受弯构件正截面承载能力计算
- 格式:docx
- 大小:37.24 KB
- 文档页数:3
受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。
在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。
下面将详细介绍受弯构件正截面承载力计算的过程。
在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。
弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。
弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。
有了弯矩的大小后,下一步就是确定截面形状。
截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。
不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。
确定了弯矩和截面形状后,接下来就是计算材料的强度。
材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。
常见的材料强度有抗拉强度、抗压强度和屈服强度等。
在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。
最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。
计算的过程包括确定应力分布、求解最大应力和计算承载力。
根据不同的截面形状和材料的特性,计算方法也有所不同。
总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。
在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。
因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。
受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。
在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。
下面将详细介绍受弯构件正截面承载力计算的过程。
在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。
弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。
钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。
为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。
二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。
影响因素:材料强度、截面尺寸、钢筋配置等。
2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。
(2)截面尺寸:截面宽度b、截面高度h。
(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。
3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。
三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。
3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。
受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。
几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。
在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。
根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。
在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。
在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。
综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。
需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。
此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。
综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。
在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。
单三 受弯构件正截面承载能力计算一.矩形截面单筋:计算公式ƒsd •As=ƒcd •b •xMu= ƒcd •b •ho 2•s α 其中s α=ξ(1-0.5ξ),ξ=1-s α21-=x/ho 使用条件(ξ≤ξb 避免超筋,ρ≥ρmin=max ﹛0.002,0.45sdtdf f ﹜避免少筋) 双筋:计算公式ƒsd •As=ƒcd •b •x+ƒsd ’•As ’Mu= ƒcd •b •ho 2•s α+ ƒsd ’•As ’•(ho-as) 其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 使受拉钢筋受拉屈服 x ≥2as ’使受压钢筋受压屈服)若x<2as ’(受压钢筋不屈服) 则: Mu= ƒsd •As •(ho-as)二.单筋T 形截面第一T 形截面:(x ≤hf ’)计算公式 ƒsd •As=ƒcd •bf ’•x Mu= ƒcd •bf ’•ho 2•s α其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋) 第二T 形截面:(x>hf ’)计算公式 ƒsd •As=ƒcd •b •x+ƒcd •(bf ’-b)•hf ’Mu= ƒcd •b •ho 2•s α+ƒcd •(bf ’-b)•hf '•(ho-hf ’/2)其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋)矩形截面梁配筋设计(As )已知(b*h ,ƒcd , ƒsd , ƒsd ’, Md , ro )步骤:设受拉区钢筋层数 即一般取as (一层as=40mm 二层as=70mm 三层as=90mm)求ho (ho=h-as) 求所需Mu=roMd计算roMd 与Mumin=ƒcd •b •ho 2•ξb(1-ξb)并判断其大小若 Mu<ƒcd •b •ho 2•ξb(1-ξb)配单筋 若Mu>ƒcd •b •ho 2•ξb(1-0.5ξb)配双筋一.单筋配筋:求s α=Mu /ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb • ho 求As=ƒcd •b •x/fsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As) 计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二.双筋配筋(As As ’)令ξ=ξb 求s α=ξb (1-0.5ξb) 求x=ξb • ho若x>2as ’ 求As ’=(Mu-ƒcd •b •ho 2•s α)/ƒsd ’(ho-as ’)求As=( ƒcd •b •x+ƒsd ’•As ’)/ƒsd依据求得As As ’查表选取As As ’ 计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)若x<2as ’不满足双筋配筋条件` 双筋配筋(As )求s α=[Mu-ƒsd ’•As ’(ho-as ’)]/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho若x>=2as ’ 求As=( ƒcd •b •x+ƒsd ’•As ’)/ ƒsd 若x<2as ’ 求As= Mu/ƒsd • (ho-as ’)依据求得As 查表选取As,计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)矩形截面梁设计复核一.单筋截面复核已知(b*h ,ƒcd , ƒsd , Md , ro ,as , 钢筋配筋As)步骤:由as求ho (ho=h-as) 根据钢筋配筋查表选取As ,计算ρ=As/b•ho 并判断ρ>=ρmin(若ρ<ρmin说明截面尺寸过小)求X=ƒsd•As/ƒcd•b 求ξ=x/ho 并判断ξ<=ξb(若ξ>ξb)求sα= ξ(1-0.5ξ)求 Mu= ƒcd•b•ho2•sα比较Mu与roMd,若Mu>roMd则满足二.双筋截面复核已知(b*h ƒcd ƒsd ƒsd’ Md ro as as’钢筋配筋As’As)步骤:由as求ho (ho=h-as)求x=(ƒsd•As- ƒsd’•As’)/ƒcd•b若x<2as’Mu=ƒsd•As•(hor-as)若x>=2as’求ξ=x/ho 并判断ξ<=ξ b若ξ<=ξb求sα=ξ(1-0.5ξ)求Mu=ƒcd•b•ho2•sα+ƒsd’•As’(ho-as) 比较Mu与roMd,若Mu>roMd则满足若ξ>ξb 令ξ=ξb求sα=ξb(1-0.5ξb)求Mu=ƒcd•b•ho2•sα+ƒsd’As’•(ho-as)比较Mu与roMd,若Mu>roMd则满足T 形截面梁配筋设计As已知(T 形截面尺寸b*h bf hf ƒcd ƒsd Md ro )步骤:设受拉区钢筋层数 取as(一层as=50二层as=80三层as=100) 由as 求ho (ho=h-as) 求所需Mu=roMd比较Mu 与ƒcd •b •ho 2•s α+ ƒcd •('b f-b)'h f •(ho-'h f /2)一若Mu<=ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第一种T 形截面 求s α=Mu/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb •ho 求As=ƒsd/ƒcd •b •x根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二若Mu>ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第二种T 形截面 求s α=[Mu-ƒcd •('b f-b)•hf ’•(ho- 'h f /2)]/ƒcd •b •ho 2 求ξ=1-s α21-并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho求As=[ƒcd •b •x+ƒcd •('b f-b)•'h f ]/ƒsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)T 形截面梁配筋复核已知(T 形截面尺寸b*h 'b f 'h f ƒcd ƒsd Md ro 钢筋配筋As as ) 步骤:由as 求ho(ho=h-as) 计算ƒsd •As 与ƒcd •'b f •'h f 并比较其大小 一若ƒsd •As<=ƒcd •'b f •'h f 为第一种T 形截面求x= ƒsd •As/ƒcd •'b f 求ξ=x/ho 并判断ξ<=ξ b 求s α=ξ(1-0.5ξ) 求 Mu= ƒcd •'b f •ho 2•s α 比较Mu 与roMd,若Mu>roMd 则满足 二若ƒsd •As>ƒcd •'b f •'h f 为第二种T 形截面求x=[ƒsd •As-ƒcd •('b f-b)•'h f ]/ƒcd •b 求ξ=x/ho 并判断ξ<=ξ b 求s α= ξ(1-0.5ξ) 求Mu= ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-hf ’/2) 比较Mu 与roMd,若Mu>roMd 则满足单元四 受弯构件斜截面承载力计算混凝土与箍筋的斜截面抗剪承载力Vcs=321ααα*0.45*sv sv k cu f f p bh ρ,03)6.02(10+- (KN )1α:1α=1.0 进中间支点1α=0.9//2α:钢筋混凝土受弯构件2α=1.0预应力钢筋混凝土2α=1.25//3α=1.1//P=100ρ当ρ>2.5时,取ρ=2.5//sv ρ箍筋配筋率sv ρ=sv A /(v s •b)//sv f 不宜大于280MPa弯起钢筋的斜截面抗剪承载力 :vsb =0.75*∑∙∙∙-s sb sd A f θsin 103 箍筋和弯起钢筋的斜截面抗剪承载力:d V 0γ<=321ααα*0.45*sv sv k cu f f p h b ρ,03)6.02(10+∙-+0.75*∑∙∙∙-s sb sd A f θsin 103 适用条件:(上限d V 0γ<=0.51*0,310h b f k cu ∙∙∙-/下限d V 0γ≤0.5*02310h b f td ∙∙∙∙-α(KN)/箍筋最小配筋率:[R235(Q235) sv ρ≥0.0018 ],[HRB335 sv ρ≥0.0012] )受弯构件斜截面抗剪配筋设计条件(d V 0γ>0.50*02310h b f td ∙∙∙∙-α(KN)) 一剪力取值规定箍筋设计计算 求箍筋配筋率sv ρ=kcu sv d f f p h b V '202622322212'0)6.02(1045.0)(+**-αααξγ(ξ>=0.6)预先选定箍筋种类与直径即(sv A ) / 求箍筋间距Sv=bA sv sv∙ρ 弯起钢筋设计计算:sbi A =)(sin 1075.0230mm f V ssd sbiθγ∙∙*-斜截面抗剪承载力复核步骤:一1复核钢筋混凝土梁是否满足公式d V 0γ<=0.51*0,310h b f k cu ∙∙∙-(KN)若不符合,应考虑加大截面尺寸或提高混凝土强度等2当钢筋混凝土中配箍筋和弯起钢筋时按公式d V 0γ<= Vcs+ vsb 。
桥梁结构受弯构件正截面承载力计算受弯构件正截面承载力计算的关键是确定截面的极限抗弯承载力。
一般来说,截面的极限承载力由材料的强度以及构件的几何形状和尺寸等因素决定。
在受弯构件正截面承载力计算中,主要涉及以下几个方面的内容:
1.弯矩和弯矩曲率关系:根据桥梁结构的荷载情况,确定构件所受的弯矩大小和分布。
利用截面受力平衡条件以及结构力学理论,计算出构件所受的弯矩曲率关系。
2.构件材料性能:根据构件所选择的材料类型,获得相应的抗弯强度参数。
常见的桥梁构件材料有钢、混凝土等。
3.构件几何形状和尺寸:根据实际设计要求和材料特性,确定构件的几何形状和尺寸。
核心问题是确定截面的几何特性,如截面面积、截面惯性矩等。
4.极限状态设计:确定正截面承载力的设计方法和准则。
一般来说,正截面承载力计算采用极限弯矩法,即根据截面受力特征和材料的强度参数,计算出构件所能承受的最大正弯矩,并与实际受力情况进行比较,以保证构件的安全性。
在实际计算中,还需要考虑构件的受力平衡条件和边界条件等因素。
同时,还应根据国家和地方的相关规范和标准,进行合理的安全系数选择和修正。
需要注意的是,受弯构件正截面承载力计算涉及到大量的计算和分析工作,需要充分考虑各种因素的影响,并进行详细的设计和校核。
此外,
随着计算方法和技术的不断进步,对于特殊结构和复杂受力条件的桥梁,还需要使用专业的计算软件和工具进行辅助分析。
综上所述,桥梁结构受弯构件正截面承载力计算是桥梁设计中的重要环节,需要结合实际情况和设计要求,进行合理的计算和分析,以确保结构的安全可靠性。
受弯构件正截面承载能力计算
一、引言
在工程设计中,对于承载力的计算是非常重要的。
对于受弯构件来说,正截面承载能力的计算是其中一项重要的计算内容。
正截面承载能力指的
是构件在受到外部弯矩作用时,正截面的最大负荷能力。
二、正截面受弯构件的力学模型
正截面受弯构件的力学模型可以简化为梁模型。
在梁模型中,假设构
件在弯曲之前是直线,且构件的弯曲变形主要发生在弯矩作用点附近的区域。
在计算中,可以通过考虑构件的截面形状、弹性模量和截面惯性矩等
参数,来计算正截面的承载能力。
三、正截面受弯构件的计算方法
正截面受弯构件的承载能力可以通过弯矩与抵抗弯曲应力的关系来计算。
根据材料的应力-应变关系,在截面上可以得到弯矩与截面的弯曲曲
率之间的关系,从而得到正截面的承载能力。
1.弯矩与弯曲曲率的关系
根据工程力学的理论,弯矩与弯曲曲率之间的关系可以通过以下公式
来表示:
M=E·I·κ
其中,M为弯矩,E为弹性模量,I为截面的惯性矩,κ为弯曲曲率。
根据该公式,可以得到弯曲曲率和弯矩的关系。
当弯矩达到一定值时,正
截面将不再能够承受该弯矩。
2.截面受弯破坏
正截面受弯构件在达到一定弯矩时,会出现截面的破坏。
截面破坏主要有以下几种形式:
(1)截面的受压边发生局部压溃破坏;
(2)截面的受拉边发生局部拉伸破坏;
(3)截面发生局部剪切破坏;
(4)截面整体翻转失稳。
根据截面破坏的形式,可以得到正截面的承载能力计算公式。
(1)当截面受压边发生局部压溃破坏时,可以将正截面的承载能力计算为截面受压边的抗弯能力。
根据材料的抗拉强度和截面形状,可以得到正截面的承载能力。
(2)当截面受拉边发生局部拉伸破坏时,可以将正截面的承载能力计算为截面受拉边的抗弯能力。
根据材料的抗压强度和截面形状,可以得到正截面的承载能力。
(3)当截面发生局部剪切破坏时,可以将正截面的承载能力计算为截面的抗剪能力。
根据材料的剪切强度和截面形状,可以得到正截面的承载能力。
(4)当截面整体翻转失稳时,可以通过截面的稳定性分析来计算正截面的承载能力。
四、影响正截面承载能力的因素
正截面受弯构件的承载能力受到多种因素的影响。
1.弹性模量:材料的弹性模量决定了正截面的刚度,对正截面的承载能力有重要影响。
2.截面形状:正截面的形状决定了截面的惯性矩,对正截面的弯矩分布和承载能力有重要影响。
3.材料的抗拉、抗压和剪切强度:材料的强度参数决定了正截面的破坏形式和承载能力。
4.构件的长度和端部条件:引起构件整体稳定性失效的因素,会对正截面的承载能力产生影响。
五、结论
正截面受弯构件的正截面承载能力是通过弯矩与抵抗弯曲应力的关系来计算的。
正截面的承载能力受到弹性模量、截面形状、材料强度参数以及构件长度和端部条件等因素的影响。
在实际工程设计中,需要综合考虑这些因素,来计算正截面的承载能力,以保证构件的稳定性和安全性。