行程五十题
- 格式:doc
- 大小:571.04 KB
- 文档页数:21
行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。
2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。
例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
五年级奥数行程问题行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1:甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米。
两车在距中点 32 千米处相遇。
东、西两地相距多少千米?【思路导航】两车在距中点 32 千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多 32 千米,乙车行了全程的一半少 32 千米,因此,两车相遇时,甲车比乙车共多行了 32 × 2= 64 (千米)。
两车同时出发,又相遇了,两车所行的时同是一样的,为什么甲车会比乙车多行 64 千米?因为甲车每小时比乙车多行 56-48 = 8 (千米)。
64 ÷8 =8 所以两车各行了 8 小时,求东、西的路程只要用( 56 + 48 )× 8 即可。
32× 2 ÷(56-48 )= 8 (小时) ( 56 + 48 ) ×8 = 832 (千米)答:东、西两地相距 832 千米。
【疯狂操练】1、小玲每分行 100 米,小平每分行 80 米,两人同时从学校和少年宫相向而行,并在离中点 120 米处相遇,学校到少年宫有多少米?解:小玲速度比小平速度快,在离中点120米处相遇,也就是说他们相遇的时候小玲比小平多走了120×2=240米,那么他们相遇时间为240÷(100-80)=12分钟,总路程就是他们的速度和乘以相遇时间:(100 + 80)×12 = 2160(米) 答:学校到少年宫有2160米。
2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行 40 千米,摩托车每小时行 65 千米,当摩托车行到两地中点处时,与汽车还相距 75 千米,甲、乙两地相距多少千米?解:因当摩托车行到两地中点处时,与汽车还相距 75 千米,所以75千米就是两车所行的路程差.路程差÷速度差=时间,所以两车所行时间为:75÷(65-40)=3小时,甲、乙两地之间的路程=两车速度和×时间+两车之间的距离=(65+40)×3+75=105×3+75=380千米即:两车所行时间是:75÷(65-40)=3(小时)甲、乙两地之间的路程是:(65+40)×3+75=105×3+75 =390(千米)答:甲、乙两地相距380千米。
第七讲行程问题(一)知识导航讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间速度=路程÷时间,时间=路程÷速度行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
我们在做行程问题时首先要判断所做的题属于哪种类型,然后再选择适当解答策略与方法进行解答。
精典例题例1:A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行130米,小明每分钟步行多少米?思路点拨 A、B两地并不是两人在相同时间走完的,所以我们先要知道各自走了多少分钟,然后把小军速度也看成每分钟少行130千米,则小军与小明速度相同,可求出小明的速度。
模仿练习东、西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?例2:小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
问:甲、乙两地相距多远?思路点拨当面包车与小轿车相遇后,再经过30分钟面包车又与大客车相遇,这断路程实际是面包车与小轿车相遇时,小轿车与大客车的路程差,再根据路程差求出面包车与小轿车的相遇时间,便可求出甲乙两地相距多远。
模仿练习有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?例3:甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇,相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问A、B两地相距多少千米?模仿练习甲、乙两人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求A、B两地相距多少千米?例4:小亮从家步行去学校,每小时行5千米,回家时骑车,每小时行13千米,骑车的时间比步行的时间少0.4小时,小亮家到学校的距离是多少千米。
海底两万里优美句子加赏析1. 海底两万里好句赏析例如:1海底森林,穿越海底隧道(阿拉伯海底地道,苏伊士下面一条通往地中海的地道),一块沉没的陆地(大西洋洲),在未来世界,一切幻想皆成为了现实.他作品中的幻想大胆新奇,并以其逼真、生动、美丽如画令人读来趣味盎然;情节惊险曲折、人物栩栩如生、结局出人意料这些使他的作品具有永恒的魅力.2 一样平静的大海里突然出现了一系列骇人听闻的怪事,一只巨大的“怪物”出没其间,兴风作浪. 故事开场便是大海中的“谜团”3 在他们在潜水艇中发生的一切,让我印象最深的要数搁浅那一回因为撞上暗礁和退潮的原因,潜水艇在格波罗阿尔岛附近搁浅了.这艘举世无双的潜水艇不会在这次劫难中变为废铁吧?内莫艇长经过一系列的计算,认为潜水艇会在三天以后恢复正常.在这三天里,内德兰德拉着教授、孔塞伊去岛上狩猎,却惹到了野人,野人把潜水艇围得密不透风,甚至想从舱窗爬进来,幸好内莫艇长早有准备,在扶梯上通了电,使得野人无可奈何.三天后,一切恢复正常,阿罗纳克斯教授又开始了他的海底旅行.这本书的主人公有四个:内莫艇长、阿罗纳克斯教授、孔塞伊和内德兰德.内莫艇长是一个带有浪漫神秘色彩喜爱孤独和自由的人.他十分勇敢,具有惊人的冷静和毅力;他十分善良,不愿伤害海底生物;他十分博学,上知天文,下知地理……阿罗纳克斯教授是一个潜心于自己的研究的人,他勇敢,敢于参加捕杀“怪物”的活动;他沉稳,能用冷静的头脑想问题.;孔塞伊是一个忠实的仆人他痴迷于分类,却不清楚生物的样子.内德兰德是一个粗狂的彪形大汉,勇敢但冲动,喜爱美味,又是他又会显得很难相处.。
2. 海底两万里优美语句及赏析15个1.这真是一片奇妙又少见的海底森林,生长的都是高大的木本植物,小树上丛生的枝权都笔直伸向洋面。
没有技条,没有叶脉,像铁杆一样。
在这像温带树林一般高大的各种不同的灌木中间,遍地生长着带有生动花朵的各色珊瑚。
美丽极了。
赏析:生动的表现出海底世界的富饶美丽,令人向往。
五年级数学解方程相遇问题应用题
1、两地间的铁路长250千米。
一列货车和一列客车同时从两地相对开出,客车每小时行52千米,货车每小时行48千米。
经过几小时两车相遇?
2.一列货车和一列客车同时从同地相背开出,客车每小时行52千米,货车每小时行48千米。
经过几小时两车相距250千米?
3、两城之间的公路长256千米。
甲乙两辆汽车同时从两个城市出发,相向而行,经过4小时相遇。
甲车每小时行31千米,乙车每小时行多少千米?
4.、两个工程队共同开凿一条117米长的隧道。
各从一端相向施工,13天打通。
甲队每天开凿4米,乙队每天开凿多少米?
5.甲乙二人同时从相距38千米的两地相向行走,甲每时行3千米,乙每时行5
千米,经过几时后二人相距6千米?
6.甲乙两地相距750千米,客车和火车同时从两地出发,相向而行,3小时相遇。
已知客车的速度是火车速度的倍,客车的每小时行多少千米?
7. 两地相距330千米,两车同时从两地相对开出,开出后5小时相遇.。
已知甲车每小时比乙车快2千米,甲车甲车和乙车每小时各行多少千米
1。
五年级行程问题(三)例题1:一辆汽车从甲地开往乙地,平均每小时行20千米。
到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。
求甲、乙两地间的路程。
【练一练】1.汽车从甲地开往乙地送货,去时每小时行30千米,返回时每小时行40千米。
往返一次共用8小时45分,求甲、乙两地间的路程。
2.—架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米,返回时逆风,每小时可飞1200千米。
这架飞机最多飞出多少千米就要往回飞?3.师、徒二人加工一批零件。
师傅每小时加工35个,徒弟每小时加工28个。
师傅先加工了这批零件的一半后,剩下的由徒弟去加工,二人共用18小时完成了加工任务。
问这批零件共有多少个?例题2:一个通讯员骑自行车需要在规定时间内把信件送到某地,如果他每小时走15千米可早到0.4小时,如果他每小时走12千米就要迟到0.25小时,他去某地的路程有多远?【练一练】1.小李由镇上到县城办事,每小时行4千米,到预定到达的时间时,离县城还有1.5千米。
如果小李每小时走5.5千米,到预定到达的时间时,又会多走4.5千米。
镇上距县城多少千米?2.小王骑摩托车从B地到A地去开会。
如果每小时行50千米,就要迟到0.2小时,如果每小时行60千米,就会早到1小时。
求A、B两地的距离。
3.玲玲从家到县城上学,她以每分钟50米的速度走了2分钟后,发现按这个速度走下去要迟到8分钟,于是她加快了速度,每分钟多走10米,结果到学校时,离上课时间还有5分钟。
玲玲家到学校的路程是多少米?例题3:东、西两地相距5400米,甲、乙从东地,丙从西地同时出发,相向而行。
甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。
多少分钟后乙正好走到甲、丙两人之间的中点处?【练一练】1.A、B、C三点在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米。
经过凡分钟B地在甲、乙两人之间的中点处?2.东、西两镇相距60千米,甲骑车行全程要4小时,乙骑车行全程要5小时。
第一讲速算与巧算例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3 计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7 计算 9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.习题一1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算 3×999+3+99×8+8+2×9+2+9第二讲速算与巧算例1 比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2 不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250— 3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250— 5)=240×250+5×5.恒等变形以后的各式有相同的部分 240 × 250,又有不同的部分 1×9, 2×8, 3×7, 4 ×6, 5×5,由此很容易看出 245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3 求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为 320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x—1,x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5 将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.习题二1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.第三讲等差数列及其应用许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们将不仅掌握有关这种数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.一、等差数列什么叫等差数列呢?我们先来看几个例子:①l,2,3,4,5,6,7,8,9,…②1,3,5,7,9,11,13.③ 2,4,6,8,10,12,14…④ 3,6,9,12,15,18,21.⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示,如:数列①中,d=2-1=3-2=4-3= (1)数列②中,d=3-1=5-3=…=13-11=2;数列⑤中,d=100-95=95-90=…=75-70=5;数列⑥中,d=20-18=18-16=…=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;解:①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a1,第2项记为a2,…,第n项记为an,an。
第五讲:行程问题(1)班级 姓名精讲精练1. 小华和小李两家相距400米,两人同时从家中出发,在同一条路上行走。
小华每分钟走60米,小李每分钟走70米。
3分钟后,两人相距多少米试一试: 甲乙两人同时从某地出发,反方向行走,甲46米/分,乙54米/分,7分钟后两人相距多少米?甲乙两车分别从相距480km 的两地出发,相向而行,甲50km/h,乙70km/h ,几小时后两车相遇?甲乙两车分别从相距480km 的两地出发,相向而行,4小时后相遇,甲50km/h ,乙车每小时行多少千米?★★2. 大毛和二毛同时从相距1000米的两地相向而行。
大毛每分钟行120米,二毛每分钟行80米。
如果一只小狗与大毛同时同向而行,,每分钟行500米,遇到二毛后立即回头向大毛跑去,遇到大毛后再向二毛跑去,不断来回,直到大毛、二毛相遇。
小狗共跑了多少米?学习目标:会画线段图解决行程问题。
3.甲乙两车从相距675千米的两地出发,相向而行,甲每小时行45km,乙每小时行60km,甲先行1小时后乙才出发,再过几小时两车相遇?4.甲乙两港相距540km,甲乙两船同时从两港相对开出,经过9小时相遇。
已知甲船的速度比乙船快4km。
求甲、乙两船的速度。
独立练习1. 甲乙两人分别从两地同时出发,相向而行,甲4km/h,乙6km/h,2小时后相遇,两地相距多少千米?2.甲乙两车分别从相距480km的两地同时出发,相向而行,甲车从A城到B 城需要6小时,乙车从B城到A城需要12小时,两车出发后几小时相遇?3.两个车站相距285km,甲乙两列火车分别从两个车站同时对开,经过3小时相遇。
已知甲火车比乙火车快5km/h,求两列火车的速度。
挑战自我(★★★)1. 两列火车分别从甲乙两地同时出发,相对而行,第一列火车每小时行60km,第二列火车每小时行55km,两车在距离中点10km的地方相遇,求甲乙两地之间的距离。
2. AB两城相距450km,甲乙两车同时从A城开往B城,甲车每小时行52km,乙车每小时行38km,甲车到达B城后立即返回,两车从出发到相遇共需要多少小时?。
第五讲行程问题一兴趣篇1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨莫联系慢跑,12分钟跑了3000米,按照这个速度,跑25000米需要多少分钟?如果墨莫每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行使多少千米?实际上汽车行使了一半路程后发生了故障,在途中停留了一个小时,如果要按原计划的时间到达B城,汽车在后一半路程上每小时应该行使多少千米?4、A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行。
如果甲每分钟走60千米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两个人从出发到相遇需要多长时间?5、在第四题中,如果甲、乙两人的速度大小不变,但甲出发时改变方向,即两人同时、同向出发,请问:乙出发后多久可以追上甲?6、甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地,2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地,问:什么时候两车在途中相遇?7、卡莉娅和墨莫分别从相距720米的两地出发同向而行,墨莫在前,卡莉娅在后,且墨莫比卡莉娅先出发2分钟,已知卡莉娅的速度是每分钟60米,墨莫的速度为每分钟50米,试问:当卡莉娅追上墨莫的时候,墨莫已经走了多少米?8、一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1)2小时后两车相距多少千米?(2)经过多少小时后两车第一次相距50千米?9、一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米,问:(1)经过6小时后两车相距多少千米?(2)经过几个小时后两车第一次相距100千米?10、甲、乙两车分别从A、B两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后它们继续前进,又过了3个小时,甲车到达B地,问:乙车还要过多久才能到达A地?拓展篇1、甲、乙两地相距450千米,快车和慢车分别从甲、乙两地出发相向而行,快车每小时行60千米,慢车每小时行30千米,请问:(1)如果两车同时出发,几小时后相遇?(2)如果慢车比快车早出发3小时,当两车相遇时快车走了多远?2.、A、B两地相距400千米,甲、乙两车分别从A、B两地同时出发,相向而行。
五年级趣味数学思维拓展题50道及答案(1) 【巧填幻方】用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.(2) 【图形面积】如下图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.(3) 【不定方程】甲,乙,丙三个人玩三张牌,这三张牌分别写着不同的自然数,洗牌后发给每人一张,按每人所拿的自然数得分,重复玩了3次后,甲共得19分,乙和丙各得13分,那么这三张牌上写的数是哪三个数?(4) 【新定义】将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么●○○●○●表示的数是_____.1(5) 【还原问题】假设有一种计算器,它由A,B,C,D 四种装置组成,将一个数输入一种装置后会自动输出另一个数.各装置的运算程序如下:装置A :将输入的数加上6之后输出;装置B :将输入的数除以2之后输出;装置C :将输入的数减去5之后输出;装置D :将输入的数乘以3之后输出.这些装置可以连接,如在装置A 后连接装置B,就记作:A→B .例如:输人1后,经过A→B ,输出3.5.(1) 若经过A→B→C→D ,输出120,则输入的数是多少?(2) 若经过B→D→A→C ,输出13,则输入的数是多少?(6) 【统筹规划】理发室里有甲,乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少.最少时间为__________.(7) 【图形分割】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状,大小都一样的图形.(8) 【图形拼接】如何把一个长20厘米,宽12厘米的长方形切成两块,拼成一个长16厘米,宽 54 3 2 1 ● ○ ○ ○ ● ○ ○ ● ○ ○ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●15厘米的新长方形.(9) 【不定方程】五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组.若参加A组的有15人,参加B组的人数仅次于A组,参加C组,D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.(10) 【逻辑推理】A,B,C三个人回答同样的七道判断题,按规定,若认为结论是正确的,就打一个“√”,若认为结论是错误的,就打一个“×”.结果A,B,C三人的答题的情况如下表所示,已知A,B,C三个人都只答对5题,答错2题.请问:这七道判断题的正确答案是什么?(11) 【行程问题】猎狗追野兔.在相等的时间里,猎狗跳6次,野兔跳7次;而猎狗跳4次的距离等于野兔跳5次的距离.当猎狗发现野兔时,野兔已跳出离猎狗10步远的距离.问猎狗跳出多少次以后才能追上野兔?(12) 【排列组合】4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有_________种传球方法.(13) 【整除问题】村里种了新瓜,男女老少品尝它.小伙每人吃一个,姑娘两人分一瓜;老人一瓜三人吃,四个小孩吃一瓜.男女老少四个组,一共吃了五十瓜,各组人数都相等,每组多少人品尝瓜?(14) 【一笔画】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?(15) 【行程问题】有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?(16) 【行程问题】如图,迷宫的两个入口处各有一个正方形(甲)机器人和一个圆形机器人(乙),甲的边长和乙的直径都等于迷宫入口的宽度.甲和乙的速度相同,同时出发,则首先到达迷宫中心(☆)处的是.(17) 【等差数列】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果.最后,每只小A G BF CHDE猴分得8个野果.这群小猴一共有_________只.(18) 【行程问题】龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟后玩20分钟,再跑3分钟后玩20分钟……问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?(19) 【游戏与策略】一只电动老鼠从右图的A 点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A 点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲,乙二人有一人说对了,那么谁正确?(20) 【统筹规划】在一条公路上,每隔10千米有一座仓库(如图) ,共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少是__________元.(21) 【平均数问题】某养鸽协会正在讨论是否批准某养鸽人加入养鸽协会的问题,已知该养鸽人的年龄恰好等于他所养的鸽子数.如果批准他加入,那么养鸽协会成员的平均年龄将从50岁升高到51岁,并且养鸽协会成员的平均养鸽数目将从114只降到111只.那么该养鸽协会原有成员多少人?60 10吨 20吨 30吨10吨(22) 【方案设计】今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.(23) 【统筹规划】有七个村庄1A ,2A , ,7A 分布在公路两侧(见右图) ,由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里.(24) 【行程问题】猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子(25) 【还原问题】李白提壶去买洒,遇店加一倍,见花喝一斗.三遇店和花,喝光壶中酒.壶中原有___________斗酒.(26) 【行程问题】一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?(27) 【和差问题】一群小神仙玩扔沙袋游戏,他们分为甲,乙两个组,共有140只沙袋.如果甲组先给乙组5只,乙组又给甲组8只,这时两组沙袋数相等.两个组原来各有沙袋多少只? 公路 A 6 A 5 A 7 A 4 A 3 A 2A 1F E DBC(28) 【分数应用题】刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有___________升矿泉水. (29) 【排列组合】一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有_________种不同走法.(30) 【倍数问题】3个探险家结伴去原始森林探险,路上觉得十分乏味就聚在一起玩牌.第一局,甲输给了乙和丙,使他们每人的钱数都翻了一番.第二局,甲和乙一起赢了,这样他们俩钱袋里面的钱也都翻了倍.第三局,甲和丙又赢了,这样他们俩钱袋里的钱都翻了一倍.结果,这3位探险家每人都赢了两局而输掉了一局,最后3人手中的钱是完全一样的.细心的甲数了数他钱袋里的钱发现他自己输掉了100元.你能推算出来甲,乙,丙3人刚开始各有多少钱吗?(31) 【统筹规划】北京,上海分别有10台和6台完全相同的机器,准备给武汉11台,西安5台,每台机器的运费如右表,如何调运能使总运费最省.(32) 【和差问题】有60名学生,男生,女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了___________个小组.到站 运费/元发站 武汉 西安 北京上海 500 700 600 1000(33) 【行程问题】一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子可以跳4次.问:兔子跑出多远将被猎狗追上?(34) 【统筹规划】星期天妈妈要做好多事情.擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子,袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟.妈妈干完所有这些事情最少用____分钟.(35) 【图形面积】如图,矩形ABCD 被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形ABCD 的面积为.(36) 【倍数问题】三个容器各放一些水,第一次从第一个容器倒一些水到另两个容器,使得它们的水分别增加到原来的2倍与3倍,第二次从第二个容器倒一些水到第一个与第三个容器中,使它们的水分别增加到3倍与2倍,第三次从第三个容器中倒一些水到第一个与第二个容器中,使它们的水都增加到2倍,这时三个容器中的水都为96毫升,原来三个容器中各有多少毫升水?(37) 【差倍问题】一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩,女孩各有多少人?(38) 【行程问题】猎狗追赶前方15米处的野兔.猎狗跑3步的时间野兔跑5步,猎狗跑4步的距离野兔要跑7步.猎狗至少跑出多少米才能追上野兔?164 22 1 C B D A(39) 【统筹规划】如图,在街道上有A,B,C,D,E,F六栋居民楼,现在设立一个公交站,要想使居民到达车站的距离之和最短,车站应该设在何处.(40) 【最值问题】用10尺长的竹竿做原材料,来截取3尺,4尺长的甲,乙两种短竹竿各100根,至少要用去原材料__________根.怎么截法最合算.(41) 【行程问题】甲,乙两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水.⑴如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?⑵如果可以将部分食物存放于途中以备返回时取用,情况又怎样呢?(42) 【行程问题】一座石台的下底面是边长为10米的正方形,它的一个顶点A处有一个虫子巢穴,虫甲每分爬6厘米,虫乙每分爬10厘米,甲沿正方形的边由A→B→C→D→A不停的爬行,甲先爬行2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行过的路线追赶甲……在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?(43) 【最值问题】一个工厂有7个车间,分散在一条环形铁路上,三列火车循环运输产品.每个车间装卸货物所需工人数为25,18,27,10,20,15,30.若改为部分工人跟车,部分工人固定在车间,那么安排__________名装卸工,所用总人数最合理.(44) 【排列组合】如下图,一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有_________种回家的方法.(45) 【行程问题】一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回.已知河水速度为1.4千米/小时,小艇在静水中的速度为3千米/小时,如果旅游者每过30分钟就休息15分钟,不靠岸,只能在某次休息后才返回,那么他从旅游基地出发乘艇走过的最大距离是____千米.(46) 【统筹规划】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢.(47) 【一笔画】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?(48) 【还原问题】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是____________.(49) 【余数问题】一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n页,恰可用n天读完(n是自然数).这本书的页数是______.(50) 【公约数公倍数】有甲,乙,丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次.2024年元旦三个网站同时更新,下一次同时更新是在____月____日?五年级趣味数学思维拓展题50道答案(1)(2) 21(3) 三张牌从大到小写的数依次是7,5,3(4) 26(5) (1)84;(2)8(6) 128分(7)(8)(9) 参加B 组的有7人(10) √×√××√√(11) 120次(12) 6011 17 23 1319 25 15 21274 34 34 3 3 4 4 3 4 3 4 3 4 3(14) 48分米(15) 520千米(16) 乙先到达(17) 15只猴子(18) 1千米(19) 甲正确(20) 1530元(21) 养鸽协会原有成员15人(22)(23) D点(24) 54步(25) 7斗8(26) 192步(27) 甲67,乙73(28) 3升(30) 刚开始时甲有260元,乙有80元,丙有140元.(31) 北京调往西安5台,其余5台调往武汉,上海6台全部调往武汉(32) 21个小组(33) 280米(34) 16分钟(35) 42(36) 三个容器原来分别有水168毫升,88毫升,32毫升(37) 男孩有14人,女孩有8人(38) 315米(39) CD之间及点C,D均可(40) 75根(41) 360千米(42) 213分(43) 82人(44) 296(45) 4.8千米(46) 首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3312161329++++++=(分钟) .最后能够安全全部过河(47) 4-1-2-5-8-9-6-10-11-7-4-3(48) 216或105或102,答案不唯一(49) 256页(50) 4月14日。
1 行程专题基础50道 1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)
5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 2
6、 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
7、 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?
8、 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?
9、一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
10、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。那么A,B两地相距多少千米? 3
11、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米?
12、爷爷坐汽车,小李骑自行车,沿一条公路同时从A地去B地。汽车每小时行40千米,是自行车速度的2.5倍。结果爷爷比小李提前3小时到达B地。A、B两地间的路程是多少千米?
13、如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。它们第一次相遇在离A点8厘米处的B点,第二次相遇在离c点处6厘米的D点,问,这个圆周的长是多少?
14、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。 客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?
15、小方从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的45;如果他每小时比原来少走1.5千米,那么他走这段路的时间比原来时间多几分之几? 4
16、王刚骑自行车从家到学校去,平常只用20分钟。因途中有2千米正在修路,只好推车步行。步行速度只有骑车速度的13,结果这天用了36分钟才到学校。王刚家到学校有多少千米?
17、甲、乙两人分别从A、B两地同时相向出发。相遇后,甲继续向B地走,乙马上返回,往B地走。甲从A地到达B地。 比乙返回B地迟0.5小时。已知甲的速度是乙的34。甲从A地到达地B共用了多少小时?
18、一个圆的周长为60厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按逆时针方向沿着圆圈爬行,A的速度为每秒5厘米,B的速度为每秒1.5厘米,C的速度为每秒2.5厘米.问3只甲虫爬出多少时间后第一次到达同一位置?
19、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
20、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快,两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。那么甲回到出发点共用多少小时? 5
21、某人沿电车线路行走,没12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔?
22、龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,......。那么先到达终点比后到达终点的快多少分钟?
23、A、C两地相距2千米,C、B两地相距5千米。甲、乙两人同时从C地出发,甲向B地走,到达B地后立即返回;乙向A地走,到达A地后立即返回。如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米?
24、张明和李军分别从甲、乙两地同时想向而行。张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,„„(连续奇数)。两人恰好在甲、乙两地的中点相遇。甲、乙两地相距多少千米?
25、甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米? 6
26、老师教同学们做游戏:在一个周长为114米的圆形跑道上,两个同学从一条直径的两端同时出发沿圆周开始跑,1秒钟后他们都调头跑,再过3秒他们又调头跑,依次照1、3、5„„分别都调头而跑,每秒两人分别跑5.5米和3.5米,那么经过几秒,他们初次相遇?
27、甲、乙两地间有一条公路,王明从甲地骑自行车前往乙地,同时有一辆客车从乙地开往甲地。40分钟后王明与客车在途中相遇,客车到达甲地后立即折回乙地,在第一次相遇后又经过10分钟客车在途中追上了王明。客车到达乙地后又折回甲地,这样一直下去。当王明骑车到达乙地时,客车一共追上(指客车和王明同向)王明几次?
28、迪斯尼乐园里冒失的米老鼠和唐老鸭把火车面对面的开上了同一条铁轨,米老鼠的速度为每秒10米,唐老鸭的速度为每秒8米。由于没有及时刹车,结果两列火车相撞。假如米老鼠和唐老鸭在相撞前多少秒同时紧急刹车,不仅可以避免两车相撞,两车车头还能保持3米的距离。(紧急刹车后米老鼠和唐老鸭的小火车分别向前滑行30米)。
29、A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又几米?
30、甲、乙两人步行的速度之比是7:5,甲、乙分别由A、B两地同时出发。如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时? 7
31、甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?
32、一条船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比为2:1。一天因为下暴雨,水流速度是原来的2倍,这条船往返共用了10小时,甲、乙两港相距多少千米?
33、姐弟俩正要从公园门口沿马路向东去某地,他们回家要从公园门口沿马路向西行,他们商量是先回家取车再骑车去某地省时间,还是直接从公园门口步行向东去某地省时间。姐姐算了一下:已知骑车与步行的速度之比是4︰1,从公园门口到达某地距离超过2千米时,回家取车才合算。那么,公园门口到他们家的距离有多少米?
34、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却要跑3步。猎犬至少跑多少米才能追上兔子?
35、甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米? 8
36、甲、乙二人同时从A地去280千米外的B地,两人同时出发,甲先乘车到达某一地点后改为步行,车沿原路返回接乙,结果两人同时到达B地。已知甲、乙二人步行的速度是5千米/小时,汽车的速度是每小时55千米。问甲下车的地点距B还有多少千米?
37、如图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。已知甲每分走90米,乙每分走70米。问:至少经过多长时间甲才能看到乙?
38、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
39、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?
40、两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?