理论力学第二章 质点组力学(2)
- 格式:pdf
- 大小:432.89 KB
- 文档页数:28
《理论力学教程》基础知识第一章 质点力学1. 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径向速度和横向速度,其表达式分别为:rv r =;θθ r v =;将加速度矢量分解为径向加速度和横向加速度,其表达式分别为2θ r r a r -=; θθθ r r a 2+=。
第2题图2. 求解线约束问题,通常用内禀方程,它的优点是运动规律和约束反作用力可以分开解算,这套方程可表示为,切向:τF dtdv m =;法向:n n R F v m +=ρ2;副法向:b b R F +=0。
3. 试写出直角坐标系表示的质点运动微分方程式x F x m =、y F y m = 、z F z m = 。
4. 质点在有心力作用下,只能在垂直于动量矩J 的平面内运动,它的两个动力学特征是:(1)对力心的动量矩守恒;(2)机械能守恒。
5. 牛顿运动定律能成立的参考系,叫做惯性系;牛顿运动定律不能成立的参考系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加上适当的惯性力。
6. 在平面自然坐标系中,切向加速度的表达式为dtdv a =τ,它是由于速度大小改变产生的;法向加速度的表达式为ρ2v a n =,它是由于速度方向改变产生的。
7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在质点组上的外力,而内力不能使质心产生加速度。
第8题图8. 一质量为m 的小环穿在光滑抛物线状的钢丝上并由A 点向顶点O 运动,其建立起的运动微分方程为:θsin mg dt dv m =;θρcos 2mg R v m -=。
注:此题答案不唯一。
第9题图9.一物体作斜抛运动,受空气阻力为v mk R -=,若采用直角坐标系建立其在任意时刻的运动微分方程为:x x mkv dtdv m -=;y y mkv mg dt dv m --=;若采用自然坐标系建立其在任意时刻的运动微分方程为:θsin mg mkv dtdv m--=; θρc o s 2mg v m =。