理论力学(周衍柏)第二章质点组力学
- 格式:ppt
- 大小:660.50 KB
- 文档页数:36
第二章质点组力学第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心?2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。
船上一人如何向船尾走去,则船将向前移动。
这是不是与质心运动定理相矛盾?试解释之。
2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V 行驶。
一人在船上将一质量为m 的铁球以速度v 向船首抛去。
有人认为:这时人作的功为()mvV mv mV v V m +=−+222212121你觉得这种看法对吗?如不正确,错在什么地方?2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么?2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。
对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。
2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。
2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,难以解算。
理论力学教程 (周衍柏)(第四版)介绍《理论力学教程 (周衍柏)(第四版)》是一本经典的力学教材,由著名力学学者周衍柏编写。
本教程系统讲解了理论力学的基本概念、原理和方法,是理论力学领域的入门教材。
本文档将对该教程的主要内容进行介绍,并以Markdown文本格式输出。
第一章:基本概念1.1 力学的研究对象力学是研究物体运动规律的科学,它将物体分为质点和刚体两个研究对象。
质点被简化为没有具体形状和大小的点,刚体则具有固有形状和大小。
1.2 运动的描述运动可以通过位置、速度和加速度等量来描述。
位置是描述物体在空间中的位置关系,速度是位置随时间的变化率,加速度是速度随时间的变化率。
1.3 牛顿力学的三大定律牛顿力学的三大基本定律为惯性定律、动量定律和作用反作用定律。
惯性定律描述了物体在无外力作用下保持匀速直线运动的性质,动量定律描述了物体受力作用下速度发生变化的规律,作用反作用定律描述了力的相互作用导致的物体运动规律。
第二章:质点运动学2.1 一维直线运动一维直线运动是质点只沿一条直线方向运动的情况。
可以通过物体的位移、速度和加速度来描述其一维直线运动规律。
2.2 二维平面运动二维平面运动是质点在平面内任意方向上运动的情况。
可以通过物体的平面位置、速度和加速度来描述其二维平面运动规律。
2.3 相对运动相对运动是指两个运动物体相对于彼此的运动情况。
可以通过相对速度来描述两个物体之间的相对运动规律。
第三章:质点动力学3.1 牛顿第二定律牛顿第二定律描述了质点受力作用下速度的变化规律,即力等于质量乘以加速度。
3.2 动量定理动量定理描述了质点受力作用下动量的变化规律,即力是动量随时间的变化率。
3.3 机械能守恒定律机械能守恒定律适用于只受重力和弹性力作用的质点,描述了质点机械能(动能和势能之和)在运动过程中的守恒性质。
第四章:刚体静力学4.1 刚体的概念刚体是指形状和大小在运动过程中保持不变的物体。
刚体静力学研究的是刚体受力平衡时的性质和规律。
2023理论力学教程第三版(周衍柏著)课后答案下载理论力学教程第三版内容简介绪论第一章质点力学1.1 运动的描述方法1.2 速度、加速度的分量表示式1.3 平动参考系1.4 质点运动定律1.5 质点运动微分方程1.6 非惯性系动力学(一)1.7 功与能1.8 质点动力学的基本定理与基本守恒定律1.9 有心力小结补充例题思考题习题第二章质点组力学2.1 质点组2.2 动量定理与动量守恒定律2.3 动量矩定理与动量矩守恒定律 2.4 动能定理与机械能守恒定律 2.5 两体问题2.6 质心坐标系与实验室坐标系 2.7 变质量物体的运动2.8 位力定理小结补充例题思考题习题第三章刚体力学3.1 刚体运动的分析3.2 角速度矢量3.3 欧拉角3.4 刚体运动方程与平衡方程3.5 转动惯量3.6 刚体的平动与绕固定轴的.转动 3.7 刚体的平面平行运动3.8 刚体绕固定点的转动__3.9 重刚体绕固定点转动的解__3.10 拉莫尔进动小结补充例题思考题习题第四章转动参考系4.1 平面转动参考系4.2 空间转动参考系4.3 非惯性系动力学(二)__4.5 傅科摆小结补充例题思考题习题第五章分析力学5.1 约束与广义坐标5.2 虚功原理5.3 拉格朗日方程5.4 小振动5.5 哈密顿正则方程5.6 泊松括号与泊松定理5.7 哈密顿原理5.8 正则变换__5.9 哈密顿-雅可比理论__5.10 相积分与角变数__5.11 刘维尔定理小结补充例题思考题习题附录主要参考书目理论力学教程第三版目录本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。
本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。
本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。
第二章习题解答2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。
题2.1.1图有质心公式⎰⎰=dmxdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS ,drrd dS dm θρρ==又因为θcos r x =所以θθθρθρsin 32adrrd dr rd x dmxdm x c ===⎰⎰⎰⎰⎰⎰对于半圆片的质心,即2πθ=代入,有πππθθa a ax c 3422sin 32sin 32=⋅==2.2 解 建立如图2.2.1图所示的球坐标系题2.2.1图把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。
设均匀球体的密度为ρ。
则)(222z a dz y dv dm -===ρπρπρ由对称性可知,此球帽的质心一定在z 轴上。
代入质心计算公式,即)2()(432b a b a dmzdmz c ++-==⎰⎰2.3 解 建立如题2.3.1图所示的直角坐标,原来人W 与共同作一个斜抛运动。
yO题2.3.1图当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。
由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。
所以我们只要比较人把物抛出后水平距离的变化即可。
第一次运动:从最高点运动到落地,水平距离1st a v s ⋅=cos 01 ① gt v =αsin 0 ② ααcos sin 201gv s =③第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有)(cos )(0u v w Wv v w W x x -+=+α可知道u wW w a v v x ++=cos 0水平距离αααsin )(cos sin 0202uv gW w w gv t v s x ++==跳的距离增加了12s s s -=∆=αsin )(0uv gw W w +2.42.4 解 建立如图2.4.1图所示的水平坐标。
理论力学教案第二章质点组力学教材:理论力学教程编者:周衍柏主讲教师:石东平(教授、硕士)单位:重庆文理学院电子电气工程学院授课专业:物理学(师范类)本科2009年3月修订第二章质点组力学一、本章内容概述本章是第一章基本内容的推广和应用,是第三章刚体力学的基础。
在研究质点组力学时,不可能(而且也没有必要)详细地给出各质点的运动规律(包括运动学规律和动力学规律)。
本章研究内容是借助三个反映质点组运动特点的物理量(即质点组的动量、动量矩、动能)来研究质点组运动的总体趋势及某些重要特征。
本章主要研究质点组的动力学规律。
二、本章重点难点重点:从方法论角度掌握质点组力学处理力学问题的方法;掌握三个动力学规律的内容及对应的守恒律的成立条件和应用;掌握质心的概念和质心的计算;理解质心运动定理和柯尼希定理;会处理变质量力学问题。
难点:质心坐标系的重要性和特殊性;质点组的三个基本定理(动量定理、动量矩定理、动能定理)在质心坐标系中的数学表示;两体问题的求解方法和技巧。
三、学时安排计划安排10学时第1节至第7节为教学内容,第8节维里定理为选学内容。
教材内容讲授9学时,1学时总结及习题课。
四、本章所需数学知识微积分、常微分方程、矢量代数及矢量分析。
第二章 质点组力学§2.1 质点组一、质点组的内力和外力1.质点组(又称质点系)若干有相互作用的质点的集合。
2.内力与外力内力——质点组中质点间的相互作用;外力——质点组外物体与组内任一质点的作用力。
3.内力所满足的运动定律① 牛顿第三定律:0=+ji ij f f ,011)(==∑∑=≠=ni nij j ij in f F 。
② 牛顿第二定律。
4.孤立系(闭合系)不受任何外力的质点组。
5.质点组与独立质点集的区别犹如绳子(或刚体)与沙子。
二、质心1.质心概念的必要性① 逐个对质点加以描述和研究的方法,原则上可用,但得出的是方程数目庞大的二阶微分方程组,难以解算;② 况且内力一般是未知量从而问题更复杂。