对偶理论和灵敏度分析(新)
- 格式:ppt
- 大小:6.73 MB
- 文档页数:128
线性规划中的对偶问题与灵敏度分析线性规划是一种优化方法,广泛应用于各个领域的决策问题。
在线性规划中,对偶问题与灵敏度分析是两个重要的概念和工具,可以帮助我们更好地理解和解决实际问题。
1. 对偶问题在线性规划中,对偶问题是指与原始问题相对应的一个问题。
它通过转换原始问题并构造一个新的问题,以便从不同的角度来解释和解决原始问题。
对偶问题能够提供原始问题的一些有用信息,并且在某些情况下,对偶问题的解与原始问题的解是相等的。
对偶问题的构造可以通过拉格朗日对偶性理论来完成。
该理论通过构造一个拉格朗日函数,将原始问题中的约束条件转化为拉格朗日乘子,从而得到对偶问题。
对偶问题的目标函数是原始问题的约束条件的线性组合。
解决对偶问题可以通过求解拉格朗日函数的最优化问题来实现。
对于线性规划问题,对偶问题的解可以通过求解一组线性方程或线性不等式来获得。
对偶问题的解不仅可以提供原始问题的一些信息,还可以用于检验原始问题的解的可行性和最优性。
2. 灵敏度分析灵敏度分析是在线性规划中评估解决方案对问题参数变化的响应程度的方法。
它可以帮助我们了解如果问题的参数发生变化,对解决方案的影响有多大,并做出相应的调整和决策。
灵敏度分析可以通过改变单个参数或多个参数来进行。
其中,常见的灵敏度分析包括目标函数系数的变化、约束条件右侧常量的变化和新增或取消约束条件。
这些变化可以用来模拟实际情况中可能发生的条件变化,以及评估解决方案的稳定性和可行性。
在进行灵敏度分析时,我们可以通过计算变动参数对解决方案的影响程度来得到一些关键指标。
例如,参数的变化导致目标函数值的变化量称为“影子价格”,而约束条件右侧常量的变化导致解决方案中相应决策变量的变化量,则称为“机会成本”。
灵敏度分析的结果可以帮助我们确定参数的重要性,判断解决方案的可行性和稳定性,以及找到最佳的决策方案。
在实际应用中,灵敏度分析可以帮助我们应对不确定性和风险,做出更加准确和可靠的决策。