新定义问题(讲义及答案)
- 格式:doc
- 大小:397.00 KB
- 文档页数:7
新定义问题(讲义)➢ 知识点睛1. 新定义问题是一类以未接触过的概念为载体,要求学生现学现用,侧重考查观察、尝试、分析、理解、应用等能力的问题.2. 新定义问题的一般处理思路:提取概念中的关键词,理解新定义的实质,与已学知识结合, 在新定义的框架下解决问题.➢ 精讲精练1. 已知实数 a ,b ,定义运算“ * ”如下:a * b =⎧⎪b (a ≤b ) ,则 7 *( 2 * 3) 的值为a 2 -b 2(a > b ) .2. 在平面直角坐标系中,将点(-b ,-a )称为点(a ,b )的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这个点在第 ______ 象限.3. 在平面直角坐标系中,对于点 P (x ,y )和 Q (x ,y′),给出如下 定义:若 ⎧ y (x ≥0) y' = ⎨- y (x < 0 ,则称点 Q 为点 P 的“可控变点”,⎩)例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).结合定义,请回答下列问题: (1)点(-3,-4)的“可控变点”为 ;(2)若点 N (m ,2)是函数 y =x -1 图象上点 M 的“可控变点”,求点 M 的坐标.4.定义:直线y=m x+n 与直线y=nx+m互为“友好直线”,如:直线y=2x+1 与直线y=x+2 互为“友好直线”.(1)点A(a,2)在直线y=-x+1 的“友好直线”上,则a= ;(2)直线y=4x+3 上的一点B(b,c)又是它的“友好直线”上的点,求点B 的坐标;(3)若点C(5,6)在直线l:y=mx+n 上,点D(1,-2)在直线l 的“友好直线”上,求直线l 的解析式.5.在平面直角坐标系中,点P 到x 轴的距离为d1,到y 轴的距离为d2,给出下列定义:若d1≥d2,则称d1 为点P 的最大距离;若d1<d2,则称d2 为点P 的最大距离.例如:点P(-1,2)到x 轴的距离为2,到y 轴的距离为1,因为2>1,所以点P 的最大距离为2.根据以上定义解答下列问题:(1)点A(5,-6)的“最大距离”为;(2)若点B(a,4)的“最大距离”为7,则a 的值为;(3)若点C 在直线y=-2x+3 上,且点C 的“最大距离”为5,求点C 的坐标.6.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x =a +c,y =b +d,那么称点T 3 3是点A,B 的融合点.例如:A(-1,8),B(4,-2),当点T(x,y)满足x =-1+ 4= 1 ,3y =8 + (-2)= 2 时,点T(1,2)是点A,B 的融合点.3(1)已知点A(-1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)已知点D(3,0),点E(t,2t+3)(t 为任意数),点T是点D,E 的融合点.①用含t 的式子表示点T 的坐标;②若直线ET 交x 轴于点H,当△DTH 是以DH 为直角边的直角三角形时,则点E 的坐标为.1 = 3 x +17. 小明根据学习函数的经验,对函数 y =|x +1|-2 的图象、性质进行了探究.小明的探究过程如下: (1)列表:=.(2) 描点并画出该函数的图象. (3) 根据函数图象可得:①该函数的最小值为 ;②观察函数 y =|x +1|-2 的图象,写出该图象的两条性质:,.(4) 结合函数图象,解决问题:①函数图象与 x 轴有 个交点,所以对应方程|x +1|-2=0有个解;②已知函数 y = 1x +1的图象如图所示,结合你所画的函数图3象,直接写出方程 x +1 - 2 = 1x +1的解: .3⎪⎩ ⎪⎩8. 若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数 y = ⎧⎪ x (x ≤1)的图象与性质.(1)列表:⎨-2x + 3(x > 1)=.(2) 描点并画出该函数的图象. (3) 根据函数图象可得:点 A ( 1 ,y 1),B ( 2,y 2),C (x 1,-2),D (x 2, - 3 )在函数图象2 3 2上,则 y 1 y 2,x 1 x 2.(填“>”,“=”或“<”)(4) 结合函数图象,解决问题:①当函数值 y = 5时,自变量 x 的值为;2②若一次函数 y =kx +1(k 为常数且 k ≠0)的图象与分段函数y = ⎧⎪ x (x ≤1) 的图象只有 1 个交点,则 k 的取值范围是 ⎨-2x + 3(x > 1).3 【参考答案】 ➢ 精讲精练1. 2.2. 二或第四.3. (1)(-3,4);(2)点 M 的坐标为(3,2)或(-1,-2). 4. (1)3;(2)B (1,7);(3)直线 l 的解析式为 y = 2x - 4 . 5. (1)6;(2)±7 ;(3)点 C 的坐标为(-1,5)或(4,-5). 6. (1)点 C 是 A ,B 的融合点;(2)①T ⎛ t +1 2 t +1⎫;②(6,15)或( 3 ,6)., ⎪ ⎝ 3 ⎭ 2 7. (1)2;(2) 图略;(3) ①-2;②该函数的图象是轴对称图形;当 x <-1 时,y 随 x 的增大而减小,当 x >-1 时,y 随 x 的增大而增大; (4)①两、两;② x 1 = 3,x 2 = -3 . 8. (1)1;(2)图略;(3)<,>; (4)① - 5;②k >0 或 k ≤-2.2。
新定义问题(二)(讲义)➢ 知识点睛解决新定义问题时常考虑:①回归新定义,给什么,用什么;将新定义与所给问题信息结合分析转化; ②将新定义图形结构化、模型化,利用其相关特征、性质解决问题.➢ 精讲精练1. 在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1),求点A ,B②点C 在直线x =3上,若点A ,C 达式.(2)⊙O M 的坐标为(m ,3).若在⊙O 得点M ,N 的“相关矩形”为正方形,求m 的取值范围.2. 【定义】我们定义:平面内到一个定点F 和一条定直线l (点F 不在直线l上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1,点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.【理解】如图1,N (m ,n )是抛物线21114y x =-上的任一点,l 是过点(0,-2)且与x 轴平行的直线,过点N 作直线NH ⊥l ,垂足为点H .①计算:当m=0时,NH=______,NO =_______;当m =4时,NH=_______,NO =_______.②证明:无论m 取何值,NO =NH .【应用】(1)如图2,“焦点”为F (0,1)的抛物线2214y x =的准线为直线l ,经过点F 的任意一条直线0y kx b k =+≠()与抛物线交于点M ,N ,过点M 作MQ ⊥l 于点Q ,过点N 作NH ⊥l 于点H .①直接写出抛物线y 2的“准线”l 的解析式______________;②计算求值:11MQ NH +=____________; ③记QH 的中点为G ,连接GM ,GN ,试证明∠MGN =90°.(2)如图3,在平面直角坐标系xOy 中,以原点O 为圆心, 半径为1的⊙O 与x 轴分别交于点A ,B (点A 在点B的左侧),直线y x n =+与⊙O 只有一个公共点F ,求以F 为“焦点”、x 轴为“准线”的抛物线23y ax bx c =++的表达式.图1图2图33.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(32,0),T(1)关于⊙O的反称点是否存在,若存在,求其坐标;②当点P在直线2y x=-+上时,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围.(2)当⊙C的圆心在x轴上,且半径为1时,直线3y x =-+x 轴、y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.4. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若1212x x y y --≥,则点P 1(x 1,y 1)与P 2(x 2,y 2)的非常距离为12x x -; 若1212x x y y -<-,则点P 1(x 1,y 1)与P 2(x 2,y 2)的非常距离为12y y -. 例如:点P 1(1,2),P 2(3,5),因为1325-<-,所以点P 1与P 2的“非常距离”为253-=,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点1(0)2A -,,B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A与点B的“非常距离”的最小值.(2)已知C是直线3+34y x上的一个动点.①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E 的“非常距离”的最小值及相应的点E和点C的坐标.图1图2图3【参考答案】1. (1)①2;②C 1(3,2)1AC l ⇒:y =x -1;C 2(3,-2)2AC l ⇒:y =-x +1 (2)-5≤m ≤-1或1≤m ≤5 2. ①1,1,5,5;②证明略(1)①y =-1;②1;③证明略(2)21()324y x =++或21()324y x =---3. (1)①M 反称点不存在,N 反称点N ′(12,0),T 反称点T′(0,0) ②0<x P <2 (2)2≤x C ≤8 4. (1)①B (0,2);②12(2)①最小值为87,此时点C 坐标为815()77-, ②最小非常距离为1,34()55E -,,89()55C -,。
例题精讲【例1】.如图,△ABC是正三角形,曲线CDEF…叫做“正三角形的渐开线”,其中弧CD、弧DE、弧EF的圆心依次按A、B、C…循环,它们依次相连接.若AB=1,则曲线CDEF 的长是.变式训练【变1-1】.对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称圆形A被这个圆“覆盖”.例如图中的三角形被一个圆“覆盖”.如果边长为1的正六边形被一个半径长为R的圆“覆盖”,那么R的取值范围为.【变1-2】.在平面直角坐标系xOy中,对于点P(a,b)和正实数k,给出如下定义:当ka2+b>0时,以点P为圆心,ka2+b为半径的圆,称为点P的“k倍雅圆”例如,在图1中,点P(1,1)的“1倍雅圆”是以点P为圆心,2为半径的圆.(1)在点P1(3,1),P2(1,﹣2)中,存在“1倍雅圆”的点是.该点的“1倍雅圆”的半径为.(2)如图2,点M是y轴正半轴上的一个动点,点N在第一象限内,且满足∠MON=30°,试判断直线ON与点M的“2倍雅圆”的位置关系,并证明;(3)如图3,已知点A(0,3),B(﹣1,0),将直线AB绕点A顺时针旋转45°得到直线l.①当点C在直线l上运动时,若始终存在点C的“k倍雅圆”,求k的取值范围;②点D是直线AB上一点,点D的“倍雅圆”的半径为R,是否存在以点D为圆心,为半径的圆与直线l有且只有1个交点,若存在,求出点D的坐标;若不存在,请说明理由.【例2】.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.开动脑筋想一想,经过点D的“蛋圆”切线的解析式为___________变式训练【变2-1】.已知定点P(a,b),且动点Q(x,y)到点P的距离等于定长r,根据平面内两点间距离公式可得(x﹣a)2+(y﹣b)2=r2,这就是到定点P的距离等于定长r圆的方程.已知一次函数的y=﹣2x+10的图象交y轴于点A,交x轴于点B,C是线段AB 上的一个动点,则当以OC为半径的⊙C的面积最小时,⊙C的方程为.【变2-2】.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.1.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于()A.B.C.D.2.已知线段AB,⊙M经过A、B两点,若90°≤∠AMB≤120°,则称点M是线段AB的“好心”;⊙M上的点称作线段AB的“闪光点”.已知A(2,0),B(6,0).①点M(4,2)是线段AB的“好心”;②若反比例函数y=上存在线段AB的“好心”,则≤k≤8;③线段AB的“闪光点”组成的图形既是轴对称图形,又是中心对称图形;④若直线y=x+b上存在线段AB的“闪光点”,则﹣10≤b≤2.上述说法中正确的有()A.①②③④B.①③④C.①③D.①②3.我们知道沿直线前进的自行车车轮上的点既随着自行车做向前的直线运动,又以车轴为圆心做圆周运动,如果我们仔细观察这个点的运动轨迹,会发现这个点在我们眼前划出了一道道优美的弧线.其实,很早以前人们就对沿直线前进的马车车轮上的点的轨迹产生了浓厚的研究兴趣,有人认为这个轨迹是一段段周而复始的圆弧,也有人认为这个轨迹是一段段的抛物线.你认为呢?摆线(Cycloid):当一个圆沿一条定直线做无滑动的滚动时,动圆圆周上一个定点的轨迹叫做摆线.定直线称为基线,动圆称为母圆,该定点称为摆点:现做一个小实验,取两枚相同的硬币并排排列,如果我们让右侧的硬币绕左侧硬币做无滑动的滚动,那么:(1)当右侧硬币上接触点A的运动轨迹大致是什么形状?(2)当右侧硬币转到左侧时,硬币面上的图案向还是向下?(3)当右侧硬币转回原地时,硬币自身转动了几圈?()A.一条围绕于硬币的封闭曲线;向上;1圈B.一条摆线;向上;1圈C.一条围绕于硬币的封闭曲线;向上;2圈D.一条摆线;向下;2圈4.定义:如果P是圆O所在平面内的一点,Q是射线OP上一点,且线段OP、OQ的比例中项等于圆O的半径,那么我们称点P与点Q为这个圆的一对反演点.已知点M、N为圆O的一对反演点,且点M、N到圆心O的距离分别为4和9,那么圆O上任意一点到点M、N的距离之比=.5.如图,在△ABC中,D,E分别是△ABC两边的中点,如果(可以是劣弧、优弧或半圆)上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧,例如,图中是△ABC其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H (4,0),在△FOH中,M,N分别是FO,FH的中点,△FOH的中内弧所在圆的圆心P的纵坐标m的取值范围是.6.如图(1),△ABC是正三角形,曲线DA1B1C1…叫做“正三角形ABC的渐开线”,其中,…依次连接,它们的圆心依次按A,B,C循环.则曲线CA1B1C1叫做正△ABC的1重渐开线,曲线CA1B1C1A2B2C2叫做正△ABC的2重渐开线,…,曲线CA1B1C1A2…A n B n∁n叫做正△ABC的n重渐开线.如图(2),四边形ABCD是正方形,曲线CA1B1C1D1…叫做“正方形ABCD的渐开线”,其中…依次连接,它们的圆心依次按A,B,C,D循环.则曲线DA1B1C1D1叫做正方形ABCD 的1重渐开线,…,曲线DA1B1C1D1A2…A n B n∁n D n叫做正方形ABCD的n重渐开线.依次下去,可得正n形的n重渐开线(n≥3).若AB=1,则正方形的2重渐开线的长为18π;若正n边形的边长为1,则该正n边形的n重渐开线的长为.7.一个玻璃球体近似半圆O,AB为直径.半圆O上点C处有个吊灯EF,EF∥AB,CO⊥AB,EF的中点为D,OA=4.(1)如图①,CM为一条拉线,M在OB上,OM=1.6,DF=0.8,求CD的长度.(2)如图②,一个玻璃镜与圆O相切,H为切点,M为OB上一点,MH为入射光线,NH为反射光线,∠OHM=∠OHN=45°,tan∠COH=,求ON的长度.(3)如图③,M是线段OB上的动点,MH为入射光线,∠HOM=50°,HN为反射光线交圆O于点N,在M从O运动到B的过程中,求N点的运动路径长.8.我们不妨定义:有两边之比为1:的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是;(填序号)①等边三角形;②等腰直角三角形;③含30°角的直角三角形;④含120°角的等腰三角形.(2)如图1,△ABC是⊙O的内接三角形,AC为直径,D为AB上一点,且BD=2AD,作DE⊥OA,交线段OA于点F,交⊙O于点E,连接BE交AC于点G.试判断△AED和△ABE是否是“勤业三角形”?如果是,请给出证明,并求出的值;如果不是,请说明理由;(3)如图2,在(2)的条件下,当AF:FG=2:3时,求∠BED的余弦值.9.对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,),Q3(﹣2,),Q4(,﹣2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.10.在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(﹣1,0),C(0,﹣1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).已知点E(3,0).①直接写出d(点E)的值;②过点E画直线y=kx﹣3k与y轴交于点F,当d(线段EF)取最小值时,求k的取值范围;③设T是直线y=﹣x+3上的一点,以T为圆心,长为半径作⊙T.若d(⊙T)满足d(⊙T)>+,直接写出圆心T的横坐标x的取值范围.11.【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD是矩形,⊙O1和⊙O2都与边AD相切,⊙O2与边AB 相切,⊙O1和⊙O3都经过点B,⊙O3经过点D,3个圆都经过点C.在这3个圆中,是矩形ABCD的第Ⅰ类圆的是,是矩形ABCD的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.12.在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A作直线MN.对于点A 和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP是⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“关联直线”(填“双”或“单”);的值为;(2)如图2,点A为直线y=﹣3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.13.在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点.给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把的值称为点A与⊙O的“关联距离”,记作d(A,⊙O).(1)如图,点D,E,F的横、纵坐标都是整数.①d(D,⊙O)=;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为,直接写出m的最小值和最大值.14.如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.①设A、B、P三点所在圆的圆心为C,则点C的坐标是,⊙C的半径是;②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为.15.定义:圆心在三角形的一条边上,并与三角形的其中一边所在直线相切的圆称为这个三角形的切圆,相切的边称为这个圆的切边.(1)如图1,△ABC中,AB=CB,∠A=30°,点O在AC边上,以OC为半径的⊙O 恰好经过点B,求证:⊙O是△ABC的切圆.(2)如图2,△ABC中,AB=AC=5,BC=6,⊙O是△ABC的切圆,且另外两条边都是⊙O的切边,求⊙O的半径.(3)如图3,△ABC中,以AB为直径的⊙O恰好是△ABC的切圆,AC是⊙O的切边,⊙O与BC交于点F,取弧BF的中点D,连接AD交BC于点E,过点E作EH⊥AB于点H,若CF=8,BF=10,求AC和EH的长.16.在平面直角坐标系xOy中,对于直线l:y=kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于,求k的取值范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值2,直接写出b的值.17.对于⊙C与⊙C上一点A,若平面内的点P满足:射线AP与⊙C交于点Q,且PA=2QA,则称点P为点A关于⊙C的“倍距点”.已知平面直角坐标系xOy中,点A的坐标是(﹣,0).(1)如图1,点O为坐标原点,⊙O的半径是,点P是点A关于⊙O的“倍距点”.①若点P在x轴正半轴上,直接写出点P的坐标是;②若点P在第一象限,且∠PAO=30°,求点P的坐标;(2)设点T(t,0),以点T为圆心,TA长为半径作⊙T,一次函数y=x+4的图象分别与x轴、y轴交于D、E,若一次函数y=x+4的图象上存在唯一一点P,使点P 是点A关于⊙T的“倍距点”,求t的值.18.类比学习:我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB 就是圆周角,弧AB是∠APB所夹的弧.类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,新知探索:图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=°,归纳总结:(1)圆周角的度数等于它所夹的弧的度数的一半;(2)圆外角的度数等于.新知应用:直线y=﹣x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC 的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ.①求A点坐标;②求⊙E的直径;③连接MN,求线段MN的长度(可用含θ的三角函数式表示).19.(1)【基础巩固】如图1,△ABC内接于⊙O,若∠C=60°,弦AB=2,则半径r =;(2)【问题探究】如图2,四边形ABCD内接于⊙O,若∠ADC=60°,AD=DC,点B 为弧AC上一动点(不与点A,点C重合).求证:AB+BC=BD;(3)【解决问题】如图3,一块空地由三条直路(线段AD、AB、BC)和一条道路劣弧围成,已知CM=DM=千米,∠DMC=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP的周长)最大?若存在,求其最大值;若不存在,说明理由.20.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB边(含顶点)上时,称∠APB为AB关于⊙C 的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T与x轴交于点D(点D 在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t 的取值范围.。
青少年版新概念英语1b讲义答案1、Let us put the matter to the vote,()? [单选题] *A. will youB. can weC. may ID. shall we(正确答案)2、You could hardly imagine _______ amazing the Great Wall was. [单选题] *A. how(正确答案)B. whatC. whyD. where3、Words are windows()you can look into the past. [单选题] *A. through which(正确答案)B. through thatC. whichD. whose4、The man called his professor for help because he couldn’t solve the problem by _______. [单选题] *A. herselfB. himself(正确答案)C. yourselfD. themselves5、He was very excited to read the news _____ Mo Yan had won the Nobel Prize for literature [单选题] *A. whichB. whatC. howD. that(正确答案)6、Now he is _______ his homework. [单选题] *A. busyB. busy with(正确答案)C. busy with doingD. busy does7、( ) Some students preferred to stay in the toilet ______ do morning exercises. [单选题] *A in order to notB in not order toC in order not to(正确答案)D not in order to8、2.I think Game of Thrones is ________ TV series of the year. [单选题] *A.excitingB.more excitingC.most excitingD.the most exciting (正确答案)9、Jane and Tom _______ my friends. [单选题] *A. amB. isC. are(正确答案)D. was10、Reading()the lines, I dare say that the government are more worried than they admitted. [单选题] *A. behindB. between(正确答案)C. alongD. among11、15.The restaurant ________ many complaints because of the terrible service since last month. [单选题] *A.receivesB.is receivingC.has received(正确答案)D.will receive12、Which do you enjoy to spend your weekend, fishing or shopping? [单选题] *China'shigh-speed railways _________ from 9,000 to 25,000 kilometers in the past fewyears.A. are growing(正确答案)B. have grownC. will growD. had grown13、It _____ us a lot of time to do this job. [单选题] *A. spentB. madeC. took(正确答案)D. cost14、He has two sisters but I have not _____. [单选题] *A. noneB. someC. onesD. any(正确答案)15、You should _______ your card. [单选题] *A. drawB. depositC. investD. insert(正确答案)16、John had planned to leave but he decided to stay in the hotel for _____ two days because of the heavy rain. [单选题] *A. otherB. another(正确答案)C. the otherD. others17、Was()that I saw last night at the concert? [单选题] *A. it you(正确答案)B. not youC. youD. that yourself18、29.______ my free time, I like listening to music. [单选题] * A.AtB.OnC.In(正确答案)D.About19、Mary is interested ______ hiking. [单选题] *A. onB. byC. in(正确答案)D. at20、12.That is a good way ________ him ________ English. [单选题] * A.to help;forB.helps;withC.to help;with(正确答案)D.helping;in21、My brother is too shy. He _______ speaks in front of lots of people. [单选题] *A. alwaysB. usuallyC. seldom(正确答案)D. sometimes22、The black coal there shows a sharp()white snow. [单选题] *A. contract withB. content withC. contact toD. contrast to(正确答案)23、I took?some _______of the Great Wall?in China last year. [单选题] *A. potatoesB. tomatoesC. photos(正确答案)D. paintings24、Can I _______ your order now? [单选题] *A. makeB. likeC. giveD. take(正确答案)25、For the whole period of two months, there _____ no rain in this area. Now the crops are dead [单选题] *A. isB. wasC. has been(正确答案)D. have been26、I don't know the man _____ you are talking about. [单选题] *A. who'sB. whose(正确答案)C. whomD. which27、Location is the first thing customers consider when_____to buy a house. [单选题] *A.planning(正确答案)B.plannedC.having plannedD.to plan28、I’d?like _______ the English club. [单选题] *A. to join inB. joinC. to join(正确答案)D. join in29、Jim, it’s dark now. Please _______ the light in the room. [单选题] *A. turn on(正确答案)B. turn upC. turn offD. turn down30、I walked too much yesterday and ()are still aching now. [单选题] *A. my leg's musclesB. my leg muscles(正确答案)C. my muscles' of legD. my legs' muscles。
专题10 新定义问题(3)【规律总结】※知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自主学习能力,便于学生养成良好的学习习惯。
※要点突破解决此类题的关键是(1)深刻理解“新定义”——明 确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
【典例分析】例1.(2020·杭州市公益中学七年级月考)已知正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,则这样的正整数n 有( ) A .6个B .10个C .16个D .20个【答案】C【分析】 由236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,以及若x 不是整数,则[]x <x 知,,223366n n n n n n ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,得到n 的值.【详解】∵236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若x 不是整数,则[]x <x , ∵,,223366n n n n n n ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数, ∵n 的值为:6、12、18、24、30、36、42、48、54、60、66、72、78、84、90、96,共16个,故选:C.【点睛】此题考查有理数的大小比较,取整计算,解题的关键是正确理解[]x 表示不超过x 的最大整数,得到,,223366n n n n n n ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,由此解决问题. 例2.(2021·全国八年级)若一个自然数t 能写成t =x 2﹣y 2(x ,y 均为正整数,且x ≠y ),则称t 为“万象数”,x ,y 为t 的一个万象分解,在t 的所有万象分解中,若x y x y-+最小,则称x ,y 为t 的绝对万象分解,此时F (t )=x y .例如:32=92﹣72=62﹣22,因为9797-+=18,6262-+=12,1182<.所以9和7为32的绝对万象分解,则F (32)=97.若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“博雅数”.例如2112,4554均为“博雅数”.若一个四位正整数m 是“万象数”且能被13整除,“博雅数”n 的前两位数字组成的两位数与后两位数字组成的两位数恰好是m 的一个万象分解,则所有满足条件的数m 中F (m )的最大值为______. 【答案】6948【分析】设n 的个位数字是a ,十位数字是b ,由“博雅数”和万象分解的定义,可以得到m =99(a+b )(a -b ),再由a 与b 的取值范围,m 同时能被13整除,可以确定m 的所有取值可能为1287,3861,6435;再将这三个数进行万象分解,确定F(m).【详解】设n的个位数字是a,十位数字是b,∵n是“博雅数”,∵n的前两位数字组成的两位数与后两位数字组成的两位数恰好是m的一个万象分解,∵m=(10a+b)2﹣(10b﹣a)2=99(a+b)(a﹣b),∵m能被13整除,∵(a+b)(a﹣b)是13的倍数,∵1≤a≤9,0≤b≤9,∵a+b=13,∵a=6,b=7;a=7,b=6;a=5,b=8;a=8,b=5;a=9,b=4;a=4,b=9;∵m的值所有情况为:1287=99×13×1=762﹣672=362﹣32;3861=99×13×3=852﹣582=752﹣422=692﹣482;6435=99×13×5=942﹣492=1022﹣632=1142﹣332=3622﹣3532;∵F(1287)=7667;F(3861)=6948;F(6435)=362353;∵F(m)的最大值为69 48.故答案为:69 48.【点睛】本题考査因式分解的应用;能够通过定义,结合数整除的性质,借助因式分解准确找到符合条件的三个数的所有万象分解是解题的关键.例3.(2021·渝中区·重庆巴蜀中学八年级期末)对于一个四位正整数,若满足百位数字与十位数字之和是个位数字与千位数字之和的两倍,则称该四位正整数为“希望数”,例如:四位正整数3975,百位数字与十位数字之和是16,个位数字与千位数字之和8,而16是8的两倍,则称四位正整数3975为“希望数”,类似的,四位正整数2934也是“希望数”. 根据题中所给材料,解答以下问题:(1)请写出最小的“希望数”是________;最大的“希望数”是_______;(2)对一个各个数位数字均不超过6的“希望数m ,设m abcd =,若个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数,定义:()|()()|F m a b c d =+-+,求()F m 的最大值.【答案】(1)1020,9990;(2)7.【分析】(1)根据题意可知,最小的“希望数”要使千位和百位最小,最大的“希望数”要使千位和百位最大,据此写出答案;(2)根据题意直接列出满足条件的“希望数m ,再根据定义()|()()|F m a b c d =+-+求出()F m 即可得出最大值.【详解】解:(1)千位数最小为1,最大为9,百位数最小为0,最大为9;根据对于一个四位正整数,若满足百位数字与十位数字之和是个位数字与千位数字之和的两倍,则称该四位正整数为“希望数”,可得:出最小的“希望数”是1020;最大的“希望数”是9990;(2)一个各个数位数字均不超过6的“希望数m ,若个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数,“希望数m ”可能是1062;1602;1242;1422;2664.当m abcd==1602时,()|(16)(02)|=5F m=+-+;当m abcd==1062时,()|(10)(62)|=7F m=+-+;当m abcd==1242时,()|(12)(42)|=3F m=+-+;当m abcd==1422时,()|(14)(22)|=1F m=+-+;当m abcd==2664时,()|(26)(64)|=2F m=+-+;故()F m的最大值为7.【点睛】本题主要考查阅读材料类题目,属于创新题,同时又包含了大量计算,做此类型题目时,应注意从材料中获取解题方法、掌握定义的本质,同时本题考查了数的大小与数位的关系.【好题演练】一、单选题1.(2020·新安中学(集团)外国语学校七年级月考)若规定“!”是一种数学运算符号,且1!1=,2!212=⨯=,3!3216=⨯⨯=,,则100!98!的值为()A.5049B.99C.9900D.2【答案】C【分析】先根据数学运算符号“!”得出100!和98!的值,再计算有理数的乘除法即可得.【详解】由题意得:100!100999821 98!98979621⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯,10099=⨯,9900=,故选择:C.【点睛】本题考查了新运算下的有理数的乘除法,理解新运算是解题关键.2.(2020·江苏常州市·七年级期中)定义:一种对于三位数abc(其中在abc中,a在百位,b 在十位,c在个位,a、b、c不完全相同)的F运算:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零),例如abc=463时,则经过大量运算,我们发现任意一个三位数经过若干次F运算都会得到一个固定不变的值;类比联想到:任意一个四位数经过若干次这样的F运算也会得到一个定值,这个定值为()A.4159B.6419C.5179D.6174【答案】D【分析】设这个四位数为1234,再进行若干次F运算即可得到这个定值.【详解】由题意,不妨设这个四位数为1234,则经过第1次F运算的结果为432112343087-=,经过第2次F运算的结果为87303788352-=,经过第3次F运算的结果为853*********-=,经过第4次F运算的结果为764114676174-=,由此可知,这个定值为6174,故选:D .【点睛】本题考查了数字类的规律型问题,掌握理解F 运算的定义是解题关键.二、填空题3.(2020·浙江金华市·七年级期中)已知a 是不等于1-的数,我们把11a +称为a 的和倒数.如:2的和倒数为11123=+,已知211,a a =是1a 的和倒数,3a 是2a 的和倒数,4a 是3a 的和倒数,…,依此类推,则31212a a a a ⋅⋯⋅=______. 【答案】1233【分析】根据和倒数的定义分别计算出a 1、a 2、a 3、…a 12的值,代入计算即可求解.【详解】解:a 1=1,a 211112==+,a 3121312==+,413a 2513==+,515a 3815==+,618a 51318==+,7113a 821113==+,8121a 1334121==+,9134a 2155134==+,10155a 3489155==+,11189a 55144189==+,121144a 892331144==+, 则a 1•a 2•a 3…a 12=1123581321345589144123581321345589144233233⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=. 故答案为:1233【点睛】本题为新定义问题,理解和倒数的定义,并根据定义依次计算出a1,a2,a3,a4,a5 (12)值是解题关键.4.(2020·江门市新会尚雅学校八年级期中)定义:若两个二次根式a、b满足a b c⋅=,且c是有理数,则称a与b是关于c的共轭二次根式.若与是关于2的共轭二次根式,则m的值为___.【答案】1 12【分析】根据共轭二次根式的定义列等式即可得出m的值;【详解】解:∵与是关于2的共轭二次根式,∵=2⨯∵1 =12 m故答案为:1 12【点睛】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.三、解答题5.(2020·重庆市凤鸣山中学八年级期中)进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n个则称为n进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+= (1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.【答案】(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∵24a+b=12c , ∵212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∵b=0,c=2a ,∵04a <≤,04c <≤,∵12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∵这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 6.(2020·浙江绍兴市·九年级其他模拟)定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D . ①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.【答案】(1)见解析;(2)①4m =,1(3,)2D -;②存在,76y x =或2y x =或110y x =- 【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线;(2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -; ②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.∵.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;∵.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;∵.当AD 为对角线时,对角线交点坐标为51(,)24-,中分线解析式为110y x =-. 【详解】解:(1)如图,对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=, 解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得 234201x x -+=, 解得2x =或4,(2,0)A ∴,(4,0)B ,令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分, 所以平行四边形的中分线必过对角线的交点.∵.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24, 中分线经过点O , ∴中分线解析式为76y x =; ∵.当AC 为对角线时,对角线交点坐标为2004(,)22++,即(1,2).中分线经过点O ,∴中分线解析式为2y x =;∵.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-, 中分线经过点O , ∴中分线解析式为110y x =-, 综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-. 【点睛】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.。
例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:随R的增大而减小,(3)①根据图象可知,I总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;012…x…﹣4﹣3﹣2y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。
例题精讲【例1】.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB=BC,AD=2,CD=5,∠ABC=60°,则线段BD=3.解:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2,∴BD2=(2)2+52=45,∵BD>0,∴BD=3,故答案为:3.变式训练【变1-1】.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12.解:如图1,取AC的中点G,连接BG、DG,,∵四边形ACEF是菱形,∴AE⊥CF,∴∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点G是圆心,∴∠ACD=∠ABD=90°﹣∠DBC=90°﹣60°=30°,∵∠AGB=15°×2=30°,∠AGD=30°×2=60°,∴∠BGD=30°+60°=90°,∴△BGD是等腰直角三角形,∴BG=DG=,∴AC=2,∴AD=2,∴,∴菱形ACEF的面积为:3==故答案为:12.【变1-2】.定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或.解:∵将Rt△ABC平移得到△A′B′C′,∴BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图1,当CC′=BC时,BB′=CC′=BC=1;②如图1,当AC′=AB=2时,∵∠ABC=90°,BB′是∠ABC的角平分线,∴∠B′BA=45°,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴22=(2﹣x)2+(1+x)2,整理方程为:2x2﹣2x+1=0,∵△=4﹣8=﹣4<0,∴此方程无实数根,故这种情况不存在;③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=AC′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴(x)2=(2﹣x)2+(1+x)2,解得:x=,∴BB′=,综上所述,若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或,故答案为:1或.变式训练【变2-1】.已知在Rt△ABC中,∠C=90°,AC=6,BC=3.我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1等于2;(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,那么第2个正方形DGHI 的边长记为a2;继续在图2中的△HGA中按上述方法作第3个内接正方形,依此类推,……则第n个内接正方形的边长a n=.(n为正整数)解:(1)四边形CDEF是正方形,∴EF=FC,EF∥FC,∴△BFE∽△BCA,∴=,∴=,∴a1=2,故答案是:2;(2)如图(2)四边形DGHI是正方形,∴IH=ID,IH∥AD,∴△EIH∽△EDA,∴=,∴=,∴a2=,如图3中,由以上同样的方法可以求得正方形PGQS的边长为:=,第4的个正方形的边长为:=,…第n个内接正方形的边长a n=,故答案为:=.【变2-2】.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.1.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)判断下列方程是否是“勾系一元二次方程”:①2x2+x+1=0不是(填“是”或“不是”);②3x2+5x+4=0是(填“是”或“不是”)(2)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC面积.(1)解:2x2+x+1=0不是“勾系一元二次方程”,理由:∵c=,∴c=,∵a=2,b=1,∴a2+b2≠c2,∴以a、b、c为三边长的三角形是不是直角三角形,且c为斜边的长,∴2x2+x+1=0不是“勾系一元二次方程”,3x2+5x+4=0是“勾系一元二次方程”,理由:∵c=5,∴c=5,∵a=3,b=4,∴a2+b2=c2,∴以a、b、c为三边长的三角形是直角三角形,且c为斜边的长,∴3x2+5x+4=0是“勾系一元二次方程”,故答案为:不是,是;(2)证明:∵ax2+cx+b=0是“勾系一元二次方程“,∴a、b、c为同一直角三角形的三边长,且c为斜边的长,∴c2=a2+b2,∵Δ=(c)2﹣4ab=2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0,∴关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根.(3)解:∵x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,∴a﹣c+b=0,∴a+b=c,∵四边形ACDE的周长是12,∴2(a+b)+c=12,∴2c+c=12,∴c=2,∴a+b=×2=4,∴(a+b)2=16,∴a2+2ab+b2=16,∵a2+b2=c2=(2)2=8,∴2ab+8=16,∴ab=4,=ab=×4=2.∴S△ABC∴△ABC面积是2.2.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.M(3,4)或M′(4,3).(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC=BE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.3.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC =3,∠ADC=135°,求CD的长度.(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.4.定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF =CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.【性质初探】解:过点A作AG⊥BC交于G,过点E作EH⊥BC交于H,∵▱ABCD,∴AE∥BC,∴AG=EH,∵四边形ABCE恰为等腰梯形,∵AB=EC,∴Rt△ABG≌Rt△ECG(HL),∴∠B=∠ECH,∵∠B=80°,∴∠BCE=80°;【性质再探】证明:∵四边形ABCD是矩形,∴AE∥BC,∵四边形BCEF是等腰梯形,∴BF=CE,由(1)可知,∠FBC=∠ECB,∴△BFC≌△CEB(SAS),∴BE=CF;【拓展应用】解:连接AC,过G点作GM⊥AD交延长线于点M,∵四边形ABCD是平行四边形,∴O是AC的中点,∵GO⊥AC,∴AC=CG,∵AB∥CD,∠ABC=45°,∴∠DCG=45°,∴∠CDG=90°,∴CD=DG,∴BA=DG=2,∵∠CDG=90°,∴CG=2,∴AG=2,∵∠ADC=∠DCG=45°,∴∠CDM=135°,∴∠GDM=45°,∴GM=DM=,在Rt△AGM中,(2)2=(AD+)2+()2,∴AD=﹣,∴BC=﹣.5.给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD 的中点,连接EF,AD=4,BC=6.求EF的长.(1)解:由图形可知∠E=90°,∴∠A+∠B=90°,∴它的“邻余线”是AB;(2)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(3)解:如图,连接DE并延长到G,使EG=DE,连接BG,CG,在△AED和△BEG中,,∴△AED≌△BEG(SAS),∴∠A=∠ABG,BG=AD=4,∵四边形ABCD是“邻余四边形”,AB为“邻余线”,∴∠A+∠ABC=90°,∴∠ABG+∠ABC=∠GBC=90°,在Rt△GBC中,GC=,∵EG=DE,AE=BE,∴EF==.6.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC 为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC是四边形ABCD的“相似对角线”吗?请说明理由;②若AC=,求AD•AB的值.(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为:缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.解:(1)如图1所示,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴或,∴CD=2.5或CD=10,同理:当∠CAD=90°时,AD=2.5或AD=10,如图中,D1,D2,D3,D4即为所求;(2)①是,理由:∵∠DAB=90°,AC平分∠DAB,∴∠DAC=∠CAB=45°,∴∠D+∠DCA=180°﹣∠DAC=135°,又∵∠DCB=135°=∠DCA+∠ACB,∴∠D=∠ACB,∴△DAC∽△CAB,∴AC是四边形ABCD的“相似对角线”;②∵△DAC∽△CAB,∴,∴AD•AB=AC2,∵AC=,∴AD•AB=10;(3)①由(2)可知△ADC为等腰直角三角形,AC=,∴AD=CD=,∵△AEF∽△ADC,且相似比为:,∴AE=EF=,AF=2,如图,延长CE交AF于点H,由题意可得:EH⊥AF于H,∴AH=AF=1,∴CH=,∴CE=CH﹣EH=3﹣1=2,∵∠CAD=∠EAF=45°,∴∠CAE=∠BAF,,∵,∴△EAC∽△FAB,∴即,∴FB=;②如图,设AF与EC交于点G,∵AF⊥CE,∴△AGE为等腰直角三角形,∵EA=,∴AG=EG=1,在Rt△AGC中,CG=,∴EC=4,同理可证△EAC∽△FAB,∴即,∴FB=4,综上,FB=2或FB=4.7.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连接AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB =ED ′=x ,由勾股定理得:42+(3+x )2=(4+x )2,解得:x =4.5,过点D ′作D ′F ⊥CE 于F ,∴D ′F ∥AC ,∴△ED ′F ∽△EAC ,∴=,即=,解得:D ′F =,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=BE ×D ′F =×4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=10;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.8.定义:长宽比为:1(n 为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示操作1:将正方形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角线BD 上的点G 处,折痕为BH .操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.可以证明四边形BCEF为矩形.(Ⅰ)在图①中,的值为;(Ⅱ)已知四边形BCEF为矩形,仿照上述操作,得到四边形BCMN,如图②,可以证明四边形BCMN为矩形,则n的值是3.(1)证明:设正方形ABCD的边长为1,则BD==,由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形,∴∠A=∠BFE,∴EF∥AD,∴=,即:=,∴BF=,∴BC:BF=1:=:1,∴四边形BCEF为矩形;(2)解:(Ⅰ)在Rt△BFG中,由勾股定理得:FG====,∴==;(Ⅱ)∵BC=1,EC=BF=,∴BE====,由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°,∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形,∴n=3.故答案为:;3.9.我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D=55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A=∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.10.问题情景:如图1,我们把对角线互相垂直的四边形叫做“垂美四边形”,按照此定义,我们学过的平行四边形中的菱形、正方形等都是“垂美四边形”,“筝形”也是“垂美四边形”.概念理解:(1)如图2,已知等腰梯形ABCD是“垂美四边形”,AB=6,CD=8,求AD的长.性质探究:(2)如图3,已知四边形ABCD是“垂美四边形”,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.问题解决:(3)如图4,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG与正方形ABDE,连接CE,BG,GE,CE与BG交于点O,已知AC=3,AB=5,求△OGE的中线OH的长.解:(1)∵等腰梯形ABCD是“垂美四边形”,∴AD=BC,AC⊥BD,∴AB2=OB2+OA2,CD2=OC2+OD2,∴AB2+CD2=OA2+OB2+OC2+OD2,AD2=OA2+OD2,BC2=OB2+OC2,∴AD2+BC2=OA2+OB2+OC2+OD2,∴垂美四边形两组对边AB,CD与BC,AD之间的数量关系是AB2+CD2=BC2+AD2;∵AB=6,CD=8,∴2AD2=62+82,∴AD=5;(2)由(1)证明可得:垂美四边形两组对边AB,CD与BC,AD之间的数量关系是AB2+CD2=BC2+AD2;(3)连接BE,CG,CE,∵∠CAE=∠CAB+∠BAE,∠BAC+∠CAG=∠GAB,∴∠CAE=∠GAB,∵AC=AG,AB=AE,∴△ABG≌△AEC(SAS),∴△ABG可视为△AEC绕点A逆时针旋转90°后得到的,由旋转的性质知:BG⊥CE,∴四边形BCGE为垂美四边形,∴由(2)知:CG2+BE2=BC2+EG2,又∵AC=3,AB=5,∴BC=4,CG=3,BE=5,∴(3)2+(5)2=42+GE2,∴GE=2,又∵△OGE为直角三角形,OH为其斜边上的中线,∴OH=,11.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.特例感知:(1)如图1,四边形ABCD是“垂美四边形,如果,OB=2,∠OBC=60°,则AD2+BC2=,AB2+CD2=.猜想论证(2)如图1,如果四边形ABCD是“垂美四边形”,猜想它的两组对边AB,CD与BC,AD之间的数量关系并给予证明.拓展应用:(3)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,∠BAC=60°,求GE长.(4)如图3,∠AOB=∠COD=90°,∠ABO=∠CDO=30°,∠BOC=120°,OA=OD,,连接AC,BC,BD,请直接写出BC的长.解:(1)∵OA=OD=OB,OB=2,∴OA=OD=,∵四边形ABCD是“垂美四边形”,∴∠AOD=∠BOC=90°,∵∠OBC=60°,∴∠BCO=30°,∴BC=4,OC=2,∴AD2+BC2=OA2+OD2+BC2=()2×2+42=,AB2+CD2=OA2+OB2+OD2+OC2=AD2+BC2=,故答案为:,;(2)AB2+CD2=AD2+BC2,理由如下:∵四边形ABCD是“垂美四边形”,∴∠AOD=∠BOC=90°,∴AB2+CD2=OA2+OB2+OD2+OC2=AD2+BC2;(3)连接CG,BE,设BG与AC的交点为O,∵正方形ACFG和正方形ABDE,∴AG=AC,AE=AB,∠GAC=∠EAB,∴∠GAB=∠CAE,∴△GAB≌△CAE(SAS),∴∠GAB=∠ACE,∵∠AOG=∠BOC,∴BG⊥CE,∴四边形BCGE是“垂美四边形”,由(2)知,BC2+GE2=CG2+BE2,∵∠ACB=90°,∠BAC=60°,∴∠CBA=30°,∴AB=2AC=8,BC=4,∴CG=4,BE=8,∴(4)2+GE2=(4)2+(8)2,解得EG=4;(4)如图,连接AD,设AC与BD的交点为H,∵∠AOB=∠COD=90°,∠ABO=∠CDO=30°,OC=,∴∠BOD=∠AOC,BO=OA,DO=OC=3,AB=2AO,CD=2CO=2,∵OA=OD=3,∴AB=6,∵∠BOC=120°,∠AOB=∠COD=90°,∴∠AOD=60°,∴△AOD是等边三角形,∴AD=DO=3,∵=,∠BOD=∠AOC,∴△BOD∽△AOC,∴∠DBO=∠CAO,∵∠ABD+∠DBO+∠BAO=90°,∴∠ABD+∠BAO+∠CAO=90°,∴∠AHB=90°,∴AC⊥BD,∴四边形ABCD是“垂美四边形”,由(2)可知:AB2+CD2=AD2+BC2,∴36+12=9+BC2,∴BC=.12.点P(x1,y1),Q(x2,y2)是平面直角坐标系中不同的两个点,且x1≠x2,若存在一个正数k,使点P,Q的坐标满足|y1﹣y2|=k|x1﹣x2|,则称P,Q为一对“限斜点”,k叫做点P,Q的“限斜系数”,记作k(P,Q).由定义可知,k(P,Q)=k(Q,P).例:若P(1,0),Q(3,),有|0﹣|=|1﹣3|,所以点P,Q为一对“限斜点”,且“限斜系数”为.已知点A(1,0),B(2,0),C(2,﹣2),D(2,).(1)在点A,B,C,D中,找出一对“限斜点”:点A与点D或点A与点C,它们的“限斜系数”为2或;(2)若存在点E,使得点E,A是一对“限斜点”,点E,B也是一对“限斜点”,且它们的“限斜系数”均为1.求点E的坐标;(3)正方形对角线的交点叫做中心,已知正方形EFGH的各边与坐标轴平行,边长为2,中心为点M(0,m).点T为正方形上任意一点,若所有点T都与点C是一对“限斜点”,且都满足k(T,C)≥1,直接写出点M的纵坐标m的取值范围.解:(1)由定义可知x1≠x2,y1≠y2,∴B、C、D三点不能是“限斜点”,A、B不能是“限斜点”,对于点A(1,0)和点C(2,﹣2),|﹣2﹣0|=2|2﹣1|,∴A与C是“限斜点”,“限斜系数”为2;对于点A(1,0)和点D(2,),|﹣0|=|2﹣1|,∴A与D是“限斜点”,“限斜系数”为;故答案为:点A与点D或点A与点C;2或;(2)设E(x,y),∵点E,A是一对“限斜点”,“限斜系数”为1,∴|y|=|x﹣1|,∵点E,B一对“限斜点”,“限斜系数”为1,∴|y|=|x﹣2|,∴|x﹣1|=|x﹣2|,解得x=,∴y=±,∴E(,)或(,﹣);(3)∵C(2,﹣2),∴点C在直线y=﹣x上,当T点在直线y=﹣x上时,k(T,C)=1,∵所有点T都满足k(T,C)≥1,∴T点在直线y=﹣x的上方,∵M(0,m),FG=2,∴F(﹣1,m﹣1),当F点在直线y=﹣x上时,m﹣1=1,解得m=2,∴m≥2时,对任意的T都有k(T,C)≥1;过点C作直线y=﹣x的垂线,则垂线解析式为y=x﹣4,当T点在直线y=x﹣4上时,k(T,C)=1,∵所有点T都满足k(T,C)≥1,∴T点在直线y=x﹣4的下方,∵M(0,m),FG=2,∴E(﹣1,m+1),当E点在直线y=x﹣4上时,﹣1﹣4=m+1,解得m=﹣6,∴m≤﹣6时,对任意的T都有k(T,C)≥1;综上所述:m≥2或m≤﹣6时,对任意的T都有k(T,C)≥1.13.定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是D.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD 的两条结论:①AC=BD;②AC⊥BD.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE 和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.解:概念理解:在平行四边形、矩形、菱形、正方形中只有正方形是“中方四边形”,理由如下:因为正方形的对角线相等且互相垂直,故选:D;性质探究:①AC=BD,②AC⊥BD;理由如下:如图1,∵四边形ABCD是“中方四边形”,∴EFGH是正方形且E、F、G、H分别是AB、BC、CD、AD的中点,∴∠FEH=90°,EF=EH,EH∥BD,EH=BD,EF∥AC,EF=AC,∴AC⊥BD,AC=BD,故答案为:AC⊥BD,AC=BD;问题解决:如图2,取四边形BCGE各边中点分别为P、Q、R、L并顺次连接成四边形MNRL,连接CE交AB于P,连接BG交CE于K,∵四边形BCGE各边中点分别为M、N、R、L,∴MN、NR、RL、LM分别是△BCG、△CEG、△BGE、△CEB的中位线,∴MN∥BG,MN=BG,RL∥BG,RL=BG,RN∥CE,RN=CE,ML∥CE,ML =CE,∴MN∥RL,MN=RL,RN∥ML∥CE,RN=ML,∴四边形MNRL是平行四边形,∵四边形ABDE和四边形ACFG都是正方形,∴AE=AB,AG=AC,∠EAB=∠GAC=90°,又∵∠BAC=∠BAC,∴∠EAB+∠BAC=∠GAC+∠BAC,即∠EAC=∠BAG,在△EAC和△BAG中,,∴△EAC≌△BAG(SAS),∴CE=BG,∠AEC=∠ABG,又∵RL=BG,RN=CE,∴RL=RN,∴▱MNRL是菱形,∵∠EAB=90°,∴∠AEP+∠APE=90°.又∵∠AEC=∠ABG,∠APE=∠BPK,∴∠ABG+∠BPK=90°,∴∠BKP=90°,又∵MN∥BG,ML∥CE,∴∠LMN=90°,∴菱形MNRL是正方形,即原四边形BCGE是“中方四边形”;拓展应用:(1)MN=AC,理由如下:如图3,分别作AD、BC的中点E、F并顺次连接EN、NF、FM、ME,∵四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,∴四边形ENFM是正方形,∴FM=FN,∠MFN=90°,∴MN===FM,∵M,F分别是AB,BC的中点,∴FM=AC,∴MN=AC;(2)如图4,分别作AD、BC的中点E、F并顺次连接EN、NF、FM、ME,连接BD交AC于O,连接OM、ON,当点O在MN上(即M、O、N共线)时,OM+ON最小,最小值为MN的长,=2MN,∴2(OM+ON)最小由性质探究②知:AC⊥BD,又∵M,N分别是AB,CD的中点,∴AB=2OM,CD=2ON,∴2(OM+ON)=AB+CD,=2MN,∴(AB+CD)最小由拓展应用(1)知:MN=AC;又∵AC=2,∴MN=,=2.∴(AB+CD)最小14.对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M、N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点F在CE上运动(点F可以与C,E重合),连接OF,DF.①线段OF的最小值为,最大值为;线段DF的取值范围是DF≤2.②在点O,D中,点O与线段CE满足限距关系.(2)如图2,正方形ABMN的边长为2,直线PQ分别与x轴,y轴交于点Q,P,且与x轴正方向的夹角始终是30°,若线段PQ与正方形ABMN满足限距关系,求点P的纵坐标a(a>0)的取值范围;(3)如图3,正方形ABMN的顶点均在坐标轴上,A(0,b)(b>0),G,H是正方形边上两点,分别以G,H为中心作边长为1的正方形,与正方形ABMN的四边分别平行.若对于任意的点G,H,以G,H为中心的正方形都满足限距关系,直接写出b的取值范围.解:(1)①如图1,点C(1,0),D(﹣1,0),E(0,),∴OC=1,OD=1,OE=,∴CE=2,当OF⊥CE时,OC•OE=EC•OF,∴OF=,此时OF的值最小;当F点与E点重合时,OF的值最大,最大值为,当DF⊥CE时,DF的值最小,∴DC•OE=EC•DF,∴DF=,当点F与点C或点E重合时,DF有最大值,∴DE=CD=2,∴FD的最大值为2,∴≤DF≤2,故答案为:,,≤DF≤2;②线段CE上存在点M、N,满足OM最小值为,ON最大值为,则OM=2ON,∴点O与线段CE满足限距关系;∵≤DF≤2,∴线段CE上不存在两点与点满足限距关系;故答案为:O;(2)∵P(0,a),∠PQO=30°,∴OP=a,PQ=2a,∴OQ=a,∵正方形的边长为2,∴OA=OB=2,当a=2时,a=,此时点Q与点B重合,①如图2,当0<a<时,线段PQ在正方形内部,此时PQ与正方形无公共点,过点Q作QE⊥AB交于E,过点Q作QF⊥QE交AN于点F,∴QE=,∴QE=1﹣a,∴正方形上到线段PQ的最短距离为1﹣a,∵NF=,∴NF=1+a,∴正方形上到线段PQ的最大距离为1+a,∵线段PQ与正方形满足限距关系,∴1+a≥2(1﹣a),解得a≥,∴≤a<;②如图3,当≤a≤时,线段PQ与正方形有公共点,线段PQ与正方形满足限距关系;③如图4,当a>时,线段PQ在正方形的外部,与正方形无公共点,过点A作AC⊥PQ交于C,过点M作MD⊥PQ交于D,∵∠OPQ=60°,∴∠PAC=30°,∠PMD=30°,∴CP=AP,PD=PM,∴正方形到线段PQ的最小距离为AC==(a﹣),正方形到线段PQ的最大距离为MP=a+,∵线段PQ与正方形满足限距关系,∴a+≥2×(a﹣),解得a≤2+,∴<a≤2+;综上所述:≤a≤2+;(3)如图5,当中心H、G分别与B、N重合时,∵A(0,b),∴OA=OB=ON=b,∵小正方形的边长为1,∴CD=PQ=,∴两个正方形的距离的最小值为BN﹣BD﹣PN=2b﹣,最大距离为BN+BC+NQ=2b+,∵两个正方形满足限距关系,∴2b+≥2(2b﹣),解得b≤,∴0<b≤.15.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是6.解:(1)由折叠可得:DG=HG,GH=CH,∴DG=GH=CH.设HC=x,则DG=GH=x.∵∠DGH=90°,∴DH=x,∴DC=DH+CH=x+x=1,解得x=.∴tan∠HBC===.故答案为:GH、DG,;(2)∵BC=1,EC=BF=,∴BE==.由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°,∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形;(3)同理可得:将矩形沿用(21次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,所以将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,故答案为6.16.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G 处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2,则DR的最小值=2.证明:(1)设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形.∴AD=DG=,∴AB:AD=a:=:1.∴四边形ABCD为矩形;(2)①解:如图b,作OP⊥AB,OQ⊥BC,垂足分别为P,Q.∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴,.∵O为AC中点,∴OP=BC,OQ=AB.∵∠MON=90°,∴∠QON=∠POM.∴Rt△QON∽Rt△POM.∴=.∴tan∠OMN=.②解:如图c,作M关于直线BC对称的点P,连接DP交BC于点N,连接MN.则△DMN的周长最小,∵DC∥AP,∴,设AM=AD=a,则AB=CD=a.∴BP=BM=AB﹣AM=(﹣1)a.∴==2+,③如备用图,∵四边形ABCD为矩形,AB=2,∴BC=AD=2,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=1,∴DR最小=﹣1=2故答案为:217.定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=120°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH=6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.(1)解:∵四边形ABCD是半对角四边形,∴∠B=∠D,∠C=∠A.∴∠D=2∠B,∠A=2∠C.∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,故答案为:120;(2)证明:连接OC,如图,在△BDE和△BOE中,,∴△BDE≌△BOE(SSS).∴∠BDF=∠BOE.∵∠ACB=∠BOE,∴∠ACB=∠BDF.设∠EAF=α,则∠AED=3α.∵∠AED=∠EAF+∠AFE,∴∠AFE=∠AED﹣∠EAF=2α,∴∠DFC=180°﹣∠AFD=180°﹣2α.∵OA=OC,∴∠OCA=∠EAF=α,∴∠AOC=180°﹣∠EAF﹣∠OCA=180°﹣2α,∴∠AOC=∠DFC.∵∠ABC=∠AOC,∴∠ABC=∠DFC,∴四边形BCFD是半对角四边形;(3)解:①连接OC,如图,四边形BCFD是半对角四边形,且∠ABC=∠DFC,∠ACB=∠BDF,由(1)的方法可求得:∠ABC+∠ACB=120°,∴∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOC=2∠BAC=120°.设⊙O的半径为r,则BD=BO=r,BH=r﹣2,在Rt△BDH中,∵BD2=BH2+DH2,。
第四讲定义新运算知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例 1】若A*B表示(A+3B)×(A+B),求5*7的值。
【解析】A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)=(5+21)×12 =26×12 =312【巩固】定义新运算为a△b=(a+1)÷b,求的值。
6△(3△4)【解析】所求算式是两重运算,先计算括号,所得结果再计算。
由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7【巩固】设a△2b a a b=⨯-⨯,那么,5△6=______,(5△2) △3=_____. 【解析】56552613=⨯-⨯=△52552221=⨯-⨯=△,1321216435=⨯-=△【巩固】P、Q表示数,*P Q表示P与Q的平均数,求3*(6*8)【解析】68373*(6*8)3*()3*7522++====【例 2】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
定义新运算定义1、定义新运算是指:用一个符号把字母连接在一起,表示一种新的运算。
注意:(1)做题的关键是要正确理解式子含义,按照式子的计算顺序,将数值代入式子中,转化为一般的四则运算,然后进行计算。
(2) 它通常使用特殊的运算符号,如:*、▲、★、◎、龟、△、♦、■等来表示的一种运算。
(3) 新定义的算式中,有括号的,要先算括号里面的。
例1、对丁任意数a, b有a*b=axb-a-b。
求12*4的值。
分析与解:根据题目的运算要求,直接代入后用四则运算即可。
12*4=12X4 -12-4=48-12-4=32练习一1,设a、b都表示数,规定:aOb=6x a— 2X b。
试计算3。
4。
例2、假设 a ★ b = ( a + b 士b。
求8 ★ 5。
分析与解:该题的运算顺序为:a ★ b等丁两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8, b代表数字5。
8 ★ 5 = (8 + 5) 士5 = 2.6练习二对丁两个数a与b,规定:a® b=ax b— ( a+ b)。
计算3® 5。
例3、如果aAb=aXb-(a+b。
求6A (9A2)。
分析与解:根据定义,要先算括号里面的。
括号里的部分已经构成了新运算,其运算结果乂与括号外的部分构成新运算。
本题要运用新运算的关系,计算两次。
6A (9A 2)=6A [9 X 2- (9+2)] =6A 7=42-13=29练习三1、规定aAb=axb- (a+ b)。
求(10^5) + ( 28A5)的值例4、已知〔◎ 4=1+2+3+4 405=4+5+6+7+8 按此规定,200105=?分析与解:通过观察可以发现,这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。
〔◎#表示从1开始连续4个自然数的和,40 5表示从4开始5个连续自然数的和,2001^5是表示从2001开始连续5个自然数的和。
2001 ◎ 5=2001+2002+2003+2004+2005=2003X 5=10015练习四如果2口3=2+ 3 + 4=9, 6口5=6+ 7+ 8+ 9+ 10=40。
例题精讲【例1】.定义一种新运算:,例如.若,则k=﹣2.解:由题意得,(﹣x﹣2)dx=k﹣1﹣2﹣1=﹣=﹣1,即﹣=﹣1,解得k=﹣2,故答案为:﹣2.变式训练【变1-1】.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果,则x的取值范围是()A.5≤x<7B.5<x<7C.5<x≤7D.5≤x≤7解:由题意得:3≤<4,∴6≤x+1<8,∴5≤x<7,故选:A.【变1-2】.规定:符号[x]叫做取整符号,它表示不超过x的最大整数,例如:[5]=5,[2.6]=2,[0.2]=0.现在有一列非负数a1,a2,a3,…,已知a1=10,当n≥2时,a n=a n﹣1+1﹣5([]﹣[]),则a2022的值为11.解:∵a1=10,∴a2=a1+1﹣5([]﹣0)=11,a3=a2+1﹣5([]﹣[])=12,a4=a3+1﹣5([]﹣[])=13,a5=a4+1﹣5([]﹣[])=14,a6=a5+1﹣5([1]﹣[])=10,…∴a1,a2,a3,…,每5个结果循环一次,∵2022÷5=404…2,∴a2022=a2=11,故答案为:11.【例2】.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi的数叫做复数,其中a叫做这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整数的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=4+6+i﹣2i=10﹣i(2﹣i)(3﹣i)=6﹣2i﹣3i+i2=6﹣5i﹣1=5﹣5i根据以上信息计算(1+2i)(2﹣i)+(2﹣i)2=7﹣i.解:(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4﹣4i+i2=2+3i+2=7﹣i.故答案为:7﹣i.变式训练【变2-1】.贾宪是生活在北宋年间的数学家,著有《黄帝九章算法细草》《释锁算书》等书,但是均已失传.所谓“贾宪三角”指的是如图所示的由数字所组成的三角形,称为“开方作法本源”图,也称为“杨辉三角”.贾宪发明的“开方作法本源“图作用之一,是为了揭示二项式(a+b)n(n=1,2,3,4,5)展开后的系数规律,即(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.则二项式(a+b)n(n为正整数)展开后各项的系数之和为()A.2n﹣1+1B.2n﹣1+2C.2n D.2n+1解:根据题意得:当n=1时,展开后各项的系数之和为:1+1=21,当n=2时,展开后各项的系数之和为:1+2+1=22,当n=3时,展开后各项的系数之和为:1+3+3+1=23,当n=4时,展开后各项的系数之和为:1+4+6+4+1=24,当n=5时,展开后各项的系数之和为:1+5+10+10+5+1=25,当n=6时,展开后各项的系数之和为:1+6+15+20+15+6+1=26,∴猜想当n=n时,展开后各项的系数之和为:2n,故选:C.【变2-2】.已知n行n列(n≥2)的数表中,对任意的i=1,2,…,n,j=1,2,…,n,都有a ij=0或1.若当a st=0时,总有(a1t+a2t+…+a nt)+(a s1+a s2+…+a sn)≥n,则称数表A为典型表,此时记表A中所有a ij的和记为S n.(1)若数表,,其中典型表是C;(2)典型表中S5的最小值为13.解:(1)数表B中a12=0,而(a12+a22+a32)+(a11+a12+a13)=0+0+1+0+0+1=2<3,∴数表B不是典型表;对于数表C中,当a st=0时,总有(a1t+a2t+…+a nt)+(a s1+a s2+…+a sn)≥n,∴数表C是典型表;故答案为:C.(2)若典型表中S5有最小值,即典型表A中的1最少且当a st=0时,总有(a1t+a2t+…+a nt )+(a s 1+a s 2+…+a sn )=n .则A =或A 中,则S 5的最小值为13.故答案为:13.1.对任意两个实数a ,b 定义两种运算:a ⊕b =,a ⊗b =,并且定义运算顺序仍然是先做括号内的,例如:(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=3⊗2=2,则等于()A .B .3C .D .2解:由题意得:=⊗=⊗3=,故选:C .2.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中较小的值,如Min {2,4}=2,按照这个规定,方程Min {}=的解为()A .1或3B .1或﹣3C .1D .3解:分两种情况:当x >0时,<,∵Min {}=,∴=﹣1,1=4﹣x,解得:x=3,检验:当x=3时,x≠0,∴x=3是原方程的根;当x<0时,>,∵Min{}=,∴=﹣1,3=4﹣x,解得:x=1,不符合题意,舍去,综上所述:方程Min{}=的解为3,故选:D.3.定义:如果a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=log a N.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为()①log61=0;②log323=3log32;③若log2(3﹣a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A.4B.3C.2D.1解:∵60=1,∴log61=0,说法①符合题意;由于d m•d n=d m+n,设M=d m,N=d n,则m=log d M,n=log d N,于是log d(MN)=m+n=log d M+log d N,说法④符合题意;则log323=log3(2×2×2)=log32+log32+log32=3log32,说法②符合题意;设p=log a b,则a p=b,两边同时取以c为底的对数,,则p log c a=log c b,所以p=,即,则=log23,∵log2(3﹣a)=log827=log23,∴a=0,说法③符合题意;故选:A.4.我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2,请你计算的值为20.解:=(﹣2)×(﹣9)﹣(﹣)×4=18﹣(﹣2)=18+2=20,故答案为:20.5.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+1)◎(m ﹣2)=16,则m=3或﹣2.解:∵a◎b=(a+b)2﹣(a﹣b)2=(a+b+a﹣b)(a+b﹣a+b)=4ab,∴(m+1)◎(m﹣2)=4(m+1)(m﹣2)=4(m2﹣m﹣2)=16,整理得m2﹣m﹣6=0,解得m=3或m=﹣2,故答案为:3或﹣2.6.设n为正整数,记n!=1×2×3×4×…×n(n≥2),1!=1,则+++…++=1﹣.解:+++…++=(1﹣)+(﹣)+()+…+(﹣)=1﹣,故答案为:1﹣.7.新定义:任意两数m,n,按规定y=﹣m+n得到一个新数y,称所得新数y为数m,n 的“愉悦数”.则当m=2x+1,n=x﹣1,且m,n的“愉悦数”y为正整数时,正整数x 的值是2.解:当m=2x+1,n=x﹣1,且y为数m,n的“愉悦数”时,y=﹣(2x+1)+(x﹣1)=﹣+====+=﹣x+1﹣,∵x和y均为正整数,∴1<x<4,当x=2时,y=1,当x=3时,y=﹣(不合题意,舍去),故答案为:2.8.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式23=8可以转化为对数式3=log28,对数式2=log636,可以转化为指数式62=36.计算log39+log5125﹣log232=0.解:log39+log5125﹣log232=2+3﹣5=0.故答案为:0.9.对于正整数m,我们规定:若m为奇数,则f(m)=3m+3;若m为偶数,则f(m)=.例如f(5)=3×5+3=18,f(8)==4.若m1=1,m2=f(m1),m3=f(m2),m4=f(m3),…,依此规律进行下去,得到一列数m1,m2,m3,m4,…,m n,…(n为正整数),则m1+m2+m3+…+m2021=14140.解:根据题意得:m1=1,m2=f(m1)=f(1)=6,m3=f(m2)=f(6)=3,m4=f(m3)=f(3)=12,m5=f(m4)=f(12)=6,m6=f(m5)=f(6)=3,m7=f(m6)=f(3)=12,m8=f(m7)=f(12)=6,m9=f(m8)=f(6)=3,......m2021=6,m2022=3,2022÷3=674,∴m1+m2+m3+…+m2021=(6+3+12)×(674﹣1)+6+1=14140.故答案为:14140.10.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序数对(a,b)为点P的斜坐标.(1)点P(x,y)关于原点对称的点的斜坐标是(﹣x,﹣y);(2)在某平面斜坐标系中,已知θ=60°,点P的斜坐标为(2,4),点N与点P关于x 轴对称,则点N的斜坐标是(6,﹣4).解:(1)点P(x,y)关于原点对称的点的斜坐标(﹣x,﹣y),故答案为:(﹣x,﹣y);(2)作P点关于x轴的对称点N,连接PN交x轴于点F,作NC∥x轴交y轴于C点,作ND∥y轴交x轴于D点,∵PA∥BC∥ND,∴∠PAF=∠θ=∠FDN=60°,∵PF=FN,∠PFA=∠DFN=90°,∴△PAF≌△NDF(AAS),∴PA=DN,AF=FD,∵点P的斜坐标为(2,4),∴OA=BP=2,PA=BO=4,∴DN=4,∵∠PAF=60°,∴AF=DF=4•cos60°=2,∴AD=4,∴OD=2+4=6,∴N(6,﹣4),故答案为:(6,﹣4).11.欧拉是18世纪瑞士著名的数学家,他的贡献不仅遍及高等数学的各个领域,在初等数学中也留下了他的足迹.下面是关于分式的欧拉公式:=(其中a,b,c均不为零,且两两互不相等).(1)当r=0时,常数p的值为0.(2)利用欧拉公式计算:=6063.解:(1)当r=0时,=++=﹣+=0,∴p=0,故答案为:0;(2)当a=2022,b=2021,c=2020,r=3时,=2022+2021+2020=6063,故答案为:6063.12.任何一个正整数n都可以进行这样的分解:(s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:①F(2)=;②F(48)=;③F(n2+n)=;④若n非0整数,则F(n2)=1,其中正确说法的是①③④(将正确答案的序号填写在横线上).解:∵2=1×2,∴F(2)=,故语句①符合题意;∵48=1×48=2×24=3×16=4×12=6×8,∴F(48)==,故语句②不符合题意;∵n2+n=n(n+1),∴F(n2+n)=,故语句③符合题意;∵n2=n×n,∴F(n2)==1,故语句④符合题意,故答案为:①③④.13.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)min{sin30°,cos60°,tan45°};(2)若M{﹣2x,x2,3}=2,求x的值.解:(1)min{sin30°,cos60°,tan45°}=min{,,1}=;(2)∵M{﹣2x,x2,3}=2,∴=2,整理得:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,x=3或x=﹣1,∴x的值为3或﹣1.14.定义为二阶行列式,规定它的运算法则为:=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)求的值.(2)若=20,求m的值.解:(1)∵=ad﹣bc,∴=20172﹣2018×2016=20172﹣(2017+1)×(2017﹣1)=20172﹣20172+1=1;(2)∵=ad﹣bc,=20,∴(m+2)(m+2)﹣(m﹣2)(m﹣2)=20,解得m=.15.材料:对于一个四位正整数m,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:∵3579中,2×5=3+7=10,7×2=5+9=14,∴3579是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数n=1000a+100b+10c+d为“相邻数”,其中a,b,c,d为整数,且1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,设F(n)=2c,G(n)=2d﹣a,若为整数,求所有满足条件的n值.解:(1)7653不是“相邻数”;3210是“相邻数”,∵7653中,6×2=7+5=12,5×2=10,6+3=9,10≠9,∴7653不是“相邻数”;∵3210中,2×2=3+1=4,1×2=2+0=2,∴3210是“相邻数”;(2)∵四位正整数n=1000a+100b+10c+d为“相邻数”,∴2b=a+c,2c=b+d,∵F(n)=2c,G(n)=2d﹣a,∴=,∵1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,∴8≤2a+3c+6≤5,∴2a+3c+6=17,34,51,①2a+3c=11时,a=1,c=3,b=2,d=4,此时n=1234,②2a+3c=28时,a=8,c=4,b=6,d=2,此时n=8642,③2a+3c=45时,a=9,c=9,b=9,d=9,此时n=9999,综上所述,所有满足条件的n的值为1234,8642,9999.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的相关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a+b)5展开式共有6项,系数和为32.(2)求(2a﹣1)5的展开式;(3)利用表中规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1(不用表中规律计算不给分);(4)设(x+1)17=a17x17+a16x16+…+a1x+a0,则a1+a2+a3+…+a16+a17的值为217﹣1.解:(1)根据图表中的规律,可得:(a+b)5展开式共有6项,系数和为1+5+10+10+5+1=32,故答案为:6,32;(2)(2a﹣1)5=25a5+5×24a4(﹣1)+10×23a3(﹣1)2+10×22a2(﹣1)3+5×2a(﹣1)4+(﹣1)5=32a5﹣80a4+80a3﹣40a2+10a﹣1;(3)根据图表中数据的规律可以发现:25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5,∴25﹣5×24+10×23﹣10×22+5×2﹣1=1;(4)∵(x+1)17=a17x17+a16x16+…+a1x+a0,∴当x=1时,(1+1)17=a0+a1+a2+a3+…+a16+a17,当x=0时,(0+1)17=a0=1,∴217=1+a1+a2+a3+…+a16+a17,∴a1+a2+a3+…+a16+a17的值为217﹣1.故答案为:217﹣1.17.若规定f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),且m,n为正整数,例如f(3,1)=3,f(4,2)=4×5,f(5,3)=5×6×7.(1)计算f(4,3)﹣f(3,4);(2)试说明:;(3)利用(2)中的方法解决下面的问题,记a=f(1,2)+f(2,2)+f(3,2)+…+f (27,2),b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3).①a,b的值分别为多少?②试确定a b的个位数字.(1)解:f(4,3)﹣f(3,4)=4×5×6﹣3×4×5×6=4×5×6×(1﹣3)=﹣2×4×5×6=﹣240;(2)证明:∵f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),[f(n,m+1)﹣f(n﹣1,m+1)]=×[n×(n+1)×(n+2)×(n+3)×…×(n+m)﹣(n﹣1)×n×(n+1)×(n+2)×(n+3)×…×(n﹣1+m+1﹣1)]=[n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1)×(m+1)]=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),∴;(3)解:①∵a=f(1,2)+f(2,2)+f(3,2)+…+f(27,2)=[f(1,3)﹣f(0,3)+f(2,3)﹣f(1,3)+f(3,3)﹣f(2,3)+…+f(27,3)﹣f(26,3)]=[f(27,3)﹣f(0,3)]=×27×28×29=7308,b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3)=[f(1,4)﹣f(0,4)+f(2,4)﹣f(1,4)+f(3,4)﹣f(2,4)+…+f(11,4)﹣f(10,4)]=[f(11,4)﹣f(0,4)]=×11×12×13×14=6006;②a b=73086006,∵61的个位数字是8,82的个位数字是8,4,2,6循环,∵6006÷4=1501……1,∴a b的个位数字是8.18.请阅读以下材料,解决问题.我们知道:在实数体系中,一个实数的平方不可能为负数,即a2≥0.但是,在复数体系中,如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi (a、b为实数)的数就叫做复数,a叫做这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(3+i)i=3i+i2=3i﹣1(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5=3i;若两个复数,它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.根据材料回答:(1)填空:①(2+i)(3i﹣1)=5i﹣5;②将m2+9(m为实数)因式分解成两个复数的积:m2+9=(m+3i)(m﹣3i);(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)2022的值;(3)已知(a+i)(b+i)=2﹣4i,求(a2﹣b2)(i2+i3+i4+…+i2023)的值.解:(1)①(2+i)(3i﹣1)=6i﹣2+3i2﹣i=5i﹣2﹣3=5i﹣5,故答案为:5i﹣5;②m2+9=(m+3i)(m﹣3i),故答案为:(m+3i)(m﹣3i);(2)(1+2i)2=1+4i+4i2=﹣3+4i,∵a+bi是(1+2i)2的共轭复数,∴a=﹣3,b=﹣4,∴(b﹣a)2022=(﹣4+3)2022=1;(3)∵(a+i)(b+i)=ab+(a+b)i﹣1=2﹣4i,∴2=ab﹣1,a+b=﹣4,∴ab=3,a+b=﹣4,∴a﹣b=±2,∵i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,…,∴i n的运算结果﹣1,﹣i,1,i循环出现,∵(2023﹣1)÷4=505…2,∴i2+i3+i4+…+i2023=﹣1﹣i,当a﹣b=2时,(a2﹣b2)(i2+i3+i4+…+i2023)=﹣8(﹣1﹣i)=8+8i;当a﹣b=﹣2时,(a2﹣b2)(i2+i3+i4+…+i2023)=8(﹣1﹣i)=﹣8﹣8i;综上所述:(a2﹣b2)(i2+i3+i4+…+i2023)的值为8+8i或﹣8﹣8i.19.式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和,由于上述式子比较长,书写不方便,为了简便起见,可以将上述式子表示为,这里“∑”是求和的符号.例如“1+3+5+7+…+99”用“∑”可以表示为,“13+23+33+…+103”用“∑”可以表示为.(1)把写成加法的形式是12+22+32+42+52+62;(2)“2+4+6+8+…+100”用“∑”可以表示为2n;(3)计算:.解:(1)=12+22+32+42+52+62,故答案为:12+22+32+42+52+62;(2)2+4+6+8+…+100=2n,故答案为;2n;(3)()=+++...+=1﹣+﹣+﹣+﹣+...+﹣=1﹣=.20.好学的小贤同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(﹣6)+2×(﹣6)×4+3×4×5=﹣3,即一次项为﹣3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x﹣5)(3x+1)(5x﹣3)所得多项式的一次项系数为17.(2)若计算(x2+x﹣1)(x2﹣2x+a)(2x+3)所得多项式的一次项系数为2,求a的值;(3)若(x+1)2022=a0x2022+a1x2021+a2x2020+…+a2021x+a2022,则a2021=2022.解:(1)(x﹣5)(3x+1)(5x﹣3)的一次项系数为:1×1×(﹣3)+3×(﹣5)×(﹣3)+5×(﹣5)×1=﹣3+45﹣25=17,故答案为:17;(2)(x2+x﹣1)(x2﹣2x+a)(2x+3)的一次项系数为:1×a×3+(﹣2)×(﹣1)×3+2×(﹣1)×a=3a+6﹣2a=a+6,∵(x2+x﹣1)(x2﹣2x+a)(2x+3)的一次项系数为2,∴a+6=2,∴a=﹣4;(3)∵(x+1)2022的一次项系数为:==2022,又∵(x+1)2022=a0x2022+a1x2021+a2x2020+…+a2021x+a2022,∴a2021=2022,故答案为:2022.21.阅读下列材料.材料一:对于一个四位正整数,如果百位数字大于千位数字,且个位数字大于十位数字,则称这个数是“双增数”;如果百位数字小于千位数字,且个位数字小于十位数字,则称这个数是“双减数”.例如:3628、4747是“双增数”,5231、9042是“双减数”.材料二:将一个四位正整数m的百位数字和十位数字交换位置后,得到一个新的四位数m',规定:F(m)=m﹣m',例如:F(2146)=2146﹣2416=﹣270.(1)最大的“双增数”是8989,最小的“双减数”是1010;(2)已知“双增数”s=1000x+100(y+4)+10y+6(1≤x≤9,0≤y≤9,x、y是整数),“双减数”t=3000+20a+b(0≤a≤9,0≤b≤9,a、b是整数),且t的各个数位上的数字之和能被12整除,现规定k=F(s)+F(t),求k的最大值.解:(1)由双增数的定义得最大的双增数是:8989,根据双减数的定义得最小的双减数是:1010.故答案为:8989,1010.(2)由题意:F(s)=s﹣s′=1000x+100(y+4)+10y+6﹣[1000x+100y+10(y+4)+6=360.∵t=3000+2a+b.∴20a+b是一个三位数,设它的百位数是e,十位数是f,个位数是b,则100e+10f=20a,t=3000+100e+10f+b.∴5e+f=a.∵t为双减数.∴0≤e<3∴F(t)=3000+100e+10f+b﹣(3000+100f+10e+b)=90(e﹣f)∴k=360+90(e﹣f).∴e=0,1,2,当a=6,7,8,9时20a会产生进位,故百位e的最大值为1.,∵t各数位上数字之和是12的倍数.∴3+1+f+b是12的倍数.f是2的倍数∴f=6,b=2此时k的最大值为:360+90(1﹣6)=﹣90.。
新定义问题(讲义)
➢课前预习
1.设22
=-,那么56=______,(12)3=_____.
a b a b
2.规定运算“☆”为:若a>b,则a☆b=a-b;若a=b,则a☆b=a+b+1;若a
<b,则a☆b=ab.那么
(2☆3)+(4☆4)+(7☆5)=______.
3.“华”、“杯”、“赛”三个字的四角号码分别是“2440”,“4199”和
“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________________.
➢知识点睛
定义新运算是一种特别设计的、临时的计算形式,它使用一些特殊的运算符号,如:☆,△,◎,※等等,这类题目是在考查我们适应新运算的能力,新运算打破了原有的运算规则,要求我们要严格按照题目的规定解决问题.解答这类题目的关键是理解新定义,严格按照新定义的规则进行运算,按照新规则把运算转化成我们熟悉的运算形式.
解决新定义问题基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算.
注意事项:
①正确理解定义的运算符号的意义;
②新的运算不一定符合运算规律,特别注意运算顺序;
③每个新定义的运算符号只能在本题中使用.
➢ 精讲精练
1. 现规定一种新的运算“△”:m △n =(m +n )m -n ,那么5122
∆=__________. 2. 定义一种新运算“*”:a *b =22ab a b
+,则(-1)*[2*(-1)]的值为_______. 3. 我们将4个数a ,b ,c ,d 排成2行,2列,然后两边各加一条笔直的线记成
a b c d ,定义a b c d
=ad -bc ,上述记号就叫做二阶行列式.若222535
10023n n n --+=-,则5-n =__________.
4. 定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为2n k (其中k 是使2n k
为奇数的最小正整数),并且运算重复进行.例如:取n =26,则运算过程如图:
F ①
1344……
那么当n =9时,第2 020次“F 运算”的结果是___________.
5. 在一列数x 1,x 2,x 3,…中,已知x 1=1,且当k ≥2时,
1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣
⎦⎣⎦⎝⎭(取整符号[a ]表示不超过数a 的最大整数,例如[3.2]=3,[0.3]=0),则x 2 020=__________.
6. 定义“*运算”:a *b =ab +ma +2b ,其中m 为常数.
(1)求3*(-2);(用含m 的式子表示)
(2)若“*运算”对于任意的有理数a ,b 都满足“交换律”,请你探索并确定m 的值.
7. 在有理数范围内,我们定义三个数之间的新运算法则“⊕”:
1()2
a b c a b c a b c ⊕⊕=--+++. 例如:11(2)31(2)31(2)312
⊕-⊕=⎡---++-+⎤=⎣⎦. 解答下列问题:
(1)计算21(3)54⎛⎫⊕-⊕- ⎪⎝⎭
的值; (2)在45-,35-,25-,0,413,513,613,713,813,913
这10个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,求在所有计算结果中的最大值.
8. 观察下列两个等式:1122133-=⨯+,2255133
-=⨯+,给出定义如下:我们称使等式1a b ab -=+成立的一对有理数a ,b 为“共生有理数对”,记为(a ,
b ).如:数对(2,13),(5,23
)都是“共生有理数对”. (1)数对(-2,1),(3,12
)中是“共生有理数对”的是:_____; (2)若(m ,n )是“共生有理数对”,则(-n ,-m )_________“共生有理数对”(填“是”或“不是”);
(3)若(a ,2)是“共生有理数对”,求a 的值;
(4)请再写出一对符合条件的“共生有理数对”为_______.
(注意:不能与题目中已有的包括第(4)问的“共生有理数对”重复)
9. 阅读理解题:如图,从左边第一个格子开始向右数,在每个小格子中都填入
一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
(1)可求得x =________,第2 020个格子中的数为________.
(2)判断:前n 个格子中所填整数之和是否可能为2 020?若能,求出n 的值;若不能,请说明理由.
(3)若取前3格子中的任意两个数,记作a ,b ,且a ≥b ,那么所有的|a -b |的和可以通过计算|9-★|+|9-❤|+|❤-★|得到,其结果为__________;若取前4格子中的任意两个数,记作s ,t ,且s ≥t ,则所有的|s -t |的和为__________.
10. 阅读材料,并回答问题
在计算1+4+7+10+13+16+19+22+25+28时,我们发现:从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一
列数,除了直接相加外,我们还可以用下面的公式来求和S ,1()2
n n a a S +=(其中n 表示数的个数,1a 表示第一个数,n a 表示最后一个数),所以
10(128)147101316192225281452
++++++++++==. 用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A ,B 分别拟定上缴利润方案如下:A 企业每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元;B 企业每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.
(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?
(2)如果承包期限为n 年,试用含n 的代数式分别表示两企业上缴利润的总金额.(单位:万元)
11.阅读材料,并回答问题
一个能被13整除的自然数我们称为“十三数”.“十三数”的特征是:如果这个自然数的末三位与末三位以前的数字组成的数的差,能被13整除,那么这个自然数就一定能被13整除.例如:判断383 357能不能被13整除,这个数的末三位数字是357.末三位以前的数字组成的数是383,这两个数的差是383-357=26,26能被13整除,因此383 357是“十三数”.
(1)判断3 253和254 514是否为“十三数”,请说明理由.
(2)若一个四位自然数的千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.
①求证:任意一个四位“间同数”能被101整除.
②若一个四位自然数既是“十三数”,又是“间同数”.求满足条件的所有四
位数的最大值与最小值之差.
【参考答案】
➢课前预习
1.13,3
2.17
3.254 948 903 981 ➢精讲精练
1.9
2.10 29
3.0或10
4. 1
5. 4
6.(1)3m-10;
(2)若a=b,则m可取任意数;
若a≠b,则m=2;
7.(1)2
5
;
(2)①若0
a b c
--≥,当
9
13
a=时,a b c
⊕⊕最大,最大值为
9
13
②若0
a b c
--<,当b,c的值分别为
8
13
,
9
13
时,a b c
⊕⊕最大,最大
值为17
13
.
综上,a b c
⊕⊕的最大值为
17
13
.
8.(1)
1
3
2
⎛⎫ ⎪⎝⎭
,;
(2)是;
(3)a的值为-3;
(4)
3
4
5
⎛⎫ ⎪⎝⎭
,.
9.(1)9,9;
(2)前n个格子中所填整数之和可能为2 020,理由如下:∵格子中的数是按照9,-6,2的顺序循环排列
9+(-6)+2=5
2 020÷5=404
∴当进行404个循环时,格子中的数的和恰为2 020
∴n=404×3=1 212
(3)30,52
10.(1)A企业:12万元;B企业:10.8万元;A企业上缴利润的总金额多;
(2)A企业:
(2)
2
n n+
万元;B企业:
3(21)
10
n n+
万元.
11.(1)3 253不是十三数,254 514是十三数;
(2)①设四位间同数的千位数字为a,百位数字为b
则四位数可以表示为1 000a+100b+10a+b
∵1 000a+100b+10a+b=1 010a+101b
=101(10a+b)
∴任意一个四位间同数能被101整除.
②由①知四位间同数可以表示为101(10a+b)
∵101(10a+b)又是十三数
∴10a+b是13的倍数;
∴当a=9,b=1时,四位数最大,最大为9 191;
当a=1,b=3时,四位数最小,最小为1 313.
∴9 191-1 313=7 878
∴满足条件的所有四位数的最大值与最小值的差为
7 878.。