过信号转换后,MEMS传感器会输出检测到的物理量。
输出的信号可以是电压信号、电流信号、数字信号等,这取决于MEMS传感器的类型和应用场景。
3. MEMS传感器的特点。
MEMS传感器具有许多独特的特点,使其在众多传感器中脱颖而出。
首先,MEMS传感器具有微型化和集成化的特点。
由于采用了微机电系统技术,MEMS传感器的尺寸非常小,可以轻松集成到各种微型设备中,比如智能手机、可穿戴设备等。
传感器的五个紧要技术指标及工作原理传感器的五个紧要技术指标一、传感器的静态特性:传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
由于这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的紧要参数有:线性度、灵敏度、辨别力和迟滞等。
二、传感器的动态特性:所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是由于传感器对标准输入信号的响应简单用试验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在确定的关系,往往知道了前者就能推定后者。
常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
三、传感器的线性度:通常情况下,传感器的实际静态特性输出是条曲线而非直线。
在实际工作中,为使具有均匀刻度的读数,常用一条拟合直线貌似地代表实际的特性曲线、线性度(非线性误差)就是这个貌似程度的一个性能指标。
拟合直线的选取有多种方法。
如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线四、传感器的灵敏度:灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。
假如传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。
否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。
例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。
但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
运动传感器灵敏度调节器的工作原理运动传感器灵敏度调节器是一种工程设备,主要用于调节运动传感器的灵敏度,从而提供更准确的运动检测和监测功能。
它在许多领域中得到广泛应用,如安防系统、智能家居和自动化控制等。
本文将介绍运动传感器灵敏度调节器的工作原理及其在实际应用中的意义。
一、运动传感器简介在了解运动传感器灵敏度调节器的工作原理之前,我们首先需要了解运动传感器的基本知识。
运动传感器,也称为运动检测器,是一种能够检测周围环境中物体运动的设备。
它采用各种不同的技术,如红外线、超声波和微波等,以侦测运动物体,并发出相应的信号。
二、灵敏度调节器的作用运动传感器的灵敏度是指设备对周围环境中微小运动的反应程度。
灵敏度调节器的作用就是通过改变传感器的感应范围和触发条件,使其能够适应不同的应用场景。
例如,在安防系统中,高灵敏度的传感器可以更好地探测到潜在的入侵者;而在智能家居中,适度的灵敏度可以避免误报。
三、灵敏度调节器的原理灵敏度调节器通过在传感器电路中引入可变电阻或电容,来调节传感器的敏感程度。
具体来说,当电阻或电容的阻值或容值发生变化时,传感器的感应范围和触发条件也会相应改变。
1. 可变电阻调节器可变电阻调节器采用了可调电阻元件,如电位器或可调电阻器。
传感器的输出信号传递到可变电阻调节器,然后通过改变电阻的阻值来调节传感器的灵敏度。
当电阻阻值减小时,传感器的感应范围和触发条件会增加;反之,当电阻阻值增加时,传感器的感应范围和触发条件会减小。
2. 可变电容调节器可变电容调节器利用了电容元件的特性来改变传感器的灵敏度。
传感器的输出信号传递到可变电容调节器中,然后通过改变电容的容值来调节传感器的感应范围和触发条件。
当电容容值增加时,传感器的灵敏度减小;反之,当电容容值减小时,传感器的灵敏度增加。
四、实际应用中的意义运动传感器灵敏度调节器在实际应用中具有重要意义。
首先,它能够提供更精确的运动检测,从而降低误报率并提高安全性。
sensor常用技术要求sensor(传感器)是一种能够感知并接收外界物理量或信号,并将其转化为可供人类或机器理解的电信号的装置。
传感器常用于测量、监测和控制各种物理量,例如温度、压力、湿度、光照、声音等。
本文将介绍一些传感器常用的技术要求。
1. 灵敏度传感器的灵敏度是指其对输入物理量的变化的响应程度。
灵敏度越高,传感器对输入信号的变化越敏感。
对于某些需要高精度测量的应用,如天文观测或科学实验,需要使用具有极高灵敏度的传感器。
2. 精确度传感器的精确度是指其输出信号与实际物理量之间的偏差。
精确度越高,传感器输出的信号与实际物理量之间的误差越小。
对于一些需要精确测量的应用,如工业自动化或医疗设备,需要使用具有高精确度的传感器。
3. 响应时间传感器的响应时间是指从输入信号发生变化到传感器输出信号变化的时间间隔。
响应时间越短,传感器对输入信号的变化越快速响应。
对于一些需要快速监测和控制的应用,如汽车制动系统或机器人技术,需要使用具有快速响应时间的传感器。
4. 工作范围传感器的工作范围是指传感器能够测量或感知的物理量的上下限。
工作范围越大,传感器能够适应的环境和应用场景越广泛。
对于一些需要在极端环境下工作的应用,如航空航天或海洋探测,需要使用具有广泛工作范围的传感器。
5. 稳定性传感器的稳定性是指传感器在长时间使用或在不同环境条件下,输出信号的稳定性和一致性。
稳定性越高,传感器在不同工作条件下输出信号的变化越小。
对于一些需要长时间稳定运行的应用,如环境监测或气象观测,需要使用具有高稳定性的传感器。
6. 可靠性传感器的可靠性是指传感器在长时间使用过程中的失效率和故障率。
可靠性越高,传感器在使用过程中的失效和故障的概率越低。
对于一些需要长时间连续运行或在恶劣环境下使用的应用,如工业生产或航空器件,需要使用具有高可靠性的传感器。
7. 适应性传感器的适应性是指传感器在不同应用场景下的适应能力和灵活性。
适应性越高,传感器能够适应不同的物理量、环境和工作条件。
CMOS Sensor的调试经验分享我这里要介绍的就是CMOS摄像头的一些调试经验;首先,要认识CMOS摄像头的结构;我们通常拿到的是集成封装好的模组,一般由三个部分组成:镜头、感应器和图像信号处理器构成;一般情况下,集成好的模组我们只看到外面的镜头、接口和封装壳,这种一般是固定焦距的;有些厂商只提供芯片,需要自己安装镜头,镜头要选择合适大小的镜头,如果没有夜视要求的话,最好选择带有红外滤光的镜头,因为一般的sensor都能感应到红外光线,如果不滤掉,会对图像色彩产生影响,另外要注意在PCB设计时要保证镜头的聚焦中心点要设计在sensor的感光矩阵中心上;除了这点CMOS Sensor硬件上就和普通的IC差不多了,注意不要弄脏或者磨花表面的玻璃;其次,CMOS模组输出信号可以是模拟信号输出和数字信号输出;模拟信号一般是电视信号输出,PAL和NTSC都有,直接连到电视看的;数字输出一般会有并行和串行两种形式,由于图像尺寸大小不同,所要传输的数据不同,数据的频率差异也很大,但是串行接口的pixel clock频率都要比并行方式高同样的数据量下这不难理解,较高的频率对外围电路也有较高的要求;并行方式的频率就会相对低很多,但是它需要更多引脚连线;所以这应该是各有裨益;笔者测试使用的系统是8bit并行接口另外输出信号的格式有很多种,视频输出的主要格式有:RGB、YUV、BAYER PATTERN等;一般CMOS Sensor模组会集成ISP在模组内部,其输出格式可以选择,这样可以根据自己使用的芯片的接口做出较适合自己系统的选择;其中,部分sensor为了降低成本或者技术问题,sensor部分不带ISP或者功能很简单,输出的是BAYER PATTERN,这种格式是sensor的原始图像,因此需要后期做处理,这需要有专门的图像处理器或者连接的通用处理器有较强的运算能力需要运行图像处理算法;不管sensor模组使用何种数据格式,一般都有三个同步信号输出:帧同步/场同步Frame synchronizing、行同步Horizontal synchronizing和像素时钟pixel clock;要保证信号的有效状态与自己系统一致,如都是场同步上升下降沿触发、行同步高低电平有效等;通过以上介绍,我们就可以根据自己的使用的系统选择适合的sensor模组;要选择接口对应如果并行接口,sensor模组输出数据bit位多于接受端,可以用丢弃低位的数据的方法连接、数据格式可以接受或处理、pixel clock没有超过可接受的最高频率有的是可调的,但帧率会受影响、场同步和行同步可以调节到一致的sensor模组,这样才可以保证可以使用;保证这些条件的正确性下,还要符合它的硬件电路要求,首要的是确定它的电源、时钟、RESET等信号是否符合芯片要求,其次要看所有的引脚是否连接正确,这样保证外围的电路没有错误情况下才可能正确显示图像;各个厂商生产的产品各不相同,一些厂商的sensor模组在默认状态下就可以输出图像,而有些厂商的sensor模组必须要设置一些寄存器以后才可以得到图像;区别是否可以直接输出图像,可以通过检测sensor 的输出脚,如果三个同步信号都有,数据线上也有数据,那一般就会有默认图像输出,另外也可以跟厂商联系获得有关信息;如果没有默认输出就需要设置寄存器了,一般都是通过两线串行方式IIC总线使用频率很高设置寄存器;摄像头问题及解决办法汇总一、名词解释1. 白平衡白平衡指的是传感器对在光线不断变化环境下的色彩准确重现的能力表示;大多数拍照系统具有自动白平衡的功能,从而能在光线条件变化下自动改变白平衡值;设计工程师寻找的图像传感器应该配备了一个很好的自动白平衡AWB控制,从而提供正确的色彩重现;2. 动态范围动态范围测量了图像传感器在同一张照片中同时捕获光明和黑暗物体的能力,通常定义为最亮信号与最暗信号噪声门槛级别比值的对数,通常用54dB来作为商业图像传感器的通用指标;具有较宽动态范围的图像传感器可以在明光环境下提供更好的性能例如,使用较窄动态范围传感器在明光环境下拍出的照片会出现“水洗”或模糊的现象;3. 工频干扰BandingSensor在日光灯作为光源下获取图像数据时会产生flicker,其根本原因是照在不同pixel上光能量不同产生的,所接受的光能量的不同也就是图像的亮度的不同;由于CMOS sensor的曝光方式是一行一行的方式进行的,任何一个pixel的曝光时间是一样的,也就是同一行上的每个pixel的曝光开始点和曝光的时间都是一模一样的,所以同一行的所有点所接收到的能量是一样的,而在不同行之间虽然曝光时间都是一样的,但是曝光的开始点是不同的,所以不同行之间所接受到的能量是不一定相同的; 为了使不同行之间所接受的能量相同,就必须找一个特定的条件,使得每一行即使曝光开始点不同,但是所接受的光能量是相同的,这样就避开了flicker,这个特定的条件就是曝光时间必须是光能量周期的整数倍时间;Banding由工频干扰引起,交流电光源都有光强的波动,在中国交流电频率是50Hz,光强的波动就是100Hz,周期10ms;如果camera曝光时间不是10ms的整数倍,那么在不同的感光面接收到的光能量一定不一样,体现在图像上就是有明暗条纹; 消除banding就得想办让曝光时间是10ms的整数倍60Hz的交流电需要控制曝光时间为的整数倍;以50Hz为例说明,实现这个有两种办法:1、设置曝光控制,强制为10ms整数倍变化,但是这样会浪费一部分曝光时间,导致曝光无法用满,在室内自然就会损失性能;2、修改桢率,使每桢图像分到的时间是10ms的整数倍,则可以用满每桢曝光时间在,室内效果更好;修改桢率可以插入Dummy Line或者Dummy Pixel;这需要一点点计算,具体计算需要看sensor输出Timing;例如把桢率设置为,则每桢曝光时间是140ms;如果是15fps,则每桢曝光时间是,如果强制曝光为10ms整数倍,最大即60ms,则有无法参与曝光,损失性能;具体调整桢率方法得和sensor的FAE沟通,每个sensor都可能不一样,不能一概而论;调整桢率还有个原则要注意,预览一般不能低于10fps,再低就很卡,常用和;抓拍不能低于5fps,否则用手就很难拍出清晰的照片,常用;桢率是一个权衡折中的选择,高了曝光时间不够,暗光效果太差,低了没法拍照,容易虚;4. Lens Shading color shading5. Chief Ray Angle拍摄镜头和传感器之间的接口是整个可拍照手机系统中最重要的接口之一;随着镜头的长度变得越来越短,光线到达传感器像素位置的角度也就会变得越来越大;每个像素上都有一个微镜头;微镜头的主要功能就是将来自不同角度的光线聚焦在此像素上;然而,随着像素位置的角度越来越大,某些光线将无法聚焦在像素上,从而导致光线损失和像素响应降低;从镜头的传感器一侧,可以聚焦到像素上的光线的最大角度被定义为一个参数,称为主光角CRA;对于主光角的一般性定义是:此角度处的像素响应降低为零度角像素响应此时,此像素是垂直于光线的的80%;光线进入每个像素的角度将依赖于该像素所处的位置;镜头轴心线附近的光线将以接近零度的角度进入像素中;随着它与轴心线的距离增大,角度也将随之增大; CRA与像素在传感器中的位置是相关的,它们之间的关系与镜头的设计有关;很紧凑的镜头都具有很复杂的CRA模式;如果镜头的CRA与传感器的微镜头设计不匹配,将会出现不理想的透过传感器的光线强度也就是“阴影”;通过改变微镜头设计,并对拍摄到的图像进行适当处理,就可以大大降低这种现象;改变微镜头设计可以大大降低阴影现象;然而,在改变微镜头设计时,必须与镜头设计者密切配合,以便为各种拍摄镜头找到适合的CRA模式;相机的设计工程师应该确保这种技术合作得以实现,并确保传感器与镜头CRA特性可以很好地匹配;为确保成功实现此目标,美光开发了相关的仿真工具和评价工具;由于光线是沿着不同的角度入射到传感器上的,因此对于各种镜头设计而言,阴影现象都是固有的;“cos4定律”说明,减少的光线与增大角度余弦值的四次方是成比例关系的;另外,在某些镜头设计中,镜头可能本身就会阻挡一部分光线称为“晕光”,这也会引起阴影现象;所以,即使微镜头设计可以最小化短镜头的阴影现象,此种现象还是会多多少少地存在;为了给相机设计者提供额外的校正阴影现象的方法,MT9D111中内嵌的图像处理器包含了阴影校正功能,它是为某些特定镜头而定制的; 为了帮助设计工程师将传感器集成在他们的产品中,美光为其生产的所有传感器产品提供了各种开发软件;通过使用这些软件,相机设计工程师可以简化对各种芯片特性默认值的修改过程;每种变化的结果都可以显示在一个PC监视器上;对于很多相机中用到的新型镜头,通过使用这个开发系统, 可以对校正镜头阴影和空间色彩失真进行参数设置;通过使用一个均匀点亮的白色目标,可以对设置响应过程进行简单的试验;软件开发工具可显示对阴影现象的分析结果;之后,工程师就可以使用区域方法来应用校正值;关于校正过程的寄存器设置将保存在开发系统中,以用于相机设计;6. BinningBinning是将相邻的像元中感应的电荷被加在一起,以一个像素的模式读出;Binning分为水平方向Binning和垂直方向Binning,水平方向Binning是将相邻的行的电荷加在一起读出,而垂直方向Binning是将相邻的列的电荷加在一起读出,Binning这一技术的优点是能将几个像素联合起来作为一个像素使用,提高灵敏度,输出速度,降低分辨率,当行和列同时采用Binning时,图像的纵横比并不改变,当采用2:2Binning,图像的解析度将减少75%;在手机小屏幕上Preview时建议用这种方式而不是通过DSP 来做抽点的动作;7. IR cut 滤除红外光sensor不仅对可见光谱感光,而且对红外光谱感光. IR就是infrared红外光, 如果没有IR-Cut Filter,图象就会明显偏红,这种色差是没法来用软件来调整的,一般IR-Cut在650+/-10nm,而UV,紫外光的能量很小,一般就忽略了.未加IR cut 拍摄的照片,可见影响最大的是图像的色彩.二、图像传感器拍摄问题汇总1. 出现横向条纹比如出现横向的紫色或绿色条纹;一般情况下是时序有问题;实例图如下:硬件改善了MCLK和PCLK线,现在已经基本没有绿线了.走线的时候要注意MCLK、PCLK还有帧同步vsync和行同步hsync,基本上市面上的芯片这些信号都要分开走线,最好加GND shielding.总结:现象: 闪横的紫色或绿色干扰线原因: Hsync和高速线距离太近太长, 产生了耦合10cm的高速线产生约5pF 左右的耦合电容, 导致HSYNC不能迅速拉升至90%的区域,相位不同步,最终数据采集有错位;然后因为YUV算法的作用,引起绿线和紫色的闪线;解决办法:绝对禁止将HSYNC,PCLK,MCLK这三根线挤在一起走线; 1HSYNC 夹在低速线SDA和SCL之间2PCLK和MCLK如果一定要贴着走线,最好拉开一点距离,当中夹一根地线;2. 颜色和亮度不连续一般是数据线存在短路、断路和连错的问题;图像会出现类似于水波纹的等高线或大面积色偏. D信号丢失画面整体也会色偏,比如RGB565,D0~D4均断路图像会因蓝色和绿色信号丢失过多而呈现红色;1一根数据线虚焊导致的等高线及颜色失真例子等高线正常的图像2两根数据线和其他设备复用导致的偏绿问题8根数据线中有两根被其它设备复用了,所以这两跟线没出数据;3数据线接反的情况:4数据线错位例 1. 好不容易把OV2640初始化了,但是预览的图像却不对,附件是我capture的一张图我的一根手指头-_-|||; 我用Photoshop分析了一下上面的图片,发现只有G通道有信号,RB通道全黑;我测了一下2640的10根数据线与CSI的16根数据线的连接关系,发现硬件工程师布板时弄错了将sensor的10根数据线D0~D9连到了CSI的D4~D15,而CSI取得的是D8~D15的8bit数据,结果造成了数据位的错位与丢失,造成了以上图像的状况;5 数据线问题例图汇总第一张是亮度很低的情况下抓到的原始数据图像第二张是将光圈调大以后出现的现象3. 图像中只有红或绿颜色Y和U/V的顺序不对;将摄像头的采样格式由CbYCrY改为YCbYCr后,颜色就对了; 示例图片如下所示:4. 横向无规则条纹5. 竖向无规则条纹6. 偏红7. 热噪声.过一段时间噪点逐渐增多.开始工作时正常的,,没有色点,工作过一段时间后,模组开始出现色点,而且色点越来越多. 如上图所示. 原因:工作一段时间sensor温度会提升,温度升高会加剧半导体材料的本征激发;这会导致sensor S/N降低,noise加剧;此状况与sensor材料关系较大,后端或软件处理可以减缓此状况但不能根除;这种叫hot pixel,是芯片过热造成的;8. 模拟电压过低或不稳定模拟电压过低导致很强的光才能感应图像,并且偏色;例1如下图所示,只有天花板上的灯管才感应成像,其他部分很模糊;例2, 模拟电压过低导致竖向条纹;提高AVDD后问题解决;例3,在调试OV7725时发现,刚打开摄像头时图像有条纹,开了一段时间后图像就正常了,有没有哪位知道是什么原因;不正常的图像如下;查出问题了,是模拟电压不稳导致的;9. 背部材料太薄导致“鬼影”补强的表面要用亚光黑油,防止漏光;例1. OV2715异常图像,感测到了背面电路板的漏光,图像如下:例2,GC0307 图像异常,如下图; 中间有条线,像分层那样的线,正常情况是没有;格科微的叫我们四周都补胶,就解决啦;10. 由噪声导致的图像横纹在新版的电路板中,将CMOS移到离主IC较远的地方现象就消失了,之前是放在主IC的背面,猜测是主IC对CMOS造成的影响,比如在模拟电压上引入噪声; 示例1 如下图所示;示例2:cmos为ov的30w像素,型号为ov7141;使用时出项很明显的水平方向的横波纹; 采用和供电,其中VDD_C和VDD_A是由供电,pcb上直接将他们连在一起接;直接铺地,没有划分模拟地和数字地;使用外接电源对AVDD供电,没有出现上述现象;可以确定是由主板的电源噪声引起的改板后效果还可以,主要改动有:1 原来是两层板,现在用的是4层板,有专门的电源层2 LDO输出改用大容量的钽电容滤波;示波器测量电源纹波比以前小了;11. 工频干扰在室外自然光下如果不会出现,那一定是50/60Hz引起的flicker;12. Lens校准参数未调好导致的中间较亮的情况用OV9650摄像头模组拍的图片,像素是800 X 600;中间较亮从硬件来说,可能是lens set与sensor不匹配,特别是CRA,你得看看datasheet两者是否差距太大;软件上,可能是lens correction没调好个人感觉楼主状况属此列,设定好correction区域然后将gain值拉高让中心与周边亮度差异减少,如果此时整个画面过曝,可以将整体gain值再往下调也可以设定曝光参数来减少画面亮度;按以上方法调整OV9650的几个与lens correction有关的寄存器的值,使中心和四周的亮度均匀13. 通过自动增益控制降低噪点在调试OV7675时,图像有左边是模糊的,右边正常,图片如下:将AGC 调小之后不会出现了,但是没之前亮了.效果如下:14. 自动曝光计算出现的偏绿现象OV7670:在室外光线较亮拍摄时,画面颜色任何时候都正常;在室内光线较暗拍摄时,刚打开摄像时拍摄的画面偏绿,几秒钟之后就会恢复正常;属于正常现象;OV7670 30W 计算AE时间比较长;在计算AE的过程中容易出现偏色现象; 可以丢帧或者延时解决这个问题15. 时序不对导致的图像上部或下部出现条纹因Vsync偏移出现问题的例子如下图所示;问题解决方法:camera 模组的timing调整不了;修改AP的camera控制,使垂直同步偏移12 rows. 图像输出正确;16. lens镜间反射导致的眩光这是一颗5M的模组拍摄的图片,天花板的灯在视场外边缘,图中为何出现紫红色的光是什么原因造成的属眩光现象,一般是由于多片lens镜间反射造成;通过改善镀膜制程,增加镜片透射率可以缓解次问题;另外,这张照片光心偏到左边去了,holder偏移lens set circle够大啊,这种偏移都能cover掉;多谢各位关注,问题已经解决,此现象是lens组装到模组上面的机构问题产生;17. pclk与vsync布线干扰在调试一款手机摄像头OV7675时,发现画面垂直不同步,主要是画面的下半部分跳动很厉害,上半部分是好的.问题已经找到了,帧同步VSYNC和PCLK布线有干扰18. PCLK采样边沿选择不对导致的噪点例1,图中有噪点转换了一下Pclk的极性,这个躁点的问题得到了很好的解决;例2. ov7675拍出来的照片发绿;可能是PCLK采样边缘不对,可以试试将pclk 反向;也可能是数据线缺失问题;例3, 如下图所示;通过修改pclk的上升沿和下降沿就解决了;主要有两点:1.修改PCLK的上升沿的斜率;2.或者修改I/O的上升沿的斜率;原因是不同厂家的模组layout的走线的长短,FPC的厚薄,都可能影响到PCLK的获取, FPC的公差过大,或者头板的制作是否有什么问题,都可能引起这个问题; 如果可以通过硬件的方式改变PCLK上升沿的斜率,也可以解决这个问题;来结案了,通过修改pclk的上升沿和下降沿就解决了19. FPN问题白天或亮一点的地方是没有这个问题,就只有在低照度下使用闪光灯拍照会有这样的情形;FPN fixed pattern noise, 无解;20. 台阶效应gain过大,把digitalize的量化步距,乘大了,就出现台阶效应;还与内部的量化精度不够,有关系;另外,若不同的颜色通道的gain不同白平衡计算出的R/G/B_gain不同,会出现color phase error;示意图,如下,只画了B、G两个通道,B_gain比G_gain大,会造成灰阶的景物,有的地方B大,有的地方G大,就会出现颜色不断交替;结合上台阶效应,可能就会表现成的这幅图21. 因电源问题产生的竖向条纹现在已经确定是电源的问题了,我在每个电源都并上了一个大电容,条纹消失了;现在我是用CPU的I/O采集的,效果很好;22. Lens与摄像头不匹配导致的部分偏红现象图中下方居中的地方偏红;ov工程师将LENS CORRECTION调到了极限问题还存在,确认是LENS与SENSOR不匹配造成的,模组厂家更换了镜头后问题基本解决;我下载了你的图片发现有以下问题:1.首先你的照片awb就不对,本身这张照片就没有达到白平衡.2.照片边界锯齿现象很严重.3.色偏问题,你首先要了解一下你的sensor的Lenschief ray angle角度是多少,还有lens的CRA是多少.如果lens的CRA小于sensor的.一定会有偏色的现象.要么换lens.如果市场上找不合适的Lens,就说明sensor 本身品质不是很好.4.理论上lens shading是解决lens的通透率不一样的问题.但也许各家回加自己的算法,可以一试.5.如果Lens 和sensor都已经固定,可以人为想一些办法来减少色差.a.可以将颜色调淡点,这样就不太明显b.做AWB校正,排除不同sensor对RGB感应的不同,引起AWB曲线走的不准.CRA通俗的讲是lens的主轴光线和对成像有贡献的最大的如射光线的夹角,一般Lens厂商会提供CRA曲线,因为Lens从中心到四周的CRA是不一样的.偏红除了SHADING外可能还是要调AWB,因为图片的下方其实就是一片白色,sensor在照白色的地方出现了偏红,再试试调整一下AWB,或者在灯箱里看看R,G,B的三条线是否重合如果是AWB的问题,那为什么图像还有白色区域呢AWB是不会调的有的偏色,有的不偏,不知道的就不要乱说;如果是CRA不比配,那出现的偏色应该是对称的,下面偏红则上面一定会偏红; 个人觉得应该是漏光造成的,不是barrel就是通光孔那里引入了杂光;23.DOVDD28走线过细过长以及地线不合理现象:花屏原因:电压因为导线上的电阻吸收了电压,导致驱动能力不够;地线被拉高并产生毛刺现象,影响信号完整性和数据采集;24. DVDD电压有问题图中的高光部分是办公室窗户;其它部分全黑,没有任何细节是什么原因AWBAGC还是对比度啊问题解决了,是DVDD电压不对;datasheet写的,问了FAE结果是;25. 增益小导致的白色条纹问题当对着白色的物体时,刚进入预览时,会出现下图中显示的条纹,当移动手机时,则这种条纹消失,以后也不会出现,只有再次进入预览时可能会出现,请教各位大虾到底是什么原因这个问题,现在已经解决了,加大了初始化代码中的增益之后,就可以了;26. 帧率问题导致的图像错位Sensor为0v9655 在拍sxga 130万图像有时会出现图像错位的问题如图,vga的则不会出现,帮忙分析;谢谢帧率太高了,暴光时间短了.可以调整VBLANK,HBLANK来解决再降低FPS 到5,试试,你的buffer速度呢谢谢大家在我这里降低帧速率比较有效;27. 电源噪声OV9653出现如图所示的横向纹路;问题已经解决,电源问题,AVDD加钽电容就好了;估计是电源纹波比较严重导致的。
光感sensor工作原理光感传感器是一种能够感知光线强度的电子设备,其工作原理基于光电效应和光敏材料的特性。
光感传感器广泛应用于各个领域,如照明控制、车辆安全、光学仪器等。
光电效应是指在光照射下,物质中的电子能级发生变化,从而引起电荷的运动。
光感传感器利用光电效应的原理,将光能转化为电能,从而实现对光的测量。
一般来说,光感传感器由光敏材料和电路组成。
光敏材料是光感传感器的核心部分,可以将光线转化为电信号。
常见的光敏材料有硅、硒、锗等。
这些材料具有光电效应的特性,当光线照射到光敏材料上时,光子会激发光敏材料中的电子跃迁到导带中,形成电子-空穴对。
这些电子-空穴对的生成数量与光线的强度成正比。
接下来,光感传感器的电路部分会将光敏材料产生的电信号进行放大和处理。
一般情况下,光感传感器会将电信号转化为数字信号,以便于处理和传输。
为了提高光感传感器的灵敏度和稳定性,通常会采用一些信号处理技术,如滤波、放大、去噪等。
当光感传感器接收到光线时,光感传感器会将光线转化为电信号,并将其传输到后续的电路中进行处理。
处理后的信号可以用来控制其他设备的工作状态,比如调整照明灯的亮度、检测车辆周围的光线情况等。
光感传感器的工作原理可以简单概括为:光线照射到光感传感器的光敏材料上,光敏材料产生电信号,电路将电信号进行放大和处理,最终输出可用的信号。
通过这种方式,光感传感器能够感知光线的强度,实现对光线的测量和控制。
总结一下,光感传感器的工作原理是基于光电效应和光敏材料的特性。
当光线照射到光感传感器上时,光敏材料会产生电信号,电路对电信号进行处理,并输出可用的信号。
光感传感器广泛应用于各个领域,发挥着重要的作用。
通过光感传感器,我们可以实现对光线的测量和控制,为各种设备的正常工作提供支持。
1、2、3、4、5、6、7、8、9、10、目前,包括移动设备在内的很多多媒体设备上都使用了摄像头,而且还在以很快的速度更新换代.目前使用的摄像头分为两种:CCD(Charge Couple Device电荷偶合器件)和CMOS(Complementary Metal Oxide Semiconductor互补金属氧化物半导体)。
这两种各有优劣:目前CCD主要使用高质量的DC、DV和高档手机上,其图像质量较好,但是整个驱动模组相对比较复杂,而且目前只有曰本一些企业掌握其生产技术,对于选用的厂商来说成本会比较高昂,而且一些设备对与图像质量没有很苛刻的要求,对体积要求会高一些;而CMOS正好满足这样的要求,CMOS模组则比较简单,目前很多厂商已经把驱动和信号处理的ISP(Image Signal Processor)集成在模组内部,这样体积就更小,而且其生产技术要求相对简单、工艺比较成熟、成本较低、外围电路简单、图像质量也可以满足一般的要求,所以在嵌入式市场中占有很大份额,目前一些高端的CMOS Sensor的质量已经可以和CCD的质量相媲美。
我这里要介绍的就是CMOS摄像头的一些调试经验。
首先,要认识CMOS摄像头的结构。
我们通常拿到的是集成封装好的模组,一般由三个部分组成:镜头、感应器和图像信号处理器构成。
一般情况下,集成好的模组我们只看到外面的镜头、接口和封装壳,这种一般是固定焦距的。
有些厂商只提供芯片,需要自己安装镜头,镜头要选择合适大小的镜头,如果没有夜视要求的话,最好选择带有红外滤光的镜头,因为一般的sensor都能感应到红外光线,如果不滤掉,会对图像色彩产生影响,另外要注意在PCB设计时要保证镜头的聚焦中心点要设计在sensor的感光矩阵中心上。
除了这点CMOS Sensor硬件上就和普通的IC差不多了,注意不要弄脏或者磨花表面的玻璃。
其次,CMOS模组输出信号可以是模拟信号输出和数字信号输出。